RAAD2018, 065, v3 (final): "Efficient, Precise, and Convenient Calibration of Multi- ...

Efficient, Precise, and Convenient Calibration
of Multi-Camera Systems by Robot Automation

Tobias Werner, David Harrer, and Dominik Henrich

Lehrstuhl fiir Robotik und Eingebettete Systeme,
Universitat Bayreuth, D-95440 Bayreuth, Germany,
tobias.werner@Quni-bayreuth.de,
http://robotics.uni-bayreuth.de

Abstract. Future use cases for stationary robot manipulators envision
shared human-robot workspaces. However, shared workspaces may con-
tain a priori unknown obstacles (e.g. humans). Robots must take these
obstacles into account when moving (e.g. through online path planning).
To this end, current research suggests real-time workspace monitoring
with a calibrated multi-camera system. State-of-art solutions to camera
calibration exhibit flaws in the above scenario, including long calibration
times, excessive reprojection errors, or extensive per-calibration efforts.
In contrast, we contribute an approach to multi-camera calibration that
is at once efficient, precise, and convenient: We perform fully-automated
calibration of each camera with a robot-mounted calibration object. Sub-
sequent multi-camera optimization equalizes reprojection error over all
cameras. After initial setup, experiments attest our contribution minor
reprojection errors in few minutes time at one button click. Overall, we
thus enable frequent system (re-)calibration (e.g. when moving cameras).

Keywords:
multi-camera systems, camera calibration, shared workspace monitoring,
human-robot collaboration, obstacle reconstruction, path planning

1 Introduction

Human-robot collaboration promises to combine the individual virtues of hu-
mans and robot manipulators. Respective research envisions various future use
cases for robots, from flexible industrial automation to applications in small
businesses and the service sector. However, human-robot collaboration mandates
shared human-robot workspaces, which contain a priori unknown obstacles (e.g.
humans or human-placed objects). The robot manipulator must thus be able to
avoid obstacles in real-time. State-of-art solutions for real-time obstacle avoid-
ance (e.g. [1], [2]) propose a two-tier approach: Real-time workspace monitoring
with a multi-camera system finds 3D workspace volumes that are occupied by
obstacles. Concurrently, real-time path planning generates collision-free or risk-
minimized robot trajectories around occupied workspace volumes.

Crucial to workspace monitoring and subsequent path planning is a precise
calibration of the multi-camera system. In particular, calibration must provide

2

RAAD2018, 065, v3 (final): "Efficient, Precise, and Convenient Calibration of Multi-. ..

2 Tobias Werner, David Harrer, Dominik Henrich

precise approximations of both intrinsic and extrinsic camera parameters (i.e. in
reference to the coordinate system of the robot manipulator). However, the con-
text of shared human-robot workspaces poses additional challenges for camera
calibration: Users for instance may arbitrarily attach additional cameras (e.g.
when flexibly changing workspace layout), users may advertedly or inadvertedly
change camera positions, or vibrations on ad-lib camera mounts may cause slight
camera displacement. Camera calibration for human-robot workspaces hence
need not only be precise, but must also be efficient (to enable fast or even online
recalibration) and convenient (to enable effortless calibration by non-experts).
State-of-art approaches do not meet the above three criteria. In contrast,
we contribute a novel approach to calibrating a multi-camera system that is
precise, efficient, and convenient: We automate calibration by a robot-mounted
calibration object to enable online camera calibration at a single button click.
The remainder of our work is structured as follows: Section 2 surveys alter-
native approaches to camera calibration. In Section 3, we present and discuss
our approach to efficient, precise, and convenient multi-camera calibration by
robot automation. Section 4 continues with an evaluation of our contribution in
precision and efficiency. Section 5 concludes with an outlook on future work.

2 Related Work

We discuss related work on camera calibration in three distinct categories: single-
camera, calibration, single-camera calibration with subsequent multi-camera op-
timization, and full multi-camera calibration.

Single-camera calibration usually estimates initial camera parameters (e.g.
with a homography [3], direct linear transforms [4], or explicit ray equations [5]),
then refines initial parameters (e.g. with Levenberg-Marquardt [3], non-linear
optimization [4], or gradient descent [5]) for a more precise result. Comparative
evaluation (e.g. [6], [7]) indicates that homography with Levenberg-Marquardt
optimization (e.g. [3]) yields most precise results with minor runtime overhead.

As a multi-camera system consists of individual cameras, it is possible to
calibrate each individual camera with one of the above single-camera calibration
approaches. Subsequent optimization (e.g. with a spanning tree over camera
pairs with intersecting frusta [8]) can apply knowledge about the multi-camera
system to further refine parameter precision (e.g. by reducing cyclic errors [8]).

Finally, multi-camera calibration can determine parameters for all cameras at
once without preceding single-camera calibration. This implies finding matching
features over all cameras (e.g. by manually waving a bright light spot in all
cameras [9]), followed by parameter estimation (e.g. by matrix factorization [9]).
In preliminary experiments, we found this variant to be less precise than single-
camera calibration alternatives, especially for cameras with distinct distortions.

Overall, the default practice for calibration is to use a hand-held calibration
object. This practice is unfavorable in multi-camera systems: Occlusions (e.g.
by the robot) enforce multiple calibration poses. Selecting and capturing those
poses in turn is time-consuming, error-prone, and requires expert knowledge.

RAAD2018, 065, v3 (final): "Efficient, Precise, and Convenient Calibration of Multi- ...

Efficient, precise, and convenient multi-camera calibration 3

3 Our Approach

Our approach to multi-camera calibration shares one prerequisite with related
work: We need multiple views onto a calibration object as input, and we need
to know the pose of this calibration object in respect to the robot manipulator.

To solve both problems at once, we attach the calibration object (in our case,
a checkerboard pattern on a wooden support frame) to the end effector mount
of the robot manipulator. From CAD data of the robot and a one-time manual
measuring, we can then determine a very precise estimate for the pose of the
calibration object with respect to the robot even for an arbitrary choice of joint
angles. In other words, we can now move the calibration object with the robot
manipulator while precisely knowing the pose of the calibration object. Figure 1
illustrates our setup. Note real-world applications may replace the cumbersome
checkerboard with a pattern that is conveniently imprinted onto the robot casing.

Fig. 1. Calibration object (a checker- Fig.2. Pose of the calibration object
board pattern) mounted to the robot in the robot software with axes and
end effector. generating vector OD.

After mounting and measuring the calibration object once, we arbitrarily
can perform our multi-camera calibration. Each subsequent calibration process
takes three distinct steps: In the first step, the robot moves the calibration object
through the scene while all cameras record images of the calibration object from
different perspectives. In a second step, each camera is calibrated individually
through a state-of-art single-camera calibration. In the third and final step, the
information from overlapping camera frusta is used to refine individual results.
Our calibration approach, in terms of related work, thus belongs to the category
of single-camera calibration with subsequent multi-camera optimization. In the
following, we discuss all three steps of our approach in greater detail.

3.1 Planning Robot Movement

Target poses for robot movement during the first step must satisfy two require-
ments: Target poses must avoid occlusions of the calibration object (e.g. by the

3

4

RAAD2018, 065, v3 (final): "Efficient, Precise, and Convenient Calibration of Multi-. ..

4 Tobias Werner, David Harrer, Dominik Henrich

robot casing) in camera images, and target poses must be uniformly distributed
over the workspace. Both requirements improve precision and efficiency of cali-
bration by creating many correspondences over many cameras in a short time.
To satisfy above requirements, we choose origins for the calibration object on
a sphere centered around the robot base (see Figure 4). A sphere radius r near
workspace limits ensures that all but the first two robot joints remain fixed and
thus we avoid self-collisions without explicit checks. A later online recalibration
furthermore can use one of the available path planners (e.g. [1]) or collision
mitigation (e.g. by soft or artifical skins) to cope with existing obstacles in the
robot workspace on transfer movements, including the floor of the workspace.
To generate almost uniformly spaced points on the sphere, we pick random
spherical coordinates 6§ € [—180°,180°) and ¢ € [—90°,90°). An additional
transform ¢ = arccos(2Zyandom — 1); Trandom € [0,1) avoids dense sampling at
the poles due to singularities. From spherical coordinates and previously defined
radius 7, we find a Cartesian position for the origin of the calibration object,

(rsin(p) cos(0), —rcos(p), rsin(p)sin(b)).

A respective orientation then is chosen for an upright calibration object that
faces away from the sphere origin. The normalized vector from robot base to
the origin of the calibration object becomes the z-axis in the local coordinate
system of the calibration object (see Figure 2). The remaining axes are chosen
as an orthogonal system with an z-axis parallel to the floor plane. Finally, the
robot moves to each generated pose, and cameras record images of the scene.

3.2 Camera Calibration

For every recorded image of every camera we check whether the image completely
contains the calibration object. If the calibration object is partially or completely
missing (e.g. due to occlusions or frustum limits), we discard the image for the
respective camera. Otherwise, we store object feature points in image coordinates
alongside the 3D pose of the calibration object.

Once we have stored a preset number of images for an individual camera,
we calibrate this camera through the popular openCV library: We first calculate
intrinsic parameters and distortion coefficients without starting estimate from
proxy points with z = 0 (i.e. as required by the implementation [3]). There-
after, we find 3D feature points from saved poses, known object dimensions, and
measured object transforms. We continue by refining camera intrinsics with cor-
respondences between real image-space and 3D feature points. In a final step we
use the openCV direct linear transform to find extrinsic camera parameters.

3.3 Parameter Optimization

Although preceding steps already perform automated camera calibration, we
can still improve the precision of calibration: We can exploit the additional
knowledge that we have a multi-camera system. To this end, we have evaluated
two different methods: Stereo optimization based on camera pairs, and global
error minimization.

RAAD2018, 065, v3 (final): "Efficient, Precise, and Convenient Calibration of Multi- ...

Efficient, precise, and convenient multi-camera calibration 5

Stereo Optimization The idea of stereo optimization for camera pairs (as
inspired by [8]) is to equalize the error in extrinsic parameters over neighboring
cameras. For a given camera 7 and another, close-by camera j with many shared
correspondences, we first estimate a relative transform in from the pose of
camera j to the pose of camera i by stereo calibration (e.g. with Levenberg-
Marquardt or the openCV). Applying in to the pose of camera j yields a new
estimate for the pose of camera i. Note this estimate differs from preceding
extrinsics, as it exploits multi-camera connectivity through stereo calibration.
We now have two estimates for the pose of camera i: The single-camera guess
and its counterpart from stereo calibration. Averaging the translational and the
rotational components of these pose estimates gives us a new parameter set for
camera ¢. While mean translations are trivial, a mean rotation is not clearly
defined. Research (see [10]) proposes rotations that exhibit least deviation from
originals. For quaternions q; and q; with real part w;, w;, this leads us to use

_Jwiwi —wi+z) o Jwilw; —wi+2)
Qmean = \/ z(w1+w]+z) qz+Slgn(qz q]) Z(UJZ+U)] +Z> qj7

Wlth z = \/(wz — U)j>2 + 4101'11)]‘ (qquj))Q
Camera i adopts the mean extrinsics. Finally, iterating over all close-by pairs
(i,7) of cameras (possibly multiple times) increases precision of extrinsics.

Error Minimization In contrast to the camera pairs of stereo optimization,
our global error minimization considers all cameras at once. At first, we discard
all images on which the calibration object is only recorded by one camera, as
we can not get any correspondences from those images. We are conversely left
with all 3D feature points that have at least two 2D feature correspondences.
Thereafter, we perform the actual optimization with Levenberg-Marquardt: In
every iteration, we calculate the mean reprojection error and its gradient in the
extrinsic parameter space of all cameras with correspondences on the current
image set. After termination (e.g. due to epsilon error or limited iteration count),
we continue on the next set of camera images.

4 Evaluation

Our test environment consists of a mock-up robot workcell (4m x4,5m x 2,8 m)
with a Stdubli RX130 robot and eight inexpensive, consumer grade Logitech
C930e Full HD webcams (see Figure 3). For testing our calibration approach, we
recorded two image sequences, each with 75 images per camera. We then used
one image sequence for calibration and the other one for evaluating our results.
As calibration object, we used a checkerboard pattern with 4 x 3 relevant corners.
Our error measure is the popular reprojection error (i.e. the mean squared error
for an image-space distance metric between camera projections of 3D features
and the corresponding 2D feature points).

6

RAAD2018, 065, v3 (final): "Efficient, Precise, and Convenient Calibration of Multi-. ..

6 Tobias Werner, David Harrer, Dominik Henrich

Fig. 3. Multi-camera system with eight
consumer-grade Logitech C930e cameras
(red circles) monitoring the workspace.

40 60 80
|

20
I

Reprojection error [px]

0
1

T T T T T T T
10 20 30 40 50 60 70

Number of images per camera

Fig. 5. Reprojection error of each camera
with increasing number of input images,
no intrinsic precalibration. Yellow: Mean
of error over all eight cameras.

Fig. 4. Distribution of feature points (red
and yellow) in a camera view, as collected
over the entire calibration process.

Reprojection error [px]

Number of images per camera

Fig. 6. Reprojection error of each camera
with increasing number of input images,
intrinsic precalibration. Yellow: Mean of
error over all eight cameras.

4.1 Precision

Our first goal was to estimate an upper bound on the minimum reprojection error
attainable in our single-camera calibration step (see Section 3.2). Additionally,
we investigated the amount of images required for error convergence. We therefor
calculated extrinsic and intrinsic parameters from the first 10, 20, ...,70 images
and tested the resulting calibration against the 75 images of the testing dataset.

Figure 5 shows the change in reprojection error with increasing sequence
length for each individual camera. As evident, more images in general lead to
a lower squared mean of the reprojection error, with a viable 20 pixels average
error after 50 images. Translating this error to the 3D workcell for Full HD
cameras gives about 10 cm offset at the far end of the workspace and about 5 cm
nearby the robot, well below tolerances for gross motion planning (see [1], [2]).

Still, the reprojection error for individual cameras varies moderately. It there-
fore is not possible to find an optimal number of input images. This precision
problem stems from feature points that do not fully cover the field of view of
some cameras: The manipulator range does not extend to all image corners, yet
image corners exhibit greatest distortions and thus are particularly relevant for

RAAD2018, 065, v3 (final): "Efficient, Precise, and Convenient Calibration of Multi- ...

Efficient, precise, and convenient multi-camera calibration 7

500
!
100
1

60

Runtime [s]
30
1
Reprojection error [px]

20
1

0 100
|

T T T T T T T T T T T
10 20 30 40 50 60 70 0 1 2 3

Number of images per camera Iterations

Fig. 7. Calibration runtime for increasing Fig. 8. Reprojection error over iterations
number of input images. of stereo optimization for artificial error.

camera intrinsics. As a solution, we derived an initial guess for intrinsics of each
single camera by manually covering the entire field of view with a hand-held
checkerboard. This significantly reduces later mean reprojection errors to about
four pixels. Respective robot-supported camera calibration then exhibits stable
and fast convergence after six images, as illustrated in Figure 6. While not quite
as convenient as fully automated calibration, the optional pre-calibration step
need only be performed once for each camera, and some manufacturers already
provide individual intrinsics for each device.

4.2 Efficiency

In order to record 75 images with every camera, the robot arm must approach
between 250 and 300 poses. Moving to a new pose and waiting for network
transfers of camera images takes about ten seconds in our setup. This adds to
a total runtime of 40 to 50 minutes for recording all images. Calibration itself
roughly takes ten minutes after all images have become available. Computational
complexity is O(k Oxr(n)), with k the number of cameras, n the number of
images per camera, and Onr,(n) the undocumented complexity of the openCV
non-linear optimization. Opposed to this effort, stereo optimization and error
minimization have a negligible performance overhead in terms of few seconds.
See Figure 7 for runtime trends. Our experiments with alternative approaches
(e.g. [3] or [9]) indicate several hours of manual calibration for similar precision.
When using intrinsically pre-calibrated cameras, the number of images nec-
essary for reasonable precision drops to about five per camera and the time for
recording reduces to roughly ten minutes. Because computing an extrinsics-only
calibration takes only seconds, the overall process in turn completes in a few
minutes, which enables a rather fast reaction to changes in camera placement.

4.3 Optimization

Optimization strategies (see Section 3.3) show their main benefit when single-
camera calibration had poor results (e.g. due to numerical issues or mediocre
feature point localization) for a limited subset of all cameras. In this case, our

8

RAAD2018, 065, v3 (final): "Efficient, Precise, and Convenient Calibration of Multi-. ..

8 Tobias Werner, David Harrer, Dominik Henrich

experiments indicate that either optimization strategy reduces a reprojection
error of 100 pixels (e.g. induced by explicitly corrupting the estimated extrinsic
parameters) to a nominal 15 pixels in Full HD input. See Figure 8 for error
trends of stereo optimization, trends for global error minimization are similar.
For more accurate results of single-camera calibration (e.g. enabled by intrinsic
precalibration), both optimization variants have significantly less impact, with
improvements of at most 3 pixels in the reprojection error.

5 Conclusion

Evaluation attests that our contribution enables efficient recalibration of a multi-
camera system in few minutes, with suitable precision for gross motion planning
and at the convenient click of a button. Experiments further suggest to use an
intrinsic pre-calibration, with a fallback to either stereo or global optimization if
intrinsics are not available. Optimization is particularly relevant for applications
with non-expert users (who cannot reliably perform intrinsics calibration) and
inexpensive cameras (which cannot economically be factory-calibrated). Future
work may involve error-adaptive recalibration with a casing-mounted pattern.

Acknowledgements

This work has partly been supported by the Deutsche Forschungsgemeinschaft
(DFG) under grant agreement He2696/11 SIMERO.

References

1. T. Werner, D. Henrich, D. Riedelbauch, "Design and Evaluation of a Multi-Agent
Software Architecture for Risk-Minimized Path Planning in Human-Robot Work-
cells”, Kongress Montage Handhabung Industrieroboter, 2017.

2. T. Werner, D. Henrich, ”"Efficient and Precise Multi-Camera Reconstruction”, Int.
Conf. on Distributed Smart Cameras, 2014.

3. Z.Zhang, ”A flexible new technique for camera calibration”, Transactions on Pattern
Analysis and Machine Intelligence, 2000.

4. J. Heikkila, O. Silvén, ”A four-step camera calibration procedure with implicit image
correction”, C. S. Conf. on Computer Vision and Pattern Recognition, 1997.

5. R.Y. Tsai, ”A versatile camera calibration technique for high-accuracy 3d machine
vision metrology using off-the-shelf tv cameras and lenses”, Journal on Robotics
and Automation, 1987.

6. W. Li, T. Gee, H. Friedrich, P. Delmas, ”A practical comparison between zhang’s
and tsai’s calibration approaches”, Int. Conf. on Image and Vision Computing, 2014.

7. H. Zollner, R. Sablatnig, ”Comparison of methods for geometric camera calibration
using planar calibration targets”, Technical report, Pattern and Image Processing
Group, Vienna University of Technology, 2004.

8. B. Li, L. Heng, K. Koser, M. Pollefeys, ”A multiple-camera system calibration tool-
box using a feature descriptor-based calibration pattern”, Int. Conf. on Intelligent
Robots and Systems, 2013.

9. T. Svoboda, D. Martinec, T. Pajdla, ”A convenient multicamera self-calibration for
virtual environments”, PRESENCE: teleoperators and virtual environments, 2005.

10. F. L. Markley, Y. Cheng, J. L. Crassidis, Y. Oshman, ”Averaging quaternions”,
Journal of Guidance, Control, and Dynamics, 2007.

