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Abstract

Recent advances towards generic robot programs require efficient sharing of copious information among many func-
tional modules. Current solutions favor extensibility over efficiency and thus limit attainable functionality. In con-
trast, we contribute a software framework that efficiently implements the extensible entity-aspect-actor paradigm. Our
framework remains safe for multi-threading, scales to distributed systems, handles inconsistent data and supports his-
tory logging. Evaluation through scenarios in industrial and service robotics attests claimed benefits. We conclude that
our framework is fit for use in robotics, with significance also for computer games, simulations, and VR applications.

1 Introduction

Over the past decades, general purpose robot manipula-
tors have become a vital part of industrial automation due
to their precision and strength. Recent research aims at
extending these benefits past traditional work cells and
past pre-programmed trajectories. Apart from enhancing
industrial capabilities, this opens up robot manipulators
to attractive use cases in the service sector, in small and
medium-sized enterprises, and in home use.

To support extended use cases, robots must perceive and
understand their surroundings, and they must respond in
a reasonable and timely manner. In terms of software,
an extensible set of complex algorithms must efficiently
interact to evaluate copious amounts of incoming data.

Interaction complexity between algorithms necessitates
sophisticated data management. Current research sug-
gests data storage and exchange through knowledge
databases, system architectures or world models, each
with individual benefits and shortcomings. For example,
knowledge databases hold extensible relational data, but
do not efficiently scale to subsymbolic content.

In contrast, we contribute a framework for data manage-
ment over modular robot software components that unites
benefits of existing approaches while avoiding common
pitfalls. Our entity-actor framework ENACT efficiently
implements the extensible entity-actor-paradigm [4] to
achieve weak coupling and strong cohesion over software
components. We process subsymbolic and symbolic in-
formation alike, and we offer multiple backing locations
for opaque data distribution or history logging. Finally,
the slim programming interface of ENACT is inherently
thread-safe and multilock-capable, yet without the over-
head of popular copy-on-write mechanisms. See Figure 1
for select data available through our framework.
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Figure 1: Our framework efficiently stores and connects sym-
bolic and subsymbolic data for human-robot cooperation in an
industrial use case. Left to right: Limb approximations, voxel
reconstruction, CAD models, high-level properties.

This paper is structured as follows: Section 2 investigates
related knowledge databases, system architectures and
world models. For each candidate, we report respective
advantages and shortcomings. In Section 3, we introduce
the ENACT software framework as an improvement over
identified shortcomings. We formally specify framework
components, we examine algorithm interaction, and we
elaborate vital low-level features. Throughout Section 4,
we evaluate benefits of our framework with two use cases
from service and industrial robotics. Section 5 concludes
our contribution with a critical discussion of ENACT and
an outlook on future work.

2 Related Work

Related research separates into three major categories:
knowledge databases, robot system architectures, and
world models.

Knowledge databases (e.g. [5], [11], [13]) are foremost
concerned with structuring and interpreting interwoven



information. Data choice in general is not restricted, al-
though typical implementations must work with symbolic
information at coarse abstraction levels to derive mean-
ingful statements. Usually, knowledge databases do not
optimize for efficiency or latency, and thus are not suited
for applications that require high responsiveness.
RoboBrain [11] is a typical example for a knowledge
database. Notably, RoboBrain manages knowledge in a
content-rich graph, where nodes store ground-truth facts
and where annotated edges carry relations between these
facts. A custom language for template matching supports
generic, albeit expensive, database requests.

Robot system architectures (e.g. [1], [3], [8]) suggest
a structuring for software components in robotics sys-
tems. This structuring groups software components into
high-level software layers and establishes communica-
tion channels between these layers. Focus points of indi-
vidual architectures include distributed processing, sys-
tem reliabilty, or process scheduling, in general with a
bias for high-level design over low-level performance.
For example, the renowned ROS (Robot Operating Sys-
tem) framework [8] intuitively connects distributed ROS
nodes. Yet, the specific design of ROS with its message
passing and publisher-subscriber paradigms becomes a
bottleneck when sharing complex remote world states.
World models (e.g. [2], [9], [15]) strive for a balance
between knowledge databases and system architectures
by considering efficient storage and transfer of extensi-
ble low-level data. For instance, the scene graph of [2]
only stores physical relations between individual geomet-
ric object representations and thus avoids the overhead of
generic communication channels or graph structures.
Note that the term “world model” is not clearly defined:
Common world models in robotics hold geometric data
only (e.g. triangles, voxels), while typical world models
in interactive simulations and computer games also in-
clude low-level relational knowledge. A standard world
model for robotics applications has yet to emerge.

3 The ENACT framework

This section introduces components within the ENACT
framework formally and describes their interactions.

We proceed in a bottom-up manner: First, we specify
static components of the framework. We then continue
by describing dynamic interactions between components.
Finally, we derive relevant implementation features from
components and their interactions.

3.1 Static Components

Entities and their aspects form the main components of
the ENACT framework:

Entities represent objects of interest to an individual
application, and usually map to objects in the physical
world. The choice of entities depends on the application
scenario. For example, a work piece might be a single
entity in a workspace surveillance setting, while the same
work piece might decompose into multiple entities for an

assembly task. In the following, we denote the set of all
|E| world entities e; for a specific application as

E= {ela €2, €3, .-y €|E|}.

Aspects demarcate global property classes of all entities.
As with entities, the application dictates the selection of
aspects. Aspects range from shape representations (point
clouds, triangles) over physical parameters (mass, color)
to derived knowledge-like attributes (placement relations,
object affordance). We refer to the set of all | A| aspects
a; for a specific application as

A= {al, az, as, ..., a‘A‘}.

Entities and aspects are static and cannot change at run-
time. This constraint helps with thread-safety in the later
implementation. In this context, note that neither entities
nor aspects directly store any data payload.

3.2 Dynamic Components

A separate mechanism implements the actor paradigm to
update data associated with entities and aspects through
one or more explicit world contexts:

World contexts store a single datum for each aspect of
each entity. For instance, a world context might hold the
datum “5 kg” for the mass aspect of a work piece entity.
Formally, each aspect a; requires data from a set D, and
each entity e; has a value d; ; € D; for each aspect a;.
Therefore, a world context W is a map

W E — Dy x Dy x D3 X ... X Dy,
Wi(ei) = (di,1, di2, diz, ..., dia))-

Applications can select custom data sets for their aspects.
Thereby, our framework becomes intuitive to extend.
Actors form the only interactive components in ENACT
and update world contexts over time. For example, world
context data may change due to sensor readings or user
interaction. Actors accordingly range from data sources
(sensors, cameras) over algorithms (path planning, object
recognition) to data sinks (robot manipulators).

In formal terms, each actor a;, from a set of || actors

A = {ah az, as, ..., a|91|}

works on a set of entities E,, C E and their aspects
through some update logic Uy, .

Actors execute over intervals of time T, ideally in paral-
lel to increase efficiency. With locking and waiting, there
always is at least a single conflict-free sequential execu-
tion path: For any time ¢ € T, the set of active actors
{az1, 04,2, 0.3, ...} thus satisfies

Ea,NE,, =10 for x # y.

At o

The world context W;_ at time ¢, € T then derives from
its directly preceding context W_ at time ¢; € T as:

W, ( ) Uut F(th,ei) ifEIatg . withe; € Eat o
€)= T
te Wi, (e;) otherwise,

with some default initial context for 5 = .



Finally, consider the deliberate assignment of separate
variables for consecutive world contexts: While we reuse
unchanged world data to avoid expensive copies, we can
still maintain multiple separate world contexts. In turn,
this allows us to to model inconsistent world views, dis-
tributed data storage or data history. Figure 2 illustrates a
configuration with two world contexts.
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Figure 2: World contexts W1, W5 hold data for entities ey to
e3 and aspects a; to az. Aspect data sets D; contain a null
marker to indicate unknown information: W5 does not know a
value for aspect a2 on entity eq, and neither W nor W5 stores
data for a3 or e3. Finally, aspect a1 on entity e; has potentially
inconsistent data d‘ffll and d‘l/l,/f.
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3.3 Key Implementation Features

In contrast to popular high-level framework designs, we
built the ENACT framework around low-level efficiency.
The following paragraphs highlight notable features in
our low-level C++11 implementation and describe their
ties to the above formal specification.

In a typical setup, a client application initializes through
instantiating one or more world contexts. Thereafter, the
client application creates multiple actors, one for each dy-
namic component required by the application scenario.
The programming interface of the ENACT framework al-
ready implements fundamental classes for world contexts
and basic actors. In particular, most actors use an internal
thread to update a construction-bound world context.
Actors identify unique entities and unique aspects by al-
locating generic ID objects on the program heap, one ID
pere; € Eora; € A. Unique address allocation through
the C++ runtime guarantees unique IDs without the man-
agement overhead and implicit risk of popular integer-
based ID counters. Shared pointers from the C++11 stan-
dard library realize lifetime management on ID objects.
This enables us to automatically and efficiently track ID
lifetime over thread boundaries.

After creating entity and aspect IDs, actors can register
these IDs on world contexts to apply initial context data.
We use unique pointers for transfer of initial data, as own-
ership transfer semantics prohibit unlocked data access
after initial registration. For example, an actor could reg-
ister a work piece entity with a mesh aspect as follows:
shared_ptr<entity_id > e_wpiece(new entity_id ());
shared_ptr<aspect_id> a_mesh(new aspect_id());

unique_ptr<mesh> m(load_file ("phone.ply"));
world_context.init (e_wpiece, a_mesh, move(m));

// m is NULL now.
// Future access only possible through lock.

To guarantee robust threaded access, our IDs do not carry
individual data. Instead, we enforce an intuitive synchro-
nization mechanism based on the C++ RAII (resource ac-
quisition is initialization) pattern. Actors must explicitly
retrieve individual data from a world context by creating
lock objects on the program stack. Locks therefore auto-
matically disengage on method exit, even in case of any
exception. Each thread is allowed but a single lock at a
time, otherwise the lock constructor throws an exception.
Since each lock performs an atomic operation even for
multiple IDs, this setup is implicitly free of race condi-
tions or deadlocks. Finally, world contexts globally track
locked data. This enables us to realize efficient reader-
writer locks for improved parallelism. With the ENACT
templates for reader-writer locks and data access, an actor
might update the object count on a workbench as such:

list <lock_request> lock_requests
({ lock_request(e_wpiece, a_mesh, readonly),
lock_request(e_wbench, a_ocount, write) });

lock I (world_context, lock_requests);
const_access<mesh> m(1[0]);

access<int> ocount(I1[1]);

if (m—>bbox.minz < 0) { (xocount) += 1; }

World contexts in our initial implementation only carry
local data. We can therefore provide efficient and copy-
less access to large-scale data through references in the
lock objects. However, our framework intuitively scales
to distributed world contexts, where the locking mecha-
nism can opaquely fetch data from a remote source.
While we use C++ as our language of choice, implemen-
tation details map naturally to other programming lan-
guages. For instance, our framework ports to Java with
just minor adaptions: While Java garbage collection al-
lows us to drop shared pointers in favor of direct ID refer-
ences, we must replace C++ RAII paradigms with Java’s
less sophisticated try-catch-finally mechanisms.

4 Evaluation

We evaluate the ENACT framework in two application
scenarios from the field of industrial and service robotics:
One application demonstrates the low-latency sharing of
copious world context data over multiple threads, while
the other application emphasizes the intuitive integration
of formerly separate software components.

4.1 Low-Latency Application

Our first example application addresses the domain of
industrial human-robot cooperation. In this application,
we monitor a shared human-robot workspace through a
multi-camera network. As shown in Figure 3, we derive
visual hulls of workspace obstacles from segmented cam-
era images. In the end, we intend to use these visual hulls
to enable collision avoidance and distance-based speed
control for a general-purpose robot manipulator. See [14]
for further details on this setup.



Figure 3: Top: Images from the multi-camera system after
foreground-background segmentation. Bottom: A visual hull
reconstruction before knowledge-based refinement. Only col-
ored pixels and voxels have changed over the preceding frame.

In terms of ENACT, the multi-camera system translates to
a series of entity-actor pairs. For each camera, a separate
camera actor fetches incoming images within an internal
thread. All camera actors subsequently store their images
to a global world context under a camera-specific entity
ID and with an aspect ID that demarcates camera images.
Finally, background subtraction actors convert stored
camera images to segmented silhouettes.

Silhouettes form the input to the reconstruction actor.
This actor builds a visual hull over all silhouettes, rejects
false-positive obstacle detections with knowledge-based
refinement, and attaches remaining obstacle geometry to
a workspace entity. In turn, the workspace entity passes
through a real-time path planning actor. In the end, path
planning attaches speed and path aspects to a robot entity
for highly responsive execution by the robot actor.

Actors for geometric shape reconstruction and human
tracking intuitively integrate into the above basic setup:
A shape reconstruction actor (e.g. [10]) can provide
boundary representations of static workspace obstacles
through an offline step, while a human tracking actor
(e.g. [6]) enables recognizing and predicting humans
within the workspace. World context data contributed by
either actor is readily available to path planning.

Figure 4 gives an overview over all entities, aspects, and
actors involved in the first example application.

The challenge of the first example application lies in low-
latency demands of collision-free path planning. For our
evaluation, we run the application on a midrange 2015
eight-core 17 system, using eight Logitech C930e USB
cameras on VGA resolution, with a target 10 Hz update
rate for path planning and speed control. The ENACT
framework enables us to efficiently load all cores with-
out error-prone individual locking strategies. At the same
time, the specific impact of ENACT on overall system
load remains well below measuring tolerances.
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Figure 4: Overview over all entities (green), aspects (orange), and actors (blue) involved in the low-latency example application.

All relevant data is located in a single world context (gray).



4.2 Integrative Application

For our second example application, we examine a robot-
automated palletizing task. In this task, a conveyor belt
delivers various food packages to a KUKA Lightweight
Robot (LBR) for palletizing on a metal tray. The robot
perceives its surroundings through an overhead depth
sensor and employs a SCHUNK PG 70 servo-electric
two-finger-parallel gripper to grasp incoming packages.
Actual palletizing then requires two separate steps: First,
the robot places the food package onto the tray. Second,
the robot pushes the package until it comes into contact
with already palletized packages. In rare cases, grasping
or placement is inaccurate, and deformed food packages
end up on the metal tray. We must detect such errors to
enable appropriate error handling. Figure 6 illustrates the
overall task setup and a potential error condition.

We realize error handling through a two-step process:
The first step generates offline ground-truth geometry for
each type of food package, while the second step uses the
ground-truth geometry for online screening of incoming
food packages.

To generate ground-truth data in the first step, we employ
another KUKA LBR. This robot applies an eye-in-hand
depth sensor to acquire images of some food package
over varying viewpoints. From these images, we derive
a geometric reconstruction of the package. See Figure 5
for example ground-truth surface models.

Opposed to human-robot collaboration from the previous
example, palletizing has less rigid timing requirements.
As challenge for the ENACT framework, the palletizing
example instead involves a variety of collaborating soft-
ware components, including perception, reconstruction,
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Figure 5: Boundary representation models of two example ob-
jects as reconstructed in the offline step of error handling.

sensor-based robot control, and error monitoring. In par-
ticular, we already had developed most components in
isolation for other applications. We consequentially had
to integrate the components into ENACT to accomplish
the palletizing task. The extensible, modular architecture
of ENACT enables this integration with just minor effort.
In the following, we detail the interaction of resulting ac-
tors, entities, aspects and world contexts.

The perception actor controls the vision system. In the
offline step, perception initializes entities €y;e,; for each
viewpoint ¢ while the eye-in-hand robot orbits a food
package. Perception also registers two aspects for each
created entity. One aspect holds a point cloud as retrieved
from the depth sensor, while the other aspect stores the
acquisition pose. Once perception has finished an entity
€view,i> the reconstruction actor creates a boundary rep-
resentation model from the point cloud and attaches the
model to another aspect. A fusion actor finally combines
all individual viewpoint models €,;eq,,; to a complete sur-
face model of the food package and stores the result in
€object- Details on reconstruction and fusion of boundary
representations can be found in [10]. Note that all of the
operations above use a world context Wiining to compile
ground-truth data for the following online step.

Figure 6: Components of the integrative application: A conveyor belt, incoming food packages, a robot with gripper, and a metal
tray for palletizing the packages. The figure does not show the overhead depth sensor.
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Figure 7: Overview over entities (green), aspects (orange) and actors (blue) of the integrative application. Our solution uses two
separate world contexts (gray): Winining Stores ground-truth geometric data as generated in an offline step, while W;, models online

execution and updates repeatedly.

Interactions in the online step also rely on the perception
actor to handle the vision system. Namely, perception
periodically updates all visual aspects (e.g. poses) for any
entities egpject. Those entities represent real world objects
in the robot workspace. When no existing entity matches
incoming visual aspects, perception creates a New €gpject
instead. Resulting entities subsequently act as input both
to object palletizing and to error monitoring.

For the task of object palletizing, the action generator
actor parametrizes grounded action skeletons in the form
of manipulation primitive nets (MPNs). The action actor
then attaches the resulting MPN as an aspect to €gystem-
Finally, the robot actor executes the MPN in order to
palletize the incoming object. Consider [12] for further
information on grounding sensor-based actions.

Within error monitoring, the deviation detection actor
compares entity instances eopject from Wy, and Wiraining-
First, the actor locates matching entities in both world
contexts. Second, the actor compares visual aspects of
matching entities for potential differences. Depending
on specific differences between entities from W, and
Witaining> the actor finally raises a flag aspect in €gygem
to signal an unexpected entity state. The feedback actor
reacts to the flag in egyqem and notifies the system user
about the detected deviation. For further details on entity
based deviation detection and classification, see [7].

See Figure 7 for an overview over all final entities and
actors in this integrative application.

5 Conclusion

In the preceding, we have formally specified ENACT,
our entity-actor framework for robotics systems. Unlike
other approaches, our contribution supports both efficient
and extensible interaction between software components
through a thin layer for data exchange. We confirmed this
claim in two example applications: One application used

ENACT for thread-safe, low-latency communication over
multiple threaded actors, while the other application in-
tuitively integrated multiple existing components to solve
an intricate automation task.

Apart from realizing distributed world contexts, future
work consists of integrating additional components and
applications into the ENACT framework. Finally, export
of ENACT as a single ROS node remains an option for
higher-level software integration.
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