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Abstract. Recent research suggests intrinsically safe robots, such as
through soft limbs or artificial skins, to enable close-quarter human-robot
collaboration. Intrinsically safe robots allow for risk-minimized instead of
collision-free path planning. Risk-minimized path planning can integrate
non-binary knowledge — including obstacle probabilities, robot speed,
or data age — into the choice of a robot path. In this contribution, we
propose a novel approach to probabilistic obstacle detection on color
images that is specifically suited for use in real-time risk-minimized path
planning. Our approach enhances an existing neural network for object
detection by incorporating spatial coherence via a second neural network
and an optimization step inspired by simulated annealing. Finally, a bias
towards false-positive obstacle detection allows us to avoid the Sleeping
Person Problem for online learning. In our experiments, we show that a
GPGPU implementation of our approach can process Full HD images at
a soft real-time rate of 15 Hz. We conclude that our probabilistic obstacle
detection is fit for use in real-time risk-minimized path planning.

Keywords: neural networks, probabilistic obstacle detection, real-time
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1 Introduction

Human-robot collaboration has prospects past traditional industrial automation,
including promising use cases in small businesses, the service sector, or private
homes. For such use cases, recent research advocates intrinsically safe robots, as
made possible by artifical skins, force control, or soft limbs. Paths for intrinsically
safe robots need not remain collision-free at all costs. Instead, real-time, risk-
minimized path planning can integrate and weigh non-binary knowledge from
various sources — including obstacle probabilities, sensor errors, or data age.

Our overall goal is to enable real-time, risk-minimized path planning for a
robot manipulator. To this end, we monitor the robot workspace through a
multi-camera network made from inexpensive, consumer-grade webcams. In this
contribution, we present a novel approach to derive probabilities of obstacle
presence from individual color images captured on the multi-camera network
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in real-time. Our approach follows a two-stage structure: In the first stage, a
neural network performs per-pixel probabilistic foreground-background segmen-
tation. In the second stage, another neural network improves obstacle detection
results by incorporating spatial coherence through a gradient descent inspired by
Simulated Annealing. A modified online learning behaviour avoids the infamous
Sleeping Person Problem through a bias for false-positive obstacle detection.

The remainder of our contribution is structured as such: Section 2 reviews
work related to our approach, including existing algorithms for probabilistic
object detection. In Section 3, we discuss our approach to probabilistic obstacle
detection, with one subsection for each of the two neural network stages, whereas
a third subsection presents our modified learning method. Section 4 gives our
experimental results and compares performance and memory readings of our
implementation to related work. Section 5 concludes our contribution with a
review and notes on future work.

2 Related Work

Research proposes manifold behavioural and reactional strategies for robots in
the presence of a-priori unknown obstacles (e.g. speed control and path planning
[6]). Each such strategy requires a specific type of environment representation
(e.g. point clouds [23], voxel spaces [17]). The environment representations in
turn originate from individual sensors (e.g. artificial skins [19], depth cameras
[12], color cameras [7]), or from fusion of data over multiple sensors (e.g. multi-
camera systems [15] that generate visual hulls [11] or photo hulls [3]).

Throughout perception and environment modeling, there are two distinct
variants: binary object detection (e.g. [9]) and probabilistic object detection
(e.g. [16]). The former variant is more intuitive and allows for a more efficient
interpretation of resulting data in subsequent algorithms such as path planning
or speed control. The latter variant enables a more comprehensive integration
of sensor errors, system latencies, and risk-based assessment into path planning
(e.g. [8], [1]). We therefore consider probabilistic object detection as vital to
achieve our end goal of risk-minimized path planning.

Related work suggests diverse approaches to finding probability images from
color images: Frame difference algorithms (e.g. [10]) compare current with pre-
vious input images and compute their absolute differences, but fail for static
or abruptly stopping objects. Statistical algorithms adapt a probability density
function to the background statistics of images and use these statistics to classify
incoming pixels. Mixture of Gaussian Modeling (see [2]) is a popular algorithm
in this category. Alternative strategies apply Sugeno and Choquet Integrals to
measure the similarity between an incoming and a background image based on
texture features and color (see [18]), or use self-organizing maps for background
subtraction through a fuzzy function for learning (see [14]). In contrast to related
approaches, our contribution does not require an extensive learning phase, and
can adapt to gradual changes in the environment without the usual shortcomings
of unsupervised online learning.



Neural Networks for Real-Time Obstacle Detection 3

3 Obstacle Detection on Color Images

In this section, we present our two-stage approach to real-time, probabilistic
obstacle detection on color images. See Figure 1 for an overview over both stages
and their dependencies.

Fig. 1. Overview of the two stages in our approach. The overall input is a color image,
the output is a per-pixel background probability ptl(b).

3.1 Neural Network for Background Modeling

Our first stage utilizes a Background Modeling Neural Network (BNN) to per-
form a preliminary segmentation through color statistics of individual pixels.
As our implementation closely follows the approach in [4], we only give a short
overview over our BNN and refer to the original publication for details.

Our BNN implements a probability density function ptl(Θl|V ) (PDF) for a
classification Θl ∈ {f, b} at location l, where f stands for foreground, b for
background. The BNN reconstructs ptl(Θl|V ) based on ptl(Θl|vti,l) for a small

number of color prototypes {vt1,l, ..., vtk,l}. The BNN then computes the PDF as

ptl(Θl|v) =
1

k

k∑
i=1

ptl(Θl|vti,l) · actti,l(v), v ∈ V (1)

where actti,l(v) is the activation of color prototype vi — a similarity measure of
input values v and vi — derived via textbook Parzen Estimation. Applying the
PDF to the observed value vtl for timestep t gives a preliminary segmentation
stattl(b) = ptl(b|vtk). Since ∀v, l, t : ptl(f |v) = 1 − ptl(b|v), each ptl(Θl|vti,l) can be

stored as a single scalar value wt
i,l = ptl(b|vti,l) per pixel location l. For a sequence

of input values (vt)t over timesteps t, the BNN of each pixel adapts its weights
wt

i (and thus its PDF) according to

wt+1
i,l = clamp

((
1− β

k

)
· wt

i,l + δ(i, itmax,l) · β
)
, (2)

with the Kronecker δ, a learning parameter β, and itmax,l := argmaxi(actti,l(v
t
l )).

Color prototypes are updated if actitmax,l
(vtl ) < θact, i.e. if the BNN is inactive
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(with treshold θact) for an input vtl . The color prototype vti,l which minimizes
the criterion function

crittl(i) = ptl(f |vti,l) + |ptl(b|vti,l)− ptl(f |vti,l)| = 1− wt
i,l + |2wt

i,l − 1| (3)

is then replaced by the current input vtl .
The above state of art approach models per-pixel statistics and performs

probabilistic segmentation. However, this approach does not integrate spatial
coherence, as all learning and classification is done independently per pixel.

3.2 Neural Network for Spatial Coherence

In the subsequent second stage, we apply a novel strategy to incorporate spatial
coherence into probabilistic obstacle detection: Homogenous regions in the color
image should remain homogenous in the final probabilistic segmentation. This
gives a positive bias to spatially coherent obstacles, which corresponds to typical
real world objects. To integrate spatial coherence, a preprocessing step employs
a modified Sobel Operator per color channel of an incoming image to obtain
edge images GR, GG, GB . We then combine per-channel edge images to a final
imageG =

√
G2

R +G2
G +G2

B with per-pixel arithmetics. Figure 2 shows example
results of edge detection.

Fig. 2. Left to right: Input color image,
output of a basic Sobel Filter, output of
our modified Sobel Filter with improved
edge detection.

Fig. 3. Left to right: per-pixel proba-
bilistic segmentation after first stage,
edge image, spatially optimized seg-
mentation with reduced artifacts.

Subsequently, we formulate a neural network that encodes our edge image.
In particular, let network N be a set of neurons, let st : N → [0, 1] be the state
of a neuron at timestep t, let Nstat ⊂ N be the subset of all static neurons
(n ∈ Nstat =⇒ ∃c∀t : st(n) = c), let Nvar = N \ Nstat be the subset of
all variable neurons and let l : Nvar → L be the location function that maps
neurons to their corresponding location in the pixel space. The resulting network
represents an energy function which we now optimize with a deterministic variant
of Simulated Annealing to maintain spatial coherence in the final probabilistic
segmentation. Deterministic annealing is an iterative technique that changes the
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states of variable neurons Nvar to converge towards a local minimum of an energy
function. Static neurons Nstat serve as constant input constraints. The general
energy function in our approach has the form

E(N) =
∑

n∈Nvar

∑
m∈N

D(m,n)|s(n)− s(m)|2, (4)

where D(m,n) ≥ 0 encodes the relation of two neurons m and n. Given a
monotonically decreasing temperature function decrease(T ), a virtual force F :
[0, 1]×R2 → [0, 1], F (s, f, T ) = s+ f · T , influences the state of a neuron. As f
is directly proportional to the energy gradient of neuron n, we can reformulate
our algorithm as a local gradient descent. This deterministic approach is sus-
ceptible to get trapped in local minima. However, we have found a good-guess
initialization stattl(b) to be sufficient, whereas a stochastic F (e.g. as in [13]) was
not necessary. Algorithm 1 provides pseudo code for the annealing process.

Algorithm 1 Deterministic Annealing

procedure Annealing(E,N) . Energy function E and network N
T ← T0 . Initialize temperature with T0

for k ← 0 to kmax do
for all n ∈ Nvar do

f ←
∑

m∈N D(m,n)|s(n)− s(m)| . Compute ”force”
s(n)← F (s(n), f, T ) . Update the state of n

end for
T ← decrease(T )

end for
end procedure

The specific energy function we want to minimize has the form

E(N) = wstat · Estat(N) + wspat · Espat(N), (5)

where Estat and Espat respectively encode statistical segmentation and spatial
information of the edge image. Weights wstat and wspat control individual energy
influence on optimization. Energy for statistical segmentation calculates as

Estat(N) =
∑

n∈Nvar

|s(n)− S(l(n))|2, (6)

while spatial energy is more involved,

Espat(N) =
∑

n∈Nvar

∑
m∈N

Dedge(m,n) · |s(n)− s(m)|2, (7)

where the edge image influences homogenity in the final result through

Dedge(m,n) =

{
1, if m ∈ V (n) and min (G(l(n)), G(l(m))) < θedge,

0, otherwise.
(8)
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Here, θedge is a threshold for binarizing G, and V (n) returns all coupled neighbors
of a neuron n. The latter may be decoupled through edges in the color image.
Figure 3 shows the influence of spatial coherence on overall obstacle detection.

3.3 Conditional Learning

Online learning in the background subtraction stage incurs the Sleeping Person
Problem, where a long-term static obstacle fades into background [20]. Notably,
the update rule in Equation 2 increases ptl(b|vti,l) for a color prototype vti,l without
regards to pixel classification. To solve this problem, we substitute the learning
rate β with a modified learning rate β̃ = β ·ptl(b|vtl ) that incorporates the results
of the final image segmentation. A new update rule follows,

wt+1
i,l = clamp

(
1− β̃

k
· wt

i,l + δ(i, itmax,l) · β̃

)
, (9)

where the influence of a pixel on learning directly depends on its probability to
classify as background. Consequently we also have to revise the replacement of
color prototypes: We only replace a prototype if the respective pixel exceeds a
background probability (ptl(b|vtl ) < θreplace). This modification prohibits learn-
ing from adapting to sudden background changes, but preserves background
statistics for pixels occluded by foreground objects (see Figure 4).

Fig. 4. Three frames from an experiment sequence. An object is introduced between
the first two frames and remains static. Left: Traditional learning, the object fades
to background. Right: Conditional learning, the object remains foreground. The robot
manipulator is known a-priori and can be suppressed by post-processing.

4 Experiments

We have evaluated our approach through a variety of video sequences from an
example robot workcell. Over all video sequences, the following parameter choices
gave best results: β = 0.1, neuron activation threshold θ = 0.9, winit = 0.1,
prototype count k = 10, annealing steps kmax = 20, wstat = 0.8, wspat = 0.4,
θedge = 0.1, and T0 = 1.0.
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At implementation level, we use a GPU for efficient parallelization over pixels
of the input images. Further parallelization would be possible (e.g. per proto-
type), but we already achieve full load on our target NVIDIA GTX1070 GPU.
Figure 5 provides timings for our experiments. Notably, we maintain a steady 15
Hz update rate over all our test sequences. The memory footprint of both neural
networks does not exceed 1 GB of RAM and remains well within GPU limits.
For further reference, Table 1 shows benchmarks of related approaches on their
respective hardware.

imax = 10 imax = 20

n =
1000× 1000

n =
1920× 1080

Fig. 5. Experimental timings at different image resolutions. From left to right per bar:
BNN learning and classification, optimization, Sobel filter, and system overhead.

Algorithm Framerate Image Resolution Hardware

[5] 10.5fps 720× 576 GTS 250 (2009)
[2] 11fps 240× 360 Intel Pentium Duo (2010, no GPU)
our contribution 15fps 1920× 1080 GTX 1070 (2016)

Table 1. Runtime comparison. Here, algorithm [5] is a GPU variant of [4], the BNN
we used, while [2] is a CPU variant of a Mixture of Gaussian model.

5 Conclusion

In the preceding, we have contributed a novel approach to probabilistic obstacle
detection on color images. In contrast to existing approaches, we consider spatial
coherence through an edge image and we introduce conditional learning to avoid
the Sleeping Person Problem. Experiments show that our approach notably ex-
ceeds existing approaches in performance and quality. Our implementation can
process Full HD color images at a 15 Hz rate, and thus is suited for soft real-time
applications, including risk-based online path planning for robot manipulators.
In future work, we plan to integrate probabilistic segmentation results into a
probabilistic variant of a 3D environment reconstruction [21], which in turn is a
suitable input for our risk-minimized path planner [22].
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