
Learning to forget: Integrating Data Aging Strategies
into a World Model for Robotics Systems

In industrial automation tasks, robot manipulators excel
in strength, endurance, and precision. Recent research in
robotics aims at taking these advantages to small busi-
nesses, to the service sector, and to domestic homes. Sci-
entific prospects center on symbiotic collaboration be-
tween humans and robots, where each partner contributes
individual capabilities to accomplish a shared goal.
However, robots must overcome additional challenges to
succeed in environments outside industrial work cells:
On the one hand, traditional safety systems, such as
fences or multi-camera surveillance (e.g. [6], [12]), be-
come too expensive and invasive in small-scale scenarios.
On the other hand, pre-programmed trajectories do not fit
the demands of promising use cases where robots must
flexibly interact with and adapt to human co-workers.
Thus, robots are challenged to safely and flexibly react
to an ever-changing and unpredictable environment.
To solve above challenges, robots must efficiently com-
bine a variety of interacting algorithms. Respective algo-
rithms range from low-level environment reconstruction
and path-planning to high-level symbolic (e.g. [9] [3]) or
semantic (e.g. [14]) scene understanding, human inten-
tion recognition (e.g. [1]), and error detection (e.g. [7]).
Various approaches to robot system architectures (e.g.
ROS [8]), knowledge data bases (e.g. RoboBrain [10]),
or purely geometric world models (e.g. OctoMap [15])
propose to solve algorithmic and data integration over an
assortment of robotics system components.
In the following, we focus on the ENACT software
framework [13]. This framework realizes a distributed
world model and excels in the efficient integration of ex-
tensible software components through the Entity-Actor
paradigm [2]. ENACT assumes one or more (potentially
conflicting) world states. Each world state manages a set
of application-specific entities (e.g. cup, table) and stores
geometric or symbolic per-entity data through global as-
pects (e.g. point cloud, pose, contained fluid).
Using ENACT, we aim to solve a specific case of robot-
human collaboration: We wish to realize flexible collab-
oration between one or more robot or human agents that
act as partners in asynchronously executing operations of
a shared task. To this end, all robot agents use ENACT to
manage their world representation. Atop ENACT world
states, a graph-based task planner tracks pending opera-
tions that either a robot or a human must still execute.
We further increase demands on the robot system in that
the system should enable safe and flexible human-robot
collaboration using only local sensor information instead
of any global monitoring solution. Notably, we limit each

Figure 1: The setup of our experiment: A Kuka LBR robot
conducts a work flow that simulates the sealing of test tubes in
a small laboratory. Multiple human agents may participate at
any time. The hand-in-eye camera of the robot only provides
local data and might not register out-of-view human actions.
However, the back-end ENACT framework uses sophisticated
data aging strategies to support a fluid work flow for robot and
human agents even in case of unobserved human actions.

of the robots to a single eye-in-hand camera. This implies
that the world representation must take the unknown into
account, as objects outside the field of view of one robot
might be modified through actions by other robots or hu-
mans. In other words, entities and their aspects might
become outdated with respect to the real world.
There are two naive strategies to handle outdated entities
or aspects: instantly discarding or infinitely maintaining
any formerly local information. However, in line with
current scientific understanding, our experiments show
neither of the naive strategies supports reasonable track-
ing of work flow progress for the robot agents.
Related work suggests various more intricate strategies
for data aging. Particle filters (e.g. [11]) implicitly model
data aging through their resampling step and are particu-
larly renowned in mobile robotics. Likewise, SLAM and
its variants (e.g. [4]) usually have data aging as an im-
plicit process in the update of the current map and do
not specifically handle out-of-view regions. As an exten-
sion to purely geometric SLAM, more recent approaches
include semantic data over sub-symbolic geometry (e.g.
[5]), but even these handle certainity and data aging as an
implicit part of the environment model.
In contrast to related work, we incorporate aging and cer-
tainity for out-of-view data explicitly. To this end, we
have chosen five data aging strategies for integration into
the ENACT framework: Apart from both types of naive



data aging, we also consider timer-based aging with lin-
ear and exponential certainty fall-off for entities, aspects
and world states. Finally, we evaluate knowledge-based
data aging, where additional semantic knowledge about
the environment influences certainty. For instance, ob-
jects are more likely to change their state when in close
proximity to a human or another robot, while objects at
far-off positions within the work space will probably be
there for a certain time.
We perform a series of real-world experiments to eval-
uate the impact of chosen five data aging strategies on
human-robot collaboration. Our main experiment simu-
lates the processing of test tubes as an example for a com-
mon work flow within a small laboratory: Individual test
tubes must first be arranged in a containment tray. Then
each tube must be sealed with a cap and the cap must
be stamped with batch specifications. Once all test tubes
have been processed, the tray must be covered with a lid
as a final step.
For the execution of our experiment, a Kuka LBR robot
manipulator utilizes a task representation in form of
precondition-postcondition tuples over underlying EN-
ACT data to automate the above work flow. However,
one or more human agents can arbitrarily participate in
the sealing and batching process. Since the LBR only has
a hand-mounted camera available, the participation of hu-
mans introduces an unpredictable element into the work
flow: humans may use and thus occupy the stamping tool,
humans may concurrently place a cap on a test tube while
the robot is in transit, humans might take test tubes from
the tray while the robot is looking away, or humans may
inadvertedly enter the path of the robot. See Figure 1 for
an overview over the setup of our experiment.
As mentioned before, our experiments indicate both
naive solutions to unobserved human interaction (entirely
discarding or entirely maintaining entities outside the
robot’s field of view) as inept: Both strategies intolerably
slow down the work flow, as the robot must arbitrarily
check for action preconditions and postconditions before
advancing to the next operation.
Opposed to naive solutions, the more intricate timer-
based solutions perform better: Linear timers work well
when human participation is rare. Exponential timers, in
contrast, reduce work flow time over naive approaches for
frequent human actions. Knowledge-based timers offer a
compromise over linear and exponential variants, as they
select a suitable certainty fall-off for current proceedings
in the work cell.
In conclusion, our contribution consists in the applica-
tion of data aging strategies to symbolic and geometric
knowledge inside the world model of a robot manipu-
lator under the limits of local sensor information. This
enables the handling of unpredictable events in the asyn-
chronous collaboration between humans and one or more
robot manipulators.
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