Efficient and Precise Multi-Camera Reconstruction

Tobias Werner
Universitat Bayreuth
Bayreuth, Germany

tobias.werner@uni-bayreuth.de

ABSTRACT

Human-robot cooperation requires efficient and precise ge-
ometric reconstruction of objects in any shared workspace
to meet safety requirements. State-of-art solutions accept a
trade-off to satisfy these requirements. Usually, this implies
limited robot speed, expensive hardware, or low-precision in-
put and output. In contrast, we present a novel multi-camera
reconstruction approach that is both efficient and precise:
We apply incremental and hierarchical algorithms to image
preprocessing and visual hull reconstruction. Subsequent
knowledge-based postprocessing refines the initial reconstruc-
tion. Given ground-truth input, we furthermore maintain
conservative bounds of objects in the workspace. In total,
our contribution satisfies real-time and anytime requirements
even on modest hardware and for high-precision input and
output. We validate this by synthetic and real-world experi-
ments. Thus, our approach is suited for safety-, time-, and
precision-critical reconstruction with applications in home
robotics, surveillance, and industrial automation.

1. INTRODUCTION

Safe human-robot coexistence is an established field of re-
search in robotics. Applications focus on industrial use, such
as separated robot and human workspaces along an assembly
line in the automotive industry. In order to meet rigid safety
requirements, common coexistence applications use primitive
but fail-safe means to avoid robot-human collisions. For
instance, a laser scanner might enforce an emergency stop
once it detects an obstacle within reach of a robot.

In contrast to mere coexistence, human-robot collabora-
tion supports extended applications. Ideally, humans and
robots work hand in hand and complement one another. Ap-
plications might see a robot and a human process the same
assembly in parallel. Such collaboration implies that humans
and robots act in close vicinity. Hence, safety requirements
increase even further. In particular, robots must guaran-
tee safety by efficient, conservative, and precise obstacle
reconstruction and avoidance.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICDSC 2014, Venezia, Italy

Copyright 2014 ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Dominik Henrich

Universitat Bayreuth

Bayreuth, Germany
dominik.henrich@uni-bayreuth.de

Recent advances in path planning, computer vision and
artificial intelligence form the foundation of human-robot
collaboration. For instance, [2] introduces an efficient path
planner and [8] describes a robust multi-camera obstacle
reconstruction. However, the latter offers precision and con-
servativeness at the cost of efficiency. Therefore, it does not
apply to demanding real-time applications.

In the following sections, we improve on named recon-
struction approach and introduce an efficient algorithm that
still maintains precision and conservativeness. At first, we
give a short overview over related reconstruction algorithms.
Thereafter, we explain algorithmic and implementation de-
tails of our improved approach. We conclude by evaluating
our reconstruction in synthetic and real-world experiments.

2. RELATED WORK

Geometric reconstruction algorithms can be classified ac-
cording to various criteria. The most notable criteria des-
ignate algorithmic input (color [6,12], pre-segmented [1],
or depth [5,10] images) and output (point cloud [10], tri-
angle mesh [5, 6], voxel space [9,13]). Optionally, both
input and output may exploit spatial coherence (octrees
[1,12], quadtrees [9]) and temporal coherence (incremental
updates [1,5]). The source of actual input (single-camera [5],
stereo camera [6], multi-camera [9,12]) represents a more
application-specific criterion. Ultimately, designated appli-
cations influence respective algorithms via domain-specific
requirements (offline [3,6], online [9,13], real-time and any-
time constraints [12], conservativeness guarantee [9]).

The following discussion of related work restricts to geo-
metric multi-camera reconstruction that is suited for online
use in a robot workspace. Currently, most such approaches
favor voxel reconstructions over more intricate algorithms.
For example, the reconstruction [13] exploits per-voxel data
parallelism to efficiently perform voxel-to-silhouette tests
on a GPU. Including CPU-GPU round trips, this requires
about 10ms per reconstruction of 256® voxels. Similarly, [9]
evaluates voxel occupation on a GPU, but precalculates
projections to improve performance. For 128% voxels, this
approach reports reconstruction times of around 65ms.

Voxel discretizations parallelize well on modern GPUs and
allow for various offline precalculations. Yet, they do not
scale well to high input and output resolution and they do not
adapt to inhomogeneous object distributions or variable real-
time limits. Last but not least, voxels do not support efficient
distance queries, e.g. as required by collision avoidance within
path planning for a robot manipulator.

Hierarchical data structures are an obvious alternative.

For instance, [9] reconstructs an octree from multiple camera
images via image-space downsampling and single-pixel pro-
jection tests. This reduces reconstruction times to 25ms for
an octree equivalent of 128 voxels. Likewise, [12] gives an
algorithm for parallel octree reconstruction on either CPU or
GPU. They guarantee maximum load over all cores through
a work-stealing scheme. With parallelization over 16 CPU
cores, they claim time requirements of 25ms, again for an
equivalent of 128% voxels. Finally, [7] proposes reconstruc-
tion of an octree from multiple quadtrees over pre-segmented
input images, albeit without experimental verification.

Incremental updates improve performance both for voxel-
based and hierarchical reconstruction. Namely, [1] locates
modified entries within input images and only updates any
voxels on rays through these entries. This way, the approach
achieves a reconstruction time of 100ms for 256° voxels,
allegedly faster than non-incremental alternatives.

3. OUR APPROACH

3.1 Overview

This section covers our approach to geometric reconstruc-
tion. In terms of the above classification criteria, we support
online, hierarchical, incremental, real-time, anytime, and
conservative multi-camera obstacle reconstruction from pre-
segmented or depth input images.

We begin the presentation of our reconstruction algorithm
by naming input and output requirements. Formal require-
ments extend to incoming images, camera projections, and
the conservativeness guarantee. Informal requirements in-
clude real-time and anytime capabilities as well as a path-
planning integration for robotics applications.

A discussion of our core reconstruction algorithm follows.
In brief, the algorithm performs two separate steps: The
first step calculates conservative quadtrees over all current
input images within a multi-camera setup. The second step
incrementally computes a conservative octree reconstruction
of the observed objects. This involves projecting octree
nodes into camera images and efficient testing for object
silhouettes within respective quadtrees. Both steps track
modifications in-between consecutive input images in order to
reuse quadtree test results or unmodified octree branches. We
apply various knowledge-based and low-level optimizations
to further improve reconstruction efficiency and precision.
Finally, client applications can raise an exit flag to abort
reconstruction prematurely. This allows for real-time and
anytime capabilities within incremental computations.

Quadtrees and octrees are intuitive data structures, and
have been studied extensively [11,15]. Hence, we limit conse-
quent explanations to aspects relevant to our algorithm.

3.2 Requirements

Requirements derive from multi-camera reconstruction in
a robot workspace as illustrated by Figure 1. Formally,
we assume that the workspace consists of a cubic volume
V =[0,1]*® C R®. Part of this workspace is occupied by a
priori unknown, possibly moving objects. The potentially
incoherent volume Vop;5,+ C V represents ground-truth bounds
of all workspace objects at some time step t € N. We wish to
derive a conservative reconstruction V.. of these objects,
that iS, Vobj,t Q Vrec,t Q V.

To this end, ¢ cameras observe the workspace. Each cam-
era i has a square, power-of-two resolution r; = 28,k € N

Figure 1: A robot cell as monitored by multiple cam-
eras, and its 3D reconstruction. Cameras either pro-
vide pre-segmented (top) or depth (bottom) images.

with pixels R; = [1,7;]*> € N?. We require a power-of-two
resolution for formal reasons without loss of generality, e.g.
by duplicating border pixels on real-world images.

At each time step ¢, the camera i provides per-pixel image
data from a certain data set D; as a map A : Ry — D;.
Our core reconstruction algorithm does not depend on any
specific data set D;. However, the following presentation
explicitly considers pre-segmented foreground-background
images and depth cameras. The former employ a data set
Dseg = { full, empty }, while the latter use Dgep = R.

Our approach assumes extrinsic and intrinsic camera pa-
rameters as given. In particular, we expect projection func-
tions ¢; : V. — R; X R from the observed volume into
image-space and depth coordinates for camera .

Pin-hole camera models typically use a projection function
©pn (V) = Mimgw(PMeamv) with Megm € R*** an affine
world to camera transformation, P € R*** a projection
matrix, w : R* — R® a homogenous division, and Mimg €
R3*3 a map from normalized view coordinates to output
pixels. We also support more elaborate camera models.
Notably, later experiments rely on a camera model with
radial and tangential distortions as supported by [14].

Usually, camera distortions enforce expensive pixel-exact
projections. We avoid this overhead through the use of
conservative bounding functions @; : 2 — 2% *® where

min, g (@i,2(v)) max, . (91,2 (v))
min, ¢ (0i,y(v)) |, | max,cq(0iy(v))
minvef/((pivz(v)) maXueV(éﬂi,Z(U))

Qz’i(f/) =

Pin-hole projections conserve convex bounds of any finite,
convex polyhedron entirely within the viewing frustum. A
respective bounding function builds an image-space bounding
box over projections of the polyhedron vertices. Advanced
camera models require further provisions (e.g. an additional
epsilon) to account for camera-specific bounding distortions
that exceed vertex projections. In practice, one can also
often avoid explicit projecting of children nodes in the later
octree by z-correct interpolation of parent projections.

Apart from above formal requirements, there are four non-
formal constraints. First, reconstruction must be efficient
even for high-resolution input. We expect an efficient algo-
rithm to handle input from at least four Full HD cameras
on consumer hardware at a mean 100ms per reconstruction.
Second, we desire a precise reconstruction. We understand
a reconstruction to be precise if it exhaustively reflects all
available input details. Hence, the difference Viec,t / Vobj,t
should be as small as possible. In our experiments, Full
HD input corresponds to a precise reconstruction with an
equivalent of at least 10243 voxels. Third, premature exit
due to external time limits must still deliver a valid and in

particular conservative Vi ... +. Fourth, path planning requires
an efficient distance query p: : V' — R. This query returns
an upper bound for the minimum distance between some
point within the workspace and the reconstructed objects,

> i — .
pe(v) > Lo mn lvrec — |

3.3 Quadtrees

In the following, we build quadtrees g;,; over images A¢;
generated for time steps ¢ by cameras i. A quadtree over
an image of r? pixels has h; = log,(r;) + 1 levels, where the
lowest level gti,0 : R — D, qt5,0(r) = At,i(r), contains the
actual image data.

We build quadtrees bottom-up and apply a merge function
m : D* — D to reduce each four-entry square within one
level to a single entry within the next-higher level. This
yields levels 1 < 5 < h;,

r

75]2*>D7

Qe (1
where

qt,i,5(r) = m(qt,i,5-1(2r), Gri5—1(2r + (1,0)7),
Grii—1(2r+(0,1)"), g -1 (2r + (1, 1)7)).

Merge functions must maintain or increase the perceived
volume of objects within the scene to satisfy conservativeness.
To do so, it is favorable to extend the image data set D.
For pre-segmented images, we use the data set Dgeg,q =
{ full, empty, mized} alongside a merge function

full i Vi d = full,
Mseg(di,...,ds) = ¢ empty if Vi:d; = empty,

mized otherwise.

On depth images, a minimum function over all four in-
coming depth values already conserves object boundaries.
However, later optimizations require minimum and maxi-
mum camera distances for coarse quadtree levels. Hence, we
use Dgep,q = R2. Initial images set both distances to the
incoming per-pixel depth value. A merge function

mdep((dl,min> (d4,mzn)) _ (min(dLmi'ru eeey d4,min))
dl,ma:]; ’ ’ d4,'maw max(dl,maz> “eey d4,'ma1‘)
generates all remaining quadtree levels.

Finally, we mark modified pixels within each camera i
at each time step ¢ in a separate quadtree @mod,:,i. For
each entry at each quadtree level, we store whether any
covered root-level pixel was modified in-between the last
two time steps. This gives quadtrees on a data set Dyoq =
{ modified, unmodified } over a root image

modified ift=0V
(t >0A At—l,i(r) #)\t,i(r))v

unmodified otherwise,

Amod,t,i(r) =

with a merge function

modified if 3i:d; = modified,
unmodified otherwise.

mmod(dh ...7d4) = {

Incremental updates to the later octree use gmod,+,; in order
to efficiently test whether spatially coherent input pixels
changed for consecutive reconstructions. In turn, this avoids
a total rebuild for slow-moving or static objects.

Figure 2: Left: Two sequential pre-segmented input
images. Middle, right: Select quadtree levels. Modi-
fied entries are marked in green (now filled) and red
(now empty). Half-tones indicate mixed entries.

Figure 2 illustrates the overall build process for quadtrees
Gt,i and gmod,t,; on pre-segmented input images.

3.4 Octrees

Octree updates for a time step ¢ begin once our algorithm
has built both the actual data quadtree ¢;; and the modified
quadtree ¢mod,:,i for each input image 7 as described above.

In general, a sparse octree consists of a set of nodes N.
Each node n € N occupies some space Vi, = [Fimin, Mmax] C V,
with nmin, Mmaez € R3. A function o¢ : N — 2~ defines
parent-child relations at some time step ¢. All leaf nodes [
of the octree must satisfy o4(l) = 0. In contrast, all non-leaf
nodes p € N require invariants |o¢(p)| = 8, V, = U,,c,, » Vo
and Vn,n’ € o¢(p) : Nmaz — Nmin = Nimaz — Nmin- 1IN oUr
case, each node additionally is in a time-variant state s €
S = { full, empty, mized }. Node states reflect octree sparsity:
Full and empty nodes are homogenous, hence further splitting
is pointless. Such nodes form the leaves of our octree. In
contrast, we split nodes with mixed content to refine our
reconstruction. Initially, an octree contains only a single node
Nroot, With Vi . =V, 00(Nroot) = 0 and so n,.,,, = mized.

For incremental updates, the octree communicates with
each quadtree ¢ via a decision function 7 ; : N — S. This
function must consider relevant quadtree entries to decide on
the state of a node n. Note that all decisions must maintain
conservativeness: A node n must report as full or mized if
the respective camera cannot rule out an object within V.
This accounts for the fact that the projection of any object
into a camera may potentially occlude other, more distant
objects. One refers to such occlusion-generated objects as
pseudo objects. In practice, decisions also classify nodes as
mixed if these are not or only partially visible to a camera.

At first, we introduce utility functions 7y;; : N — S that
consider only a single quadtree level j for their decision.
Pre-segmented images satisfy conservativeness via a trivial
per-level decision function

empty if Vd € ¢;(Vn) :

Qi (day /27) = empty,
if vd € @;(V) :
Gt,i,5(dey/27) = full,
mized otherwise,

?Seg,t,i,j(n) = full

which causes pseudo objects on entire viewing cones through
foreground pixels. In contrast, depth images compare node

bounding against quadtree minimum and maximum depths,

empty if Vd € ¢;(Vn) :

@i,maz,z(Vn) < qt,i,]',mi’ﬂ(diy/QJ)?
if vd e @;(Vy) :

<,51','min,z(‘/n) > Qt,i,j,max(dazy/Z])v
mized otherwise,

f_dep,t,i,j (n) = full

and hence reduce pseudo objects to actual occlusions behind
object silhouettes.

As merge functions build conservative quadtree entries,
coarse quadtree levels offer early-out opportunities once the
decision function returns full or empty. Otherwise, the cur-
rent quadtree level provides indecisive results, and the node
tests against the next finer level. Only tests on the lowest-
most quadtree level return mized. A function 7¢,;; : N — S,

empty if j < hi A Tei5+1(n) = empty,
ﬂ,i,j(n) = < full if j<hiN ?t,i7j+1(n) = full,

71.4,5(n) otherwise,

models these optimized queries.

For improved efficiency, updates only invoke decision func-
tions for the current time step ¢ if the respective quadtree
segment was modified. This leads to the final per-image
decision functions 7 ;,

Ti—1,:(n) if Fj:Vd € @i (Vy) :
Tt,i(n) = Gmod,ti,j (dey /27) = unmodified,
Tt,i,0(n) otherwise.

Incremental octree updates invoke the above decision func-
tion 7¢ ; to determine the state of any node. If a single camera
guarantees that a node is empty, recursion stops, and recon-
struction removes any existing children of the node. The
algorithm performs analog actions if all cameras report that
a node is full. Otherwise, reconstruction splits leaf nodes
and recursively updates children. This behavior reflects in
the formal node state

empty if Ji: 7 ;(n) = empty,
St,n = § full if Vi:7i(n)= full,
mized otherwise,

and the time-variant parent to children map

{np,1,....np8} if s¢p = mized A
Fi: {doy € Giay (Vo) } > 1,
0 otherwise,

ot(p) =

both for t > 0. Note that subdivision continues until all
pixel-level information within all source images has been
exploited. Hence, our reconstruction is as precise as possible
even though we only consider node bounding boxes.

Incremental updates may also abort on an informal, exter-
nal real-time limit. To maintain conservativeness, we then
must consider any untouched octree branches as potential
objects. In other words, we ignore any respective children
and assume a mixed state. This results in a less detailed, yet
still conservative reconstruction.

Given an octree in any build state, the desired recon-
structed volume V... consists of the volume of all full or

Figure 3: Input quadtrees for multiple cameras and
unrefined octree output. Incremental updating only
touched split (red) or merged (green) branches.

mixed leaf nodes, i.e. Viect = Vt(nmot) with Vi : N — 2V,

. Va if oi(n) =0A st # empty,
n’€oy(n) w(n') otherwise.

With some work, one can now prove that the reconstruction
indeed is conservative, i.e. that Vop ¢ C Vieer C V.

Figure 3 shows results of unrefined reconstruction with our
incremental, hierarchical and conservative algorithm.

At last, we can adapt the distance metric from initial
requirements as to use our octree, e.g.

pi(v) = min

|vrec —v|]| = min min HU’ — vH
Vrec€Vrec,t n

EN v inVy,
st,nFempty
ot (n)=0

Actual implementations can exploit octree properties to ex-
clude nodes from distance queries in the above equation.

3.5 Knowledge-based Refinement

Once geometric reconstruction has finished, we apply vari-
ous knowledge-based criteria (e.g. as in [8]) to refine recon-
struction output. For instance, if the target application only
requires to avoid robot-human collisions, we can safely ignore
any coherent object that does not meet the minimum volume
occupied by a human. Notably, this removes small artifacts
generated by camera noise. In an alternative scenario, we
can assume that the observed volume initially contains no
unknown object. We can thus disregard all coherent volumes
of unknown origin that have not had contact to the bound-
aries of the workspace or to undiscarded volumes yet. This
especially helps with excluding the pseudo objects generated
by independently moving occluders.

We also exploit external knowledge to remove known dy-
namic objects from the reconstruction. In robotics appli-
cations, this foremost refers to actual robots. If the object
reconstruction includes these, later path planning detects a
zero-distance obstacle and prohibits any robot movement.
Other known objects (e.g. conveyor belts, lifts, automated
trolleys) within the reconstruction do not interfere with path
planning. However, replacing their reconstruction by an
analytical form, such as a CAD model, usually improves
planning precision and efficiency.

All knowledge-based refinement efficiently integrates into
our octree hierarchy. Namely, we need only touch few nodes
for volume or neighborhood tests, as opposed to expensive
flood fill operations on a voxel field. In the end, refine-
ment reduced the reconstruction error Viec ¢ / Vobj,¢ of later
experiments without significant performance impact.

Figure 4: Top row: Example input images for syn-
thetic, offline and online experiments. Bottom row:
Reconstruction after knowledge-based refinement.

3.6 Optimizations

Algorithmic and implementation-level optimizations are
necessary to accomplish efficient reconstruction on commod-
ity hardware. In the following, we describe four strategies
that we used to optimize our reconstruction.

The first type of optimization exploits intuitive short-
circuit evaluation on the formal algorithm specification. For
instance, a quadtree level test on a segmented image can
instantly return once it has touched both a foreground and a
background entry. Likewise, we need not examine quadtrees
of further camera images once a single quadtree test guaran-
tees that a node does not contain any object.

The second strategy to improve performance involves a
memory-efficiency trade-off. There are various functions
that do not depend on the current time step t. Caching
these within memory significantly reduces reconstruction
times. Most importantly, each octree node n may cache its
expensive projection bounds ¢;(V;,) into the image space of
each camera . We also keep per-node quadtree results 7¢,;(n)
and only rebuild these on demand. In this context, one
must note that memory consumption of aggressive caching
is substantial. Later experiments occupied about 12GB of
main memory. However, we found memory less of a sparse
resource when compared to processing time.

In our third optimization, we parallelize reconstruction
over multiple octrees that evenly partition the workspace
volume. We do not use advanced per-thread load-balancing
as in [12]. Instead, we generate sufficient (e.g. 512) trees, and
distribute these over waiting threads. This enables adequate
data-parallel processing of individual instances. In the end,
all later experiments achieved an almost linear speedup.

Fourth, we optimize memory management for frequent
allocation and deallocation of octree nodes. We particularly
avoid memory and run-time overhead on both operations
by a custom allocator with a block-based node allocation
strategy. Each root owns a unique allocator instance to avoid
expensive locking over concurrent threads.

4. EXPERIMENTAL RESULTS

We evaluated our reconstruction algorithm in three ex-
periments: An experiment with synthetic data, an offline
experiment with real-world data, and an online test in a live
multi-camera system. Figure 4 presents an overview over
input and output for all three experiments. In the following,
we discuss experiment setup and results.

For synthetic tests, we employed a CAD model of an ex-
isting robot cell. An animation sequence shows a woman
walking through this cell. We rendered the sequence from

total qtrees octree #nodes #m #s

synth 91 5 83 1.93m 6.4k 20.1k
offline 98 6 91 2.18m 9.0k 27.8k
online 72 21 43 1.12m 5.7k 18.6k

Table 1: Average experiment results over a fixed-
length test sequence. Left to right: Milliseconds
for reconstruction, quadtree building, and octree up-
dates. Number of octree nodes, merges and splits.

seven virtual cameras and generated three types of images:
photo-realistic, pre-segmented, and depth images. Extrin-
sic and intrinsic parameters of the virtual cameras matched
those of their real-world counterparts, including a resolu-
tion of 640 x 480 pixels. We then tested reconstruction in
three modes: First, we directly used pre-segmented images
as ground-truth input. This allowed us to verify algorithm ef-
ficiency and correctness in absence of segmentation artifacts.
Second, we sent photo-realistic images through a run-of-the-
mill background subtraction to simulate real-world RGB
cameras. Third, we used depth images to prepare reconstruc-
tion for depth sensors such as the Microsoft Kinect.

For offline tests with real-world data, we modified the
above setup. Namely, we exchanged pre-rendered image se-
quences with pre-recorded footage of the real-world robot cell.
Moreover, we replaced ground-truth virtual camera parame-
ters with real-world ones. A camera calibration approach as
described in [14] provided an estimate for these. Remaining
software and hardware parameters were not changed.

In contrast to the preceding experiments, we evaluated
online reconstruction in a different testing environment: Four
wall-mounted consumer webcams of type Logitech C920 pro-
vide Full HD image input within a cubic experiment cell.
Again, standard background subtraction segments input im-
ages. As a mockup application, an optimized distance query
evaluates the output octree to adjust the processing speed
of a simulated machine in proximity of intruding objects.

All three tests ran on a mid-level desktop PC with 16GB of
RAM and a modest Core i5-2400 quad core processor. Recon-
struction always terminated on pixel level detail, equivalent
to 10243 voxels. Real-time limits were disabled to allow for
meaningful performance readings. Over each experiment run,
we measured key parameters, such as milliseconds per recon-
struction and number of octree nodes. Table 1 holds these
measurements. Resulting reconstruction times satisfy our ini-
tial demand of 100ms per frame at high-resolution input and
output. Consequentially, our multi-camera reconstruction
algorithm is both efficient and precise.

On further evaluation, synthetic and offline experiments
performed distinctively worse than the real-world scenario.
Reasons are twofold: Use of more cameras partially cancels
out reduced resolution, and more complicated as well as
faster-moving silhouettes cause more splits and merges.

The latter hints at a general problem with incremental
strategies: In all experiments, run-times increase by almost
a factor of two for fast-moving objects, such as a human
running inside the work cell. Here, updates have to rebuild
a large part of the octree. In order to evaluate the extent
of this effect, we performed another set of measurements on
the offline experiment. In particular, we artificially modified
playback speed of the recorded camera stream to increase
the number of changed pixels per reconstruction.

1,75

15 = relative number of split and

1,25 merge operations
1 . .
- relative reconstruction rate
0,75
05 relative playback speed

12 3 45 6 7 8 9 101

Figure 5: Reconstruction rates and number of mod-
ified octree nodes as a function of playback speed.

Results of incremental stress tests are given in Figure 5.
Over the entire test sequence, about one fourth of all pixels
correspond to moving objects. Under this consideration, ex-
periments imply an almost linear correlation between small
movement speeds, the number of modified octree nodes, and
octree update times. With increasing movement speed, in-
cremental calculations quickly become useless, and slowdown
saturates at a complete per-frame rebuild. Both observations
match with theoretical considerations for a moving sphere.

In practice, however, our reconstruction hits the external
real-time limit and exits prematurely once incremental up-
dates cannot keep up with scene changes. Consequentially,
object boundaries become coarser, but our algorithm still
maintains conservativeness at a real-time frame rate. In
terms of a safety application, this might even be desirable
behavior: Extended object boundaries help to account for
uncertainty in the future path of a fast-moving object.

In summary, our contribution excels in many aspects when
compared to state-of-art online reconstruction: Our algo-
rithm achieves real-time rates of 100ms per reconstruction
for high-precision input and output. Results supply 10243
voxel equivalent detail, 64 times the elements in popular 256
voxel spaces. We attain named throughput on a mid-range
desktop, whereas other approaches demand expensive hard-
ware (PC clusters, high-end GPUs) for less detail. Conversely,
our algorithm can exploit such hardware to further improve
detail and run-times. Our reconstruction even is conservative
and does not rely on imprecise voxel center tests for its effi-
ciency. Should we nevertheless exceed our allotted time limit,
our anytime strategy still yields a coarse result. Thus, we
gracefully handle unexpected system load or fast-moving ob-
jects. Regular algorithms fail under same conditions. Finally,
knowledge-based refinement significantly reduces artifacts in
comparison to purely geometric reconstruction.

5. CONCLUSION

We have introduced an approach that allows for efficient
and precise multi-camera reconstruction of objects within
some robot workspace under real-time, anytime, and conser-
vativeness requirements. We accomplished our goal by repre-
senting both input and output in hierarchical data structures,
and by iterative refinement of all data structures over consecu-
tive time steps. Low-level optimizations and knowledge-based
criteria increased efficiency and precision of our reconstruc-
tion. We have empirically verified our results with synthetic
and real-world test cases. In contrast to state-of-art solu-
tions, our contribution achieved real-time frame rates with
high output precision even for input from multiple Full HD
cameras and on commodity hardware.

Our future investigations diverge into various directions:
A GPU port alongside a warp-optimized algorithm (e.g. as

in [4]) seems worthwhile. Alternative data structures could
perhaps represent segments and volumes at a more coarse,
algebraical level. Ultimately, we plan to integrate our recon-
struction algorithm into real-world robot-human collabora-
tion, such as in home robotics or industrial manufacturing.

6. REFERENCES

[1] A. Bigdelou, A. Ladikos, and N. Navab. Incremental
visual hull reconstruction. In BMVC. British Machine
Vision Association, 2009.

[2] T. Gecks. Sensorbasierte, echtzeitfihige Online-
Bahnplanung fiir die Mensch-Roboter-Koexistenz. PhD
thesis, Universitat Bayreuth, 2011.

[3] B. Goldluecke and M. Magnor. Space-time isosurface
evolution for temporally coherent 3d reconstruction. In
Computer Vision and Pattern Recognition, 2004. Proc.
of the 2004 IEEE Computer Society Conf. on,
volume 1, pages [-350-1-355 Vol.1, June 2004.

[4] A. Hornung, et al. Octomap: an efficient probabilistic
3d mapping framework based on octrees. Autonomous
Robots, 34(3):189-206, 2013.

[5] S. Izadi et al. Kinectfusion: Real-time 3d
reconstruction and interaction using a moving depth
camera. In Proc. of the 24th Annual ACM Symposium
on User Interface Software and Technology, pages
559-568, New York, NY, USA, 2011. ACM.

[6] H. Kim and K. Sohn. 3d reconstruction from stereo
images for interactions between real and virtual objects.
Sig. Proc.: Image Comm., 20(1):61-75, 2005.

[7] S. Kuhn. Multi-view reconstruction in-between known
environments. Technical report, Univ. Bayreuth, 2010.

[8] S. Kuhn. Wissens- und sensorbasierte geometrische
Rekonstruktion. PhD thesis, Univ. Bayreuth, 2012.

[9] A. Ladikos, S. Benhimane, and N. Navab. Real-time 3d
reconstruction for collision avoidance in interventional
environments. In Proc. of the 11th Int. Conf. on
Medical Image Computing and Computer-Assisted
Intervention, Part 1I, pages 526-534, Berlin,
Heidelberg, 2008. Springer-Verlag.

[10] C. Lenz, et al. Fusing multiple kinects to survey shared
human-robot- workspaces. Technical Report
TUM-11214, Technische Universitdt Miinchen, 2012.

[11] D. Meagher. Geometric modeling using octree encoding.
Computer Graphics and Image Processing, 19(2):129 —
147, 1982.

[12] L. Soares et al. Work stealing for time-constrained
octree exploration: Application to real-time 3d
modeling. In Proc. of the 7th Eurographics Conf. on
Parallel Graphics and Visualization, EG PGV’07, pages
61-68, Aire-la-Ville, Switzerland, Switzerland, 2007.
Eurographics Association.

[13] D. Stengel, T. Wiedemann, and B. Vogel-Heuser.
Efficient 3d voxel reconstruction of human shape within
robotic work cells. In Mechatronics and Automation
(ICMA), 2012 Int. Conf. on, pages 1386-1392,
Chengdu, August 2012. IEEE.

[14] T. Svoboda et al. A convenient multicamera
self-calibration for virtual environments. Presence:
Teleoper. Virtual Environ., 14(4):407-422, 2005.

[15] A. Watt. 3D Computer Graphics, Third Edition.
Addison-Wesley, third edition edition, 2000.

