
Efficient, Risk-Encoding Octrees
For Path Planning With A Robot Manipulator

Tobias Werner, David Harrer, and Dominik Henrich

Lehrstuhl für Robotik und Eingebettete Systeme,
Universität Bayreuth, D-95440 Bayreuth, Germany,

tobias.werner@uni-bayreuth.de,
http://robotics.uni-bayreuth.de

Abstract. Recent research in robotics envisions shared human-robot
workspaces to combine individual advantages of humans and robots. As
part of this vision, robot manipulators must avoid collisions with humans
and other a priori unknown obstacles in the shared workspace. State-of-
art approaches (e.g. certainty grids, bounding volume hierarchies) test
robot poses for collisions under individual limitations (e.g. memory or
processing overhead, assumption of global views or noiseless sensors). In
contrast, we contribute a sample-based pose test alongside a hierarchical
representation of risk over the shared workspace. Our contribution has
low memory and processing overhead, and allows for local, outdated, or
noisy sensor views. Experiments with real-world data validate this claim
and show advantages and limits of our approach over competing variants.
We conclude that our pose test and risk representation enhance real-time
path planning for robot manipulators in current and future use cases.

Keywords: path planning, robot manipulator, risk-based environment
model, shared human-robot workspaces

1 Introduction

Human-robot collaboration promises to combine individual virtues of humans
and robot manipulators. Respective research envisions various future use cases
for robots, from flexible industrial automation to applications in small businesses
and the service sector. However, human-robot collaboration mandates shared
human-robot workspaces, which contain a priori unknown obstacles (e.g. humans
or human-placed objects). The robot manipulator must thus be able to avoid
obstacles in real-time. State-of-art solutions for real-time obstacle avoidance (e.g.
[13], [14]) propose a two-tiered approach: Real-time workspace monitoring with a
multi-camera system finds 3D workspace volumes that are occupied by obstacles.
Concurrently, real-time path planning finds collision-free or risk-minimized robot
trajectories by testing robot poses against the occupied workspace volumes.

Pose tests are a crucial aspect when developing a joint monitoring and path
planning solution. Tests must be efficient to enable real-time robot reactions, but
tests also depend on the results of workspace monitoring (e.g. data structure,

2 Tobias Werner, David Harrer, Dominik Henrich

available information about obstacles). For instance, representing obstacles as
a certainty grid (e.g. [11]) lends itself to sampling-based risk queries per pose
(e.g. [1]), while a bounding volume hierarchy over obstacle points (e.g. [12])
enables hierarchical distance queries per pose (e.g. [3]). A choice of obstacle
representation and pose test furthermore limits the capabilities of later path
planners: Certainty grids, for example, natively support planning risk-minimized
robot trajectories, while voxel grids with binary occupation (e.g. [9]) do not. In
total, a holistic approach to monitoring and pose tests is necessary.

Formally, state-of-art path planners (e.g. [7]) for a robot manipulator with
d joints use a generic pose test t : Rd → C. This generic test evaluates a pose
p to one value t(p) in regard to some criterion C, such as to discard randomly
sampled poses or to weight multiple trajectory alternatives. For example, C =
{true, false} for collision-free trajectory planning (i.e. t(p) indicates collision or
no collision at pose p), and C = R for risk-minimized trajectory planning (i.e.
t(p) names the risk of a collision at pose p or a suitable risk heuristic).

Pose tests in turn ideally compare the workspace volume V : Rd → 2R
3 that

the robot occupies for a pose p to any obstacles. Let O : 2R
3 → C be the ground-

truth result of this comparison, thus t(p) = O(V (p)). However, a ground-truth
O is not readily available (e.g. due to a priori unknown obstacles, sensor noise,
or inherent discretization). This leads to our problem statement: We seek an
approximation OH : 2R

3 → C of O. Note the approximation OH encompasses
both a data structure for available information on workspace obstacles and a
corresponding per-pose test algorithm. To support real-time path planning, the
data structure of OH must be efficient to build, and the pose test OH must be
fast to compute, which gives two conflicting constraints.

Current state-of-art approaches to an approximation OH have several limits.
We discuss select approaches and their limits in Section 2. In contrast to existing
approaches, we contribute an alternative data structure and query for OH : We
use a hierarchical representation for OH that is both efficient to build and to
test. Additionally, our OH supports risk queries. We detail our data structure
and pose test algorithm in Section 3. Experimental results with real-world data
and a critical comparison against state-of-art approaches from afore follow in
Section 4 and substantiate our conclusion in Section 5.

2 Related Work

Data structures currently in use for OH include point clouds with a superimposed
tree structure (e.g. [12]), voxel grids (e.g. [9]), distance grids (e.g. [10]), distance
octrees (e.g. [6]), certainty grids (e.g. [11]), or octrees over binary (e.g. [13])
or probabilistic (e.g. [4]) payload. Robots are commonly represented as exact
triangle meshes (e.g. [14]), as convex volume approximations (e.g. [3]), or as
sampling-based representations (e.g. here), all optionally with a superimposed
bounding volume hierarchy. In general, hierarchical data structures take more
time to build, but require less memory and afford more efficient pose tests.

Efficient, risk-encoding octrees 3

Pose tests, on the other hand, depend on the chosen data structure. Exact
tests on primitives (e.g. [15]) give exact results, but are slow if OH consists of
many primitives. Sampling-based pose tests (e.g. here) check individual robot
points against OH and are particularly suited for grid-based data structures.
Optimizing variants (e.g. [2]) require a volumetric data structure, but are more
efficient than sampling if highly precise results are required. Finally, hierarchical
collision or distance tests (e.g. [3]) accelerate all other pose tests, but require
superimposed hierarchical data structures and thus increase build times.

Basic holistic variants use voxel grids and sample these over the robot model
to check for collisions (e.g. [9]). While intuitive to implement, this approach does
not scale well with increasing resolution of OH . Efficient holistic approaches,
in contrast, build bounding volume hierarchies over robots and obstacles and
evaluate these with exact (e.g. [15]) or optimizing (e.g. [3]) pose tests.

3 Our approach

As a basis for a risk-encoding obstacle approximation OH , we need to establish
an understanding of risk in the workspace of a robot: Risk commonly is defined as
the probability of an event times the loss resulting from that event (e.g. [5]). The
event, in our case, is a collision between the robot manipulator and any obstacle
in the work cell. We assume a worst-case, constant loss (e.g. independent of
robot speed). We furthermore assume that there is a direct correlation between
the distance to indeterminately moving obstacles and collision probability.

Under above assumptions, we propose to use the closest distance to obstacles
as a heuristic for risk associated with a single point of the workspace. The risk
approximation OH for a robot pose then is the minimum closest distance to
obstacles over all points in the workspace volume that the robot manipulator
occupies in that pose. Extended risk options may additionally weight the per-
point or per-pose distance (e.g. by sensor noise, data age, or robot speed).

In the following, we discuss a holistic approach to a risk-based OH . To this
end, we propose a variant of octree as a data structure to encode distance-based
risk over the workspace. Notably, we extend the well-known Brushfire algorithm
to efficiently build such an octree from a traditional octree over binary obstacle
occupation. Finally, we examine sampling of the risk octree at points on the
surface of the robot model as a pose test.

3.1 Hierarchical Brushfire algorithm

The Brushfire algorithm (e.g. [10]) calculates an approximation of the distance
to the closest obstacle for all cells in a grid representation of the workspace. To
do so, the Brushfire algorithm initially marks distances for cells in free space
as unknown, for cells in obstacles as zero. Brushfire then iteratively propagates
and increments known closest distances from grid cells to any neighboring cells
of unknown distance.

4 Tobias Werner, David Harrer, Dominik Henrich

Fig. 1. A mock-up workspace (left) and
an excerpt of the risk-encoding octree
(right) with high-risk leaf nodes close to
obstacles (red) and low-risk leaf nodes far
from obstacles (orange).

Fig. 2. An octree section over free space
(light) and obstacles (dark). Any Brush-
fire distances over node corners depend on
the propagation direction (dotted arrow).
Marks (blue) keep track of this.

We extend the Brushfire algorithm to work on the nodes of an octree over
binary obstacle occupation (e.g. [13]): We initialize closest distances of all nodes
in free space to unknown, closest distances of all occupied nodes to zero. There-
after, we iteratively propagate and increment closest distances from nodes to
any larger neighboring nodes. We stop once each node has a closest distance.
See Figure 1 for a workspace and the resulting risk-encoding octree.

In the above outline, actual distance propagation requires further elaboration:
Since nodes of an octree in general do not share the same size, we usually increase
any propagated distance not by a fixed cell size, but by the size of the originating
octree node. However, to get a correct and reasonably exact lower bound on the
distance to the closest obstacle, we must consider three special cases: Propagation
of distances over corners, propagation to smaller nodes, and refinement of too
large nodes. An in-depth discussion of each special case follows. See Algorithm 1
for accompanying pseudo-code.

Special case: Propagation over corners. In a grid, each Brushfire iteration
increases the propagated distance by the size of a cell regardless of the direction
to the closest obstacle. In an octree, however, we can only increase the propagated
distance by one full node size if the next obstacle lies in the opposing direction
of the neighboring node. When propagating around a corner, adding a full node
size yields too large distances. Figure 2 illustrates this problem.

We solve above problem by tracking from which direction a closest distance
propagated to some octree node. To this end, we introduce node marks: We
classify all sides of octree nodes in regard to global coordinates (e.g. positive X
side or negative Z side) and assign local 2D coordinates. Marks then consist of
an identifier for a cube side and a position in local 2D coordinates.

By placing and evaluating marks, we can propagate correct closest distances
over corners: When propagating a closest distance from an originating node to
a neighboring target node, we need to check the originating node for marks on
sides perpendicular to the shared side between both nodes. Any mark closest to
the shared side is the correct mark to propagate distance from. Instead of a full

Efficient, risk-encoding octrees 5

node size, we add only the distance between mark and target node to the closest
distance of the originating node to find the closest distance of the target node.
Finally, we place a new mark on the shared side of the target node, with local
coordinates closest to the selected mark of the originating node.

Special case: Propagation to smaller nodes. Our Brushfire variant iterates
over the octree from smaller nodes to larger ones. This iteration order is efficient,
as it requires no tracking or searching of all (possibly many) smaller neighbors
for large nodes. However, our iteration order also implies that marks cannot
propagate distances into the opposite direction: from large nodes to neighboring,
smaller nodes. In turn, the distances for smaller nodes may be wrong when the
direction to the closest obstacle leads through a larger node.

To solve this problem, we separately propagate distances from larger nodes
to smaller nodes. To this end, we store distance information not only in leaf
nodes, but also in inner nodes of the octree. Each inner node then propagates
distance information to its children: If a child has a distance that is larger than
or equal to the distance of a parent inner node and if this child shares one or
more marks with this parent, we copy the marks of the parent to the child. Note
this possibly entails an offset in local coordinates. If the parent additionally has
a lower closest distance than the child, then the child discards its marks and
assumes the closest distance of its parent. See Figure 3 for an example.

Special case: Refinement of too large nodes. Depth and thus resolution
of the original, binary octree depend on matches in the structure of octree and
obstacles. This implies that there may be large octree nodes close to obstacles
if the obstacle and node surfaces are similar. In turn, our hierarchical Brushfire
may associate a large volume of the workspace with a single closest distance.

Too small distances still give a conservative and thus safe approximation of
risk. However, path planners find better (e.g. more reliable) trajectories if the

Fig. 3. Left: Incorrect closest distances
(e.g. orange four), as not propagated
from the large, occupied upper-right
node. Right: Propagating intermediate
distances on inner nodes fixes this issue
(additional numbers and marks).

Fig. 4. Left: Overlapping structures of oc-
tree and obstacles cause large nodes close
to the obstacles. Distance errors impede
path planning in remote regions. Right:
Adaptive subdivision improves distances
on remote nodes.

6 Tobias Werner, David Harrer, Dominik Henrich

Input : Octree OH over binary obstacles
Output: Octree OH with additional risk encoding

heap openlist, topdownlist // Ordered by increasing node size

Insert all occupied nodes of OH into openlist

while !openlist.empty() and !topdownlist.empty() do
foreach node k = openlist.pop() do

foreach neighbour n of k do
Calculate distance d for n from k
if d < n.distance then

save d as n.distance and copy marks
if n.isleaf() then

openlist.insert(n)
else

topdownlist.insert(n)

foreach node k = topdownlist.pop() do
foreach child c of k do

if !c.occupied() and c.distance > k.distance
and k has mark over c then

copy distance and marks from k to c
if c.isleaf() then

openlist.insert(c)
else

topdownlist.insert(c)

Algorithm 1: Hierarchical Brushfire Algorithm.

risk approximation OH is close to the ground-truth obstacle occupation O. Our
octree Brushfire therefore increases the precision of OH by splitting large nodes
close to obstacles: Whenever we store a closest distance in a node, we evaluate a
splitting heuristic with thresholds for distance and node size. If the heuristic is
met, we split the node and treat any new children as specified under propagation
to smaller nodes. This procedure results in an octree with finer resolution around
obstacles. Figure 4 illustrates this process.

3.2 Pose tests

Once a risk-encoding octree is available (e.g. built by the above hierarchical
Brushfire algorithm), all that remains is to evaluate OH with this octree for a
given robot pose. To do so, we propose to sample the robot surface by regularly
spaced points. After rigid transformations to world coordinates for a given robot
pose, we can push each point through the octree to determine a matching leaf
node. Fusing values of all leaf nodes (e.g. closest obstacle distance) then gives
the desired result of OH . The actual fusing method depends on the risk encoded
in the octree. For a distance-based risk, we choose the closest distance over all
of the samples as the output of OH .

Efficient, risk-encoding octrees 7

Fig. 5. Build times for our hierarchical
Octree brushfire without (gray) and with
(orange) refinement as opposed to a grid
variant (blue) over select resolutions.

Fig. 6. Sampling times for robot poses
with points (blue) or triangles (orange)
as samples in a grid (left) or our risk-
encoding octree (right).

4 Evaluation

In the following, we evaluate our hierarchical octree Brushfire and the associated
sampling-based pose test. As ground-truth obstacles, our mock-up workspace
contains a human and a table. Furthermore, we use a CAD model of a Stäubli
TX90-2L robot arm for pose tests. This model consists of 286 triangles, which
we approximate by around 3000 points of mostly equal spacing. See Figure 1 for
an image of our mock-up workspace.

We first compare building times of our Brushfire algorithm with and without
refinement against a traditional, grid-based variant. To this end, we used grids of
various resolutions and octrees of matching lowest-level resolutions. Overall, our
octree Brushfire outperforms the grid-based variant, with the benefit growing
super-linearly by resolution. Figure 5 shows respective timings.

Next, we evaluate pose test times on our risk-encoding octree against a risk-
encoding grid. As a counterpart to our approximate point sampling test, we
used a naive triangle-based pose test to determine exact risks. Each experiment
involved timing pose tests for 200 random poses. Triangle tests on the grid
quickly become infeasible with growing grid resolution due to the number of
cells to check for intersection. In contrast, our risk-encoding octree effortlessly
handles triangles even at a large resolution. Pose tests with point sampling are
substantially faster on the grid, since no octree traversal is necessary. Figure 6
presents timings for each combination of data structure and pose test.

Overall, slower sampling times partially offset the benefit of our efficient
octree Brushfire. A reasonable comparison thus needs to amortize the build
time over sampling times. Our experiments show that for a grid with 29 =
512 subdivisions and a matching octree of depth 9, our hierarchical Brushfire
amortizes building costs only for less than about 100,000 pose tests per build of
the data structure. Otherwise, the grid is faster. In practice, reasonable real-time
path planners are bound to real-time update rates around or above 10 Hz (e.g.
[14]). At the measured 0.5 ms for 200 pose tests, such planners can test at most
10,000 poses per update and thus do not reach the break-even point of grids.
We conclude that our octree outperforms grids in practically relevant cases.

8 Tobias Werner, David Harrer, Dominik Henrich

5 Conclusion

In the preceding, we have contributed a risk-encoding octree and an algorithm
that builds this octree from an existing, binary octree over obstacle occupation.
The resulting risk-encoding octree balances acceptable build times against fast
pose tests and improves timings over naive grid variants for practically relevant
numbers of pose tests. Future work examines further effects of weighting risk by
robot speed or sensor noise.

Acknowledgements
This work has partly been supported by the Deutsche Forschungsgemeinschaft
(DFG) under grant agreement He2696/11 SIMERO.

References
1. J. Borenstein, Y. Koren, ”Real-time obstacle avoidance for fast mobile robots”,

Systems, Man, and Cybernetics, 1989.
2. S. Cameron, ”Enhancing GJK: Computing minimum and penetration distances be-

tween convex polyhedra”, ICRA, 1997.
3. D. Henrich, X. Cheng, ”Fast Distance Computation for On-line Collision Detection

with Multi-Arm Robots”, ICRA, 1992.
4. A. Hornung et al., ”OctoMap: an efficient probabilistic 3D mapping framework based

on octrees”, Autonomous Robots, 2013.
5. ISO, ”ISO31000 Risk management–principles and guidelines”, International Orga-

nization for Standardization, 2009.
6. D. Jung, K.K. Gupta, ”Octree‐based hierarchical distance maps for collision detec-

tion”, Journal of Robotic Systems, 1997.
7. L. Kavraki, P. Svestka, MH. Overmars, ”Probabilistic roadmaps for path planning

in high-dimensional configuration spaces”, 1994.
8. B. Lacevic, D. Osmankovic, A. Ademovic, ”Burs of free C-space: A novel structure

for path planning”, ICRA, 2016.
9. A. Ladikos, S. Benhimane, N. Navab N, ”Efficient visual hull computation for real-

time 3D reconstruction using CUDA”, CVPRW, 2008.
10. B. Lau et al., ”Efficient grid-based spatial representations for robot navigation in

dynamic environments”, Robotics and Autonomous Systems, 2013.
11. H. P. Moravec, ”Sensor fusion in certainty grids for mobile robots”, Sensor devices

and systems for robotics, 1989.
12. J. Pan, S. Chitta, D. Manocha, ”FCL: A general purpose library for collision and

proximity queries.”, ICRA, 2012.
13. T. Werner, D. Henrich, ”Efficient and Precise Multi-Camera Reconstruction”,

ICDSC, 2014.
14. T. Werner, D. Henrich, D. Riedelbauch, ”Design and Evaluation of a Multi-Agent

Software Architecture for Risk-Minimized Path Planning in Human-Robot Work-
cells”, Kongress Montage Handhabung Industrieroboter, 2017.

15. T. Werner; D. Henrich; M. Sand, ”Sparse and Precise Reconstruction of Static
Obstacles for Real-Time Path Planning in Human-Robot Workspaces”, ISR, 2018.

	Efficient, Risk-Encoding Octrees For Path Planning With A Robot Manipulator

