Sparse and Precise Reconstruction of Static Obstacles
for Real-Time Path Planning in Human-Robot Workspaces

Tobias Werner, Maximilian Sand, and Dominik Henrich

robotics.uni-bayreuth.de, Universitit Bayreuth, Bayreuth, Germany

Abstract

Recent advances in robotics aim at applying the benefits of industrial manipulators to use cases in smaller enterprises
and the service sector. In these use cases, no a priori geometry is available for obstacles in the workspace. State-of-
art approaches thus employ sensors for a real-time reconstruction of obstacles in the workspace and subsequently avoid
collisions through real-time path planning. Usually, reconstruction exposes obstacles to path planning over a copious
data structure (e.g. an occupancy grid). This data structure, however, is not a good fit for common static and piece-wise
planar obstacles (e.g. tables, shelves). We therefore contribute a novel, three-part approach: At first, we create an a priori,
sparse and precise reconstruction of static, piece-wise planar obstacles in form of a boundary representation through a
hand-held depth sensor. Subsequently, we combine our sparse reconstruction with an online reconstruction of dynamic
obstacles to finally enable online path planning. Our experiments show two main benefits of our contribution: Improved
reconstruction precision and reduced execution times for collision queries in the path planner. Both of these allow us to
increase the motion speed of the manipulator, for empty and for occupied workspaces.

1 Introduction

Over past decades, robot manipulators have already proven
their worth in industrial applications. Future use cases in
small enterprises and the service sector can also benefit
from the strength, endurance, and precision of a robot. Yet,
the transition from traditional use cases to future ones poses
several challenges, from intuitive robot programming to
safety mechanisms. One notable challenge concerns the
environment of the robot: Use cases in small enterprises
and the service sector envision flexible and shared human-
robot workspaces. Shared workspaces imply a priori un-
known environments, where there are no CAD models for
static workspace obstacles (e.g. tables), and where certain
obstacles even are non-deterministic (e.g. humans).

To solve the challenge of unknown environments, state-of-
art research proposes a two-part and real-time process: A
perception part employs sensors (e.g. with a multi-camera
setup [11]) to derive a reconstruction of static and dynamic
obstacles in the environment of the robot. A concurrent
path planning part evaluates the reconstruction (e.g. with
Rapidly Exploring Random Trees (RRTs) [15]) to find a
collision-free robot trajectory.

Data exchange between both parts commonly uses naive
representations (e.g. voxel grids [1]). Those are intuitively
built from pixelwise sensor input and are intuitively queried
in the path planning part. However, naive representations
require a large number of primitives (e.g. many voxels)
to represent obstacles with adequate detail. This enforces
a trade-off between reconstruction quality and execution
time. Obstacles therefore are often reconstructed as coarse
shapes in order to satisfy real-time demands. Coarse shapes
in turn limit available robot paths and tolerable robot speed.

Figure 1 Top: Robot workspace with mock-up static obstacles
and human worker. Bottom: Sparse and precise reconstruction
of static, a priori unknown obstacles (red). Coarse and copious
octree reconstruction of dynamic obstacles (green). Separate and
a priori CAD models for robot and work cell (grey).

2 Our approach

Opposed to state-of-art, we contribute a novel three-part
process: In a prior offline reconstruction part, we employ a
hand-held mobile device (e.g. a smartphone) with a depth
camera to gather a sparse and precise boundary represen-

Offline

Reconstruction

Sparse

Online
Path Planning

Online
Reconstruction

Collision-Free
Trajectory

Figure 2 Overview over our three-part process.

tation (B-Rep) of static, piece-wise planar obstacles in the
workspace. A subsequent real-time reconstruction part con-
siders these B-Reps to restrict a coarse and copious octree
reconstruction to dynamic obstacles. Finally, a blackboard-
based path planner part evaluates the sparse B-Rep and
the copious octree representation by efficient hierarchical
distance queries for collision-free, speed-controlled robot
trajectories. Figure 1 shows both of our reconstructions,
while Figure 2 gives an overview over our process.

2.1

The goal of the offline reconstruction part is to enable the
intuitive acquisition of static obstacles for subsequent use
during later online reconstruction and path planning parts.
To this end, offline reconstruction utilizes a smartphone
with integrated depth camera (Lenovo Phab 2 Pro). Since
this smartphone unifies depth camera, display, and com-
puter in one device, no additional devices are required for
reconstruction. At the same time, it is possible to preview
the results of obstacle acquisition on the integrated screen.
This enables even non-experts to efficiently and intuitively
perform the reconstruction. See Figure 3 for an example.
Existing systems for the reconstruction of 3D models with
hand-held cameras fall into one of two categories: frame-
to-frame methods or frame-to-model methods. The former
create a pose graph that represents the spatial relation of
single measurements (e.g. [4, 8]), refine that graph through
loop closing and graph optimization, and fuse measure-
ments into a global model but in a concluding step. The
latter perpetually integrate individual measurements into a
global model (e.g. a surfel model [7, 25] or a volumetric
model [16, 24, 6]).

When comparing both categories, frame-to-frame methods
suffer from maintaining all individual measurements (e.g.
point clouds) over the entire acquisition process. Due to
memory requirements, this may especially be problematic
on memory-limited mobile devices. In contrast, frame-to-

Offline Reconstruction

Figure 3 Acquisition of static obstacles through a smartphone.

model methods avoid this issue by fusing measurements
into the global model instantly. Measurements therefore
become expendable intermediately and are discarded soon
after. However, two notable disadvantages incur for frame-
to-model methods: On the one hand, the global model is
only an approximation of measurements, which requires
balancing precision and memory consumption (e.g. for the
subdivision into voxels or surfels). On the other hand, a
Graphics Processing Unit (GPU) capable of accelerating
general computations becomes a necessity for a real-time
reconstruction. Recent smartphones (e.g. the Lenovo Phab
2 Pro), opportunately, are outfitted with a suitably fast GPU
for offloading the workload of frame-to-model methods.
Following the above assessment, we implement a frame-
to-model approach. In our frame-to-model approach, we
employ planar B-Reps to represent the global model. The
B-Reps apply topological relations between mathematical
entities of suitable boundaries to represent model contents.
Notably, B-Reps define each individual face of a model by
an analytical description of the face surface and by inter-
sections between this surface and neighbouring surfaces —
a memory-efficient and coarse, yet precise representation
of obstacles. Subsequent sections discuss how we derive a
global B-Rep model from individual point clouds.

2.1.1 Preprocessing

Offline reconstruction starts with a preprocessing step. We
perpetually convert incoming point clouds from the depth
sensor on the smartphone into an organized format, namely
a 2D indexed grid. This allows for a more streamlined
and efficient later reconstruction, since neighbours of a 3D
point are intuitively accessed through the 2D grid.

To organize a point cloud into a 2D grid, we apply the a-
priori known, intrinsic camera matrix to project original,
unorganized points onto 2D indices. Distortions (e.g. due
to lens effects) may result in 2D indices without a match in
the unorganized point cloud. This causes holes in the 2D
grid, which we close by linearly interpolating neighbouring
points around each hole.

In addition to organizing the point cloud, preprocessing
also determines the current pose of the smartphone through
its on-board positioning sensors. Preprocessing annotates
the organized point cloud with the determined smartphone
pose, resulting in a point cloud that is absolutely located in
3D space. See Figure 4 for example point clouds.

¥ $
- A
| 4

Figure 4 Top: Two organized point clouds (coloured by z value).
Mid: Partial B-Rep models built from individual measurements.
Bottom: Fusion of both partial models into the global model.

2.1.2 Incremental Reconstruction of B-Rep Models

After preprocessing, offline reconstruction continues by
instantly creating a partial B-Rep from each point cloud.
To this end, we use a state-of-art conversion approach (see
[18]): First, we tessellate the organized point cloud into
intermediate triangles by exploiting point neighbourhoods.
The edges of those intermediate triangles define a depth-
correct neighbourhood relation over points, which in turn
forms the foundation for segmentation of the point cloud

by region growing. Region growing yields planar segments.

We convert these segments to 2D polygons by finding and
fitting contours between neighbouring segments. Finally,
we create the desired partial B-Rep by filling a half-edge
data structure with the contours of all 2D polygons. See
Figure 4 for an example partial B-Rep.

Directly after building a partial B-Rep, we fuse this partial
B-Rep into a global B-Rep model. To do so, we consider
pose annotations from preprocessing to find corresponding
surfaces in the partial and the global B-Rep. A concluding
2D plane sweep merges the partial B-Rep into the global
one. Certainty weights ensure that outliers and other errors
do not corrupt the existing global model. Figure 4 shows
the results of merging two partial B-Rep models. Details
on B-Rep merging are found in [18].

With an increasing number of partial B-Reps merged into
the global model, the global model becomes both more
complete and more precise. A real-time model preview on
the smartphone enables users to decide whether the global
model already meets their requirements. Thus, users may
either continue reconstructing or stop and store their final
model. A finished model is illustrated in Figure 5.

Figure 5 Global B-Rep model after offline reconstruction.

2.1.3 Model to Robot Calibration

After offline reconstruction, users must perform a quick
post-processing step: The final B-Rep must be calibrated to
the robot work cell, which involves transforming the model
to the robot coordinate system. We suggest performing the
calibration by hand in a 3D graphics and modelling suite.
This process is both convenient and intuitive, as floors and
walls in the offline reconstruction easily align to X, Y, and
Z axes. Finally, the user must manually delete any surfaces
of the robot that are contained in the offline reconstruction.
This is facilitated by common-place tools to select linked
faces, which require but a single click to select the entire
robot in the reconstruction.

2.2 Online Reconstruction

In contrast to the offline reconstruction part, our online
reconstruction part uses an intrinsically and extrinsically
calibrated network of colour cameras to monitor a shared
robot workspace in real-time. Our reconstruction efficiently
derives a precise 3D representation of workspace obstacles,
which in turn forms the foundation for path planning.
Existing solutions to same task come in several variants:
Single-view approaches (e.g. [17]) are readily available for
purchase, but suffer from occlusions and thus limit robot
paths. Multi-view variants differ by the form of result (e.g.
as implicit [2] or explicit [12] geometry), by domain (e.g.
as binary [12] or probabilistic [26] obstacles), by algorithm
optimizations (e.g. hierarchical [19] or incremental [1]),
and, finally, by traits (e.g. a guarantee of conservativeness
[9] or knowledge-based refinement [10]). All multi-view
variants are robust against occlusions, but require thorough
optimizations in order to be both efficient and precise.

In terms of the above assessment, our multi-view online
reconstruction [21] produces explicit geometry with binary
or, optionally, probabilistic obstacles, uses incremental and
hierarchical optimizations, and supports conservativeness
and knowledge-based refinement. This section provides a
short overview over our online reconstruction approach.
From a high-level point of view, the online reconstruction
consists of two separate steps: A computer network runs
distributed foreground-background segmentation on new
camera images. Concurrently, a server computer gathers
resulting silhouette images and merges these to derive the
explicit 3D reconstruction. Figure 6 depicts this process.

Camera

Computer

1. 2D Segmentation

Silhouettes

Camera

Computer

Camera
Computer

Camera
Computer

BRep of Offline
Reconstruction

Server Computer
3D Reconstruction

O i

PRM Planner

3. Path Planning

RRT Planner

Spline Planner

Blackboard

Path Annotation
Path Choice

&

Path Execution

Robot
Controller

f

Figure 6 System architecture of the online reconstruction (green) and path planner (brown) parts: Camera PCs perform distributed
foreground segmentation. Resulting silhouettes perpetually update the current 3D reconstruction on the server PC. Individual path
planners (e.g. PRM, RRT, Spline) concurrently query the 3D reconstruction to exchange path suggestions from start gy to goal g, over
the blackboard. Path annotation synchronizes existing suggestions to the 3D reconstruction. Finally, path choice marks paths to be sent
to the robot controller through the path execution component. The static B-Rep (red) of the offline reconstruction part is considered
both by the 3D reconstruction and by queries from planner components. In the end, colliding paths on the blackboard may be discarded
either due to static (left, red path) or dynamic (right, green path) obstacles.

2.2.1 Online Preprocessing on Camera Computers

Each camera of the multi-camera system is connected to a
dedicated computer on the computer network. This setup
is required to cope with the demands in both computation
time and peripheral bandwidth for large-resolution (e.g.
1920 x 1080 pixels Full HD) camera images.

For actual foreground-background segmentation on each
dedicated computer, we apply two neural networks: One
neural network performs state-of-art per-pixel foreground
detection through an optimized variant of [3]. The other
neural network exploits a-priori knowledge of contiguous
obstacles by accenting spatial coherence of neighbouring
pixels. An adaptive online learning strategy for both net-
works reduces false-negative detection for static obstacles
in favour of false-positives close to slow-moving obstacles.
Initial background learning for both networks requires few
obstacle-free startup frames. To avoid recording the robot
manipulator as background, the robot must be excluded
from learning through its CAD model, and the robot must
change poses during initialization to allow for capturing the
background behind the robot. Later online learning keeps
the neural networks in synch with gradual changes in back-
ground (e.g. due to changes in lighting conditions or colour
drift in the cameras). Finally, we exploit the graphics hard-
ware in each camera computer through an optimized GPU
implementation of both networks to achieve real-time seg-
mentation for named high-resolution images. We conclude
by optionally binarizing probabilistic segmentation results
to silhouettes for a binary reconstruction output. See [22]
for more details on our preprocessing.

Apart from foreground-background segmentation, camera
computers concurrently create occlusion masks for the cur-
rent robot pose from a CAD model of the robot. Occlusion
masks are silhouette images that mark all camera pixels as
occupied by the robot in a given pose. Occupied pixels
in an occlusion mask have to be treated differently from
background or foreground pixels: The background model
of the neural networks can not reliably capture the robot
manipulator as background without an exhaustive learning
phase and excessive false-negatives on any robot-coloured
obstacles. An incomplete background model, in turn, may
lead to false-positive detection of the manipulator as an ob-
stacle, which prohibits further robot movement. To enable
correct behaviour, we use a simple hue colour model (plus
threshold) over a uniform colour of the robot manipulator
to determine foreground state for pixels occupied by the
robot. Mind that later 3D reconstruction must also check
occlusion masks for correct behaviour on any workspace
regions that are occluded by the manipulator in regards to
the view of the respective camera.

Preprocessing maintains both the current binary silhouette
and a matching occlusion mask for concurrent queries by
the actual 3D reconstruction. Pull semantics (as opposed
to an obligatory push from camera computers) cut down
on network traffic, as 3D reconstruction typically runs at a
slightly slower rate than preprocessing. Compressing both
silhouettes before transfer further saves network bandwidth
at a negligible calculation overhead.

Figure 7 Quadtrees as an input for the online reconstruction part.
Top, left to right: Silhouette image with foreground (white) and
background (black). Silhouette with marks for pixels that are now
foreground (green) or now background (red). Coarse quadtree
level with mixed content (grey). Bottom, left to right: Original
occlusion mask for current robot pose. Mid-range quadtree level
with mixed content. Coarse quadtree level.

2.2.2 Online Reconstruction on Server Computer

Actual 3D reconstruction from silhouettes and occlusion
masks executes on the server computer. Reconstruction
runs at a variable rate (e.g. depending on the amount of
occupied regions in the work cell). This allows for higher-
fidelity path planning in low-load situations. At the start
of each reconstruction frame, the server concurrently pulls
a series of camera images from the camera computers for
the next reconstruction frame. Once a reconstruction frame
has finished, current results are exposed to path planning
instead of preceding results.

Building a 3D reconstruction for each frame involves an
incremental and hierarchical process: We first derive quad-
trees from all incoming images, then use these quadtrees to
efficiently and incrementally derive a copious 3D octree as
a representation of workspace occupation.

Quadtrees iteratively merge all silhouette pixels to larger
regions that either have foreground, background, or mixed
content, down to a single region as the quadtree root. For
occlusion masks, quadtrees apply a similar notion, where
regions are either robot free, robot-occupied, or of mixed
content. Additionally, we determine which nodes in the
quadtrees have changed since the preceding reconstruction
frame to enable later, incremental processing. We do not
distribute this process, as transfers of quadtrees are more
expensive than node merging. See Figure 7 for example
quadtrees of silhouettes and occlusion masks.

Unlike bottom-up quadtrees, we create the 3D octree in a
top-down, incremental manner: We start with the octree of
the preceding frame, or, initially, a single node that spans
the entirety of the monitored work cell. We traverse the oc-
tree from root to leaves and check for nodes the projection
of which has been modified in any of the quadtrees over
silhouettes or occlusion masks. As quadtrees allow for an
efficient early-out on coherent regions in the silhouettes,
we can perform efficient lookups per octree node.

Octree nodes that have been changed with respect to any
quadtree must be updated. To this end, we efficiently check
the occupation state of the node projection in the quadtrees:
A node that only maps to background pixels in one image
is free of obstacles, while a node that maps to foreground

Figure 8 A 3D reconstruction (bottom) from silhouettes (top)
with potential occluders (i.e. the robot or B-Reps of the offline
reconstruction, blue). Obstacles may false-negatively register as
background if behind occluders that are part of the background
model (e.g. B-Reps of the offline reconstruction part), such as
the legs of the person in the top left silhouette image. To solve
this problem, background pixels that map to occlusions must be
excluded from reconstruction.

pixels in all images is fully occupied by an obstacle. Any
such node has any children discarded and ends up with a
uniform state in the final reconstruction. Other nodes are of
mixed content. Those must be split (i.e. if children-free in
the previous frame). Processing then continues on children
nodes, up to single-pixel projections in each camera.
Apart from silhouettes, we must also test for occlusions
by the robot (i.e. occlusion masks) or static obstacles (i.e.
B-Reps of the offline reconstruction). For the former, we
perform a likewise check against the occlusion mask quad-
trees: If a node is entirely occluded in a camera image,
that image is ignored when determining node occupation
(as above). For the latter, we first require a lookup-friendly
variant of the B-Rep model. There are two variants to this:
The first variant implies sampling the occluded spaces as a
separate, static octree, then traversing both octrees in par-
allel while looking up per-camera occlusions in the static
octree. Alternatively, a second variant involves rendering
separate silhouette images of B-Reps, building quadtrees
over these, and finally performing lookups for occlusions,
possibly splitting on mixed occlusion. The first variant has
a bias for performance over memory footprint, while the
second variant favours a low memory footprint over speed.
Since memory is plenty on modern (non-mobile) hardware,
we decided to realize the first variant.

This concludes the summary of our online reconstruction
part. Figure 8 gives examples for silhouette images and a
respective 3D reconstruction. See [21, 23] for more details
on our online reconstruction, including omissions such as
knowledge-based refinement and probabilistic variants.

23

Concurrent to the online reconstruction, our path planning
part drives the robot manipulator by transmitting speeds
and path segments. We derive speeds and path segments
from results of both reconstruction parts by an efficient,
hierarchical distance query (see [5]),

dHijleﬁfz%R7

Online Path planning

for any conservative bounding volume hierarchy (BVH)
types % and %3, where dy (H), H,) denotes the minimum
distance between leaf objects of H| € 4 and H, € J%3.
To use the hierarchical distance query, we need three con-
servative bounding volume hierarchies: One hierarchy for
the octree of the online reconstruction, another hierarchy
for the B-Rep model of the offline reconstruction, and a
final hierarchy for the CAD model of the robot. Octrees
already are a conservative bounding volume hierarchy, so
we only discuss the other two cases.

State-of-art considers bottom-up approaches (e.g. space-
filling curves [14]) and top-down approaches (e.g. splitting
heuristics [20]) to derive conservative BVHs. In general,
the former take less time to build, while the latter generate
better-optimized hierarchies.

B-Reps for static obstacles do not change at run-time. In
this case, the run-time spent for hierarchy building is mostly
irrelevant. We therefore use a splitting-based approach. We
start with a bounding primitive around each B-Rep, then
recursively split the set of all boundings along the best of
several splitter candidates to generate a bounding volume
hierarchy. Our experiments indicate that box boundings
(opposed to spheres) alongside splitter candidates between
neighbouring primitives sorted along each axis (as opposed
to random splitters) and a splitting heuristic of minimized
intersection volume (as opposed to intersection diameter)
give well-performing — but, not necessarily, balanced —
bounding volume hierarchies.

Opposed to the B-Reps for static obstacles, the BVH over
the CAD model of the robot changes very frequently. In
particular, the robot hierarchy must adapt each time that
path planning queries any pose for distances to obstacles.
We hence use an incremental, bottom-up approach: We
supply bounding primitives (again, boxes turn out faster
than spheres in our experiments) over model triangles, then
classify primitives according to their Morton curve index
(see [14]), and recursively merge primitives with close-by
curve indices until we reach the hierarchy root. To avoid
perpetual collisions with the floor, this hierarchy contains
only movable limbs of the robot, but not the robot base.
To derive an overall distance between robot and obstacles,
we assume a robot manipulator with n € N degrees of free-
dom and poses p € C in configuration space C C R". With
conservative BVHS Hgy, for the octree, Hy,e for the static
obstacles, and Hyop(p) for the robot in pose p, we find a
minimal distance

ddyn(p) = dH(Hrob(p)a den)

between the robot in pose p and dynamic obstacles, and
another minimal distance

dstat(p) =dny (Hrob (P)a Hstat)

between the robot in pose p and static obstacles. Together,
both distances give an overall minimal distance

d(p) = min(ddyn(p)7 dstat(p))~

from robot to any obstacles. Based on the overall minimal
distance, we directly determine allowed speed through a
straightforward heuristic

Vnormalized (P) = min(1, d(p) / lheuristic)

with parameter Apeurisic € R™.

While distances directly allow for speed control, we still
need to generate path segments. To do so, path planning
incorporates a series of concurrent agents. Each of these
agents realizes a state-of-art path planning approach (e.g.
PRM, RRT, spline). All agents collaborate through a black-
board mechanism, where one agent may replace segment
suggestions of another agent with better (e.g. collision-free
or faster) path segments. This enables us to combine the
benefits of different state-of-art planners without enforcing
a fixed higher-level hierarchy or pipeline. Internally, all
planners use the above distance queries to find collision-
free path segments, and they employ the speed heuristic
to evaluate segment speed. Finally, a separate execution
agent iteratively removes segments from the fastest path on
the blackboard and sends these to the robot for execution.
Figure 6 illustrates the blackboard mechanism. See [23]
for an in-depth discussion of our path planner, including
omissions such as path annotation and path selection.

3 Evaluation

We have evaluated our contribution through path planning
on a real-world robot work cell. The work cell contains a
Staubli RX130 industrial manipulator and static mock-up
obstacles as shown in Figure 1.

At first, we recorded B-Reps of static obstacles through
the offline reconstruction part using — as mentioned —
a Lenovo Phab 2 Pro mobile device with on-board depth
sensor. This process took several minutes and resulted in
around fifty B-Rep surfaces in the global model. We then
used the open source 3D graphics suite Blender to remove
fragments of the robot from the offline reconstruction.

For the subsequent online reconstruction part, a network of
eight inexpensive Logitech C930e web cameras monitors
the work cell. Each camera connects to a separate com-
puter as described earlier, where a GPU of type NVIDIA
GTX 950 performs foreground-background segmentation
and renders occlusion masks for the current robot pose. A
consumer-grade server computer (Intel Core 17-6700, quad
core) receives results of preprocessing and performs both
online reconstruction and path planning.

In our test sequence, a worker enters the work cell and
starts working close to one of the static obstacles. The
precise and sparse B-Rep representation of static obstacles
shows four benefits in this experiment: Most importantly,
precision and performance of both reconstruction and path
planning improve, but B-Reps additionally reduce memory
consumption and improve path quality.

Precision of distance queries for static obstacles by mean
increases from the size of octree leaf nodes (5 cm error
margin at a typical 512° resolution) to the structural size
of sparse B-Reps (1 cm error margin). However, there are
peaks well above the average (up to 30 cm improvement
in distance error). Cause for these peaks is that a visual
hull (see [13]) as built by the online reconstruction cannot
correctly reconstruct surfaces that face all cameras, such as
the tops of our mock-up obstacles. Improved precision in
turn allows path planning to pick paths closer to static ob-
stacles and gives slightly better robot speeds (about 10%,
depending on paths and the exact speed heuristic). At the
same time, memory consumption and octree node count
decrease (about 30k octree nodes as opposed to around 50
B-Reps for our static mock-up obstacles). Finally, the in-
crease in performance is a direct consequence of the sparse
B-Rep representation, which allows for testing few B-Reps
instead of many octree nodes. For the mock-up workspace
occupation (e.g. about 50k nodes or about 20k nodes and
about 50 B-Reps), the execution time of distance queries
improves by approximately 20%, even notwithstanding the
additional gain in accuracy.

4 Conclusion

In the preceding, we have contributed a novel approach to
handling both static and dynamic obstacles in the context
of path planning for a robot manipulator: Capturing static
obstacles separately in coarse, but precise B-Rep form with
an intuitive offline process reduces runtime and increases
precision for online reconstruction of dynamic obstacles
and for subsequent online path planning. In conclusion,
our combined offline/online reconstruction approach has
notable benefits at just minor costs (i.e. the offline B-Rep
reconstruction must be performed manually). That said,
our approach is not suitable for use cases where seemingly
static obstacles change at times (e.g. when workers may
move or adjust tables). Future work includes handling non-
planar B-Rep faces, using depth maps of static obstacles,
and real-world (as opposed to mock-up) experiments.

5 Acknowledgements

This work has partly been supported by the Deutsche For-
schungsgemeinschaft (DFG) under grant agreement HE26-
96/11 SIMERO.

6 Literature

[1] A.Bigdelou, A. Ladikos, N. Navab, "Incremental visual hull
reconstruction”, Machine Vision Association, 2009

[2] J. R. Casas, J. Salvador, "Image-based multi-view scene
analysis using conexels", Use of vision in human-computer
interaction, Volume 56, Australian Computer Society, 2006

[3] D. Culibrk, V. Crnojevi: GPU-Based Complex-Background
Segmentation Using Neural Networks, The Irish Machine
Vision and Image Processing, 2010.

[4] F. Endres et al., "An evaluation of the RGB-D SLAM sys-
tem", ICRA, 2012

[5] H. Dominik, C. Xiaoqing, "Fast Distance Computation
for On-line Collision Detection with Multi-Arm Robots",
ICRA, 1992

[6] O. Kihler et al. "Very High Frame Rate Volumetric Integra-
tion of Depth Images on Mobile Devices", Visualization and
Computer Graphics, vol. 21, no. 11, pp. 12411250, 2015

[7]1 M. Keller et al., "Real-Time 3D Reconstruction in Dynamic
Scenes Using Point-Based Fusion", Conference on 3D Vi-
sion, 2013

[8] C. Kerl, J. Sturm, D. Cremers, "Dense visual SLAM for
RGB-D cameras", Intelligent Robots and Systems, 2013

[9] S. Kuhn, "Multi-view reconstruction in-between known en-
vironments", Technical Report, Universitit Bayreuth, 2010

[10] S, Kuhn, "Wissens- und sensorbasierte geometrische
Rekonstruktion”, PhD thesis, Universitit Bayreuth, 2012

[11] A.Ladikos, S. Benhimane, N. Navab, "Real-time 3d recon-
struction for collision avoidance in interventional environ-
ments", Medical Image Computing and Computer-Assisted
Intervention, 2008

[12] A. Ladikos, S. Benhimane, N. Navab, "Efficient Visual
Hull Computation for Real-Time 3D Reconstruction using
CUDA", Computer Vision and Pattern Recognition Work-
shops, 2008

[13] A.Laurentini, "The visual hull concept for silhouette-based
image understanding", Pattern analysis and machine intelli-
gence, 1994

[14] C. Lauterbach et al., "Fast BVH construction on GPUs"
Computer Graphics Forum, 2009

[15] S. M. Lavalle, "Rapidly-exploring random trees: A new
tool for path planning", Iowa State University, TR, 1998

[16] R. A. Newcombe et al., "KinectFusion: Real-time dense
surface mapping and tracking", Mixed and Augmented Re-
ality, 2011

[17] Pilz Safety Eye, Web: https://www.pilz.com/en-
DE/eshop/00106002207042/SafetyEYE-Safe-
camera-system

[18] M. Sand, D. Henrich, "Incremental reconstruction of pla-
nar B-Rep models from multiple point clouds", The Visual
Computer, 2016

[19] L. Soares et al., "Work stealing for time-constrained octree
exploration: Application to real-time 3d modeling", Euro-
graphics, 2007

[20] I. Wald, "On fast construction of SAH-based bounding vol-
ume hierarchies", Interactive Ray Tracing, 2007

[21] T. Werner, D. Henrich, "Efficient and Precise Multi-
Camera Reconstruction"”, Distributed and Smart Cameras,
2014

[22] T. Werner, J. Bloess, D. Henrich, "Neural Networks for
Real-Time, Probabilistic Obstacle Detection", RAAD, 2017

[23] T. Werner, D. Henrich, D. Riedelbauch, "Design and Eval-
uation of a Multi-Agent Software Architecture for Risk-
Minimized Path Planning in Human-Robot Workcells",
Montage Handhabung Industrieroboter, 2017

[24] T. Whelan et al., "Real-time large-scale dense RGB-D
SLAM with volumetric fusion", Robotics Research, vol. 34,
no. 45, pp. 598626, 2015

[25] T. Whelan et al., "ElasticFusion: Real-time dense SLAM
and light source estimation", Robotics Research, vol. 35, no.
14, pp. 16971716, 2016.

[26] K. M. Wurm et al., "OctoMap: A Probabilistic, Flexible,
and Compact 3D Map Representation for Robotic Systems",
ICRA, 2010

