
Integration of an Interactive Raytracing-Based
Visualization Component into an Existing Simulation

Kernel

Master Thesis

Tobias Werner

October 10, 2011

Angewandte Informatik V — Intelligent Graphics Group

Universität Bayreuth
95440 Bayreuth, Germany

Integration of a Raytracing-Based Visualization Component

Table of Contents

1 Introduction 7
1.1 Abstract . 7
1.2 Overview . 7

2 Rasterization and raytracing 9
2.1 Basic concepts . 9
2.2 Rasterization . 9
2.3 Raytracing . 10
2.4 Comparison . 13

2.4.1 Performance . 13
2.4.2 Design elegance . 13
2.4.3 Conclusion . 14

2.5 Historical development . 14
2.5.1 Early years . 14
2.5.2 The rendering equation . 15
2.5.3 Consumer adaption . 16
2.5.4 Specialized graphics hardware 17
2.5.5 General programming on graphics hardware 18
2.5.6 Use in modern applications . 19

3 State of the Art 21
3.1 Interactive raytracing . 21

3.1.1 General review . 21
3.1.2 KD-trees . 25
3.1.3 Bounding volume hierarchies 26
3.1.4 GPU-based bounding volume rebuilds 29
3.1.5 Memory coherence algorithms 30
3.1.6 BSP-based optimization structure 31
3.1.7 Multi-frustum approach for soft shadows 33
3.1.8 Conclusion . 34

3.2 Middleware alternatives . 34
3.3 Renderer architecture . 35

3.3.1 Blender . 35
3.3.2 Ogre3D . 37
3.3.3 Unreal Engine . 39
3.3.4 Conclusion . 40

4 Simulation kernel 41
4.1 Fundamental concepts . 41

4.1.1 Coupling and cohesion . 41
4.1.2 Scene graphs . 42
4.1.3 Event systems . 42
4.1.4 Entity models . 43

4.2 Architecture overview . 45
4.2.1 Actors, entities, and state variables 46

Page 1 / 184

Integration of a Raytracing-Based Visualization Component

4.2.2 World interface, events and components 48
4.3 Existing rasterization module . 48

4.3.1 Java-side architecture . 49
4.3.2 Simulator integration . 49

5 OptiX platform 52
5.1 CUDA overview . 52

5.1.1 Parallelism on graphics hardware 53
5.1.2 Language and API . 55
5.1.3 Compilation . 56

5.2 OptiX overview . 58
5.2.1 High-level code flow . 58
5.2.2 Programmable components . 61
5.2.3 Building programmable components 64
5.2.4 Scene hierarchy . 64
5.2.5 Acceleration structures . 66
5.2.6 Data buffers . 68
5.2.7 Device variables . 69
5.2.8 Programming interface . 70
5.2.9 Multithreading capabilities . 72
5.2.10 CUDA extensions . 72

5.3 Sample application . 73
5.3.1 Device-side variables . 73
5.3.2 Global programmable components 75
5.3.3 Geometry-based programs . 76
5.3.4 Main application . 79
5.3.5 Scene management . 81
5.3.6 Raytracing . 82
5.3.7 Conclusion . 83

6 Renderer interface 84
6.1 Requirements . 84
6.2 Rendering process overview . 85
6.3 Render-side objects . 86

6.3.1 Object life-cycle . 86
6.3.2 RenderObject interface . 88
6.3.3 RenderObject varieties . 89

6.4 Resource management . 89
6.4.1 RenderResource interface . 89
6.4.2 Resource types . 90
6.4.3 Resource management requirements 91
6.4.4 Resource management strategy 92

6.5 Scene and puppet management . 94
6.5.1 RenderPuppet interface . 94
6.5.2 Puppet types . 95

6.6 Process control . 96
6.6.1 Commands and command buffers 97
6.6.2 Rendering techniques . 98

Page 2 / 184

Integration of a Raytracing-Based Visualization Component

6.6.3 RenderContext interface . 98
6.7 Window management . 99
6.8 Blocking and threading behavior . 100

6.8.1 Timing . 100
6.8.2 Blocking behavior . 102
6.8.3 Blocking on RenderContext . 102
6.8.4 Decoupling via rendering thread 104
6.8.5 Blocking on puppets . 105
6.8.6 Blocking on resources . 106

6.9 Interpolation . 107
6.10 Multithreaded client applications . 109
6.11 Extendability . 109
6.12 Design alternatives . 110
6.13 Interface summary . 112

7 Raytracer implementation 116
7.1 Native and Java approaches . 116
7.2 Interface implementation . 116

7.2.1 C++ specifics in the RenderContext interface 117
7.2.2 Interface classes . 117

7.3 OptixContext implementation . 121
7.3.1 Mirror hierarchy . 121
7.3.2 Resource implementation . 123
7.3.3 Puppet implementation . 125
7.3.4 Programmable component interface 126
7.3.5 General OptixContext functionality 127
7.3.6 Lighting algorithm . 129
7.3.7 Device-side light buffer . 130
7.3.8 Default programs . 131
7.3.9 Rendering process . 132
7.3.10 Renderer destruction . 133

7.4 Example client application . 133
7.5 Testing suite . 134

8 System Integration 136
8.1 Java wrapper . 136

8.1.1 JNI and JNA solutions . 136
8.1.2 JNI realization . 137
8.1.3 JNI examples . 138

8.2 Scala integration . 140
8.2.1 Raytracing actor . 140
8.2.2 Application integration . 143

8.3 Caveats . 144
8.3.1 Shared pointer wrapping . 144
8.3.2 Large data transfers . 146
8.3.3 Exception wrapping . 146

9 Evaluation 147

Page 3 / 184

Integration of a Raytracing-Based Visualization Component

9.1 SimThief example application . 147
9.2 General features . 147

9.2.1 Language-specific aspects . 148
9.2.2 Architecture comparison . 149

9.3 Image quality . 150
9.4 Performance . 151
9.5 Stability . 152

10 Conclusion 155
10.1 Review . 155
10.2 Preview . 156

10.2.1 Research . 156
10.2.2 Implementation . 158

10.3 Conclusion . 159

Appendices 160
A Framework Overview . 160

A.1 Exception module . 160
A.2 ScopeGuard module . 160
A.3 Container module . 161
A.4 Log module . 161
A.5 Geometry and image modules 161
A.6 File module . 161
A.7 Thread module . 162

B Bibliography . 163
C Compact Disc Contents . 171
D Deutschsprachige Zusammenfassung 172

D.1 Übersicht . 172
D.2 Stand der Forschung . 172
D.3 Architektur des VR-Rahmenwerks Simulator X 174
D.4 Die allgemeine Render-Schnittstelle 175
D.5 Anforderungen in Multithreading-Umgebung 177
D.6 Multithreading-Verhalten . 177
D.7 Auswahl einer Raytracer-Implementierung 179
D.8 Implementierung der Schnittstelle auf Optix-Basis 179
D.9 Einbettung des Renderkerns in Simulator X 180
D.10 Bewertung des Raytracing-Kernels 181
D.11 Ausblick . 182

E Software Tools . 183
F Erklärung zur Authentizität . 184

Page 4 / 184

Integration of a Raytracing-Based Visualization Component

Table of Figures

2.1 Rasterization concept . 10
2.2 Photon tracing concept . 11
2.3 Raytracing concept . 12
2.4 Raycasting concept . 12
2.5 Rendering equation . 16
2.6 Interactive raycasting in 2D . 17
2.7 Pipeline development on graphics hardware 19

3.1 KD-tree acceleration structure . 22
3.2 BVH acceleration structure . 24
3.3 Grid acceleration structure . 25
3.4 Morton codes . 29
3.5 Blender screenshots . 36
3.6 Ogre3D screenshot . 37
3.7 Ogre3D architecture . 38
3.8 Unreal Engine screenshots . 39
3.9 Unreal Engine architecture . 40

4.1 Scene graph concept . 43
4.2 Event system concept . 44
4.3 Entity model concept . 45
4.4 Architectural layers in Simulator X . 46
4.5 State variables . 47
4.6 Simulator entity . 47
4.7 jVR rendering and threading concept . 49

5.1 Thread grids in CUDA . 54
5.2 Warp splitting in CUDA . 54
5.3 Device-side vector addition in CUDA . 55
5.4 Host-side vector addition in CUDA . 56
5.5 Compilation process in CUDA . 57
5.6 Overview over OptiX . 62
5.7 Scene hierarchy in OptiX . 67
5.8 Acceleration structures in OptiX . 67
5.9 Complex instancing in OptiX . 68
5.10 Result of the OptiX example application 73

6.1 Client collaboration with renderer . 86
6.2 RenderObject example lifecycle . 88
6.3 Rendering with push semantics . 97
6.4 Micro lag for fixed simulation rates . 108
6.5 Timing for interpolated logics . 108
6.6 Multiple client threads on renderer . 109
6.7 Rendering with pull semantics . 112
6.8 Timing for extrapolated logics . 112
6.9 Class overview over renderer . 113

Page 5 / 184

Integration of a Raytracing-Based Visualization Component

6.10 Function overview over renderer . 114
6.11 Threading and blocking overview over renderer 115

7.1 Implementation-side class hierarchy . 122
7.2 Relations between interfaces and OptiX API objects 122
7.3 Blinn-Phong shading . 130
7.4 Raytracer demonstration scene . 135

8.1 SimThief raytraced . 145

9.1 SimThief application . 148
9.2 Texture filtering comparison . 150
9.3 OptiX texture sampler not supported . 153
9.4 OptiX texture sampler artifacts . 153

10.1 Path-traced Cornell Box . 157

Page 6 / 184

Integration of a Raytracing-Based Visualization Component

1 Introduction

1.1 Abstract

Within this thesis, the development of an interactive raytracing compo-
nent utilizing the NVIDIA OptiX API and the integration of said com-
ponent into the Scala-based virtual reality kernel Simulator X are de-
scribed. In particular, requirements for a general renderer interface with
both support for an interactive raytracer back-end and integration into
a Scala environment are derived. Thereafter, an appropriate C++ back-
end implementation with OptiX hardware acceleration is created, and an
associated Scala wrapping layer is developed. Finally, the resulting ray-
tracing component is evaluated in comparison to a competing traditional
rasterization component. This yields a conclusion on the current state of
interactive raytracing.

Thus, the topic of this thesis: Integration of an Interactive Raytracing-
Based Visualization Component into an Existing Simulation Kernel.

1.2 Overview

In the course of the following chapters, the entire development process of the inter-
active, hardware-accelerated raytracing component for the Simulator X platform is
covered. This includes both basic concepts — such as Simulator X and OptiX API
fundamentals — as well as interface design, implementation work, and an integration
step into the simulator framework. In particular, each chapter covers a single aspect
within the development of the raytracer:

• Chapter 2 gives an overview over basic rasterization and raytracing algorithms
and explains their respective advantages and disadvantages. Thereafter, the
history of computer graphics and graphics hardware is reviewed to explain why
hardware accelerated raytracing became possible on modern graphics hardware.

• The current state-of-art, both for interactive raytracing and for renderer archi-
tecture, is investigated in chapter 3.

• Chapter 4 elaborates the software architecture of Simulator X. Fundamen-
tal concepts as well as their realization are discussed. Finally, the existing
rasterization-based rendering component within the framework is reviewed.

• Covering of the actual raytracer development starts with chapter 5. In particu-
lar, NVIDIA’s OptiX middleware platform for hardware accelerated raytracing
is introduced as the groundwork for the raytracer. An example application is
derived to further improve on the understanding of OptiX internals.

• Chapter 6 proposes a general renderer interface that meets requirements such
as multithreading support and intuitive client-side use. The interface consists of
certain subordinate components which are defined in regards to their functional
behavior.

Page 7 / 184

Integration of a Raytracing-Based Visualization Component

• Within chapter 7, the results from the previous two chapters are combined to
implement the general renderer interface and its OptiX back-end in C++.

• The wrappers that connect the raytracer and the simulation kernel are presented
in chapter 8. This concludes the development of the raytracing component.
Thereafter, the OptiX raytracing component is integrated into a Simulator X
example application for later testing.

• In chapter 9, the finished raytracing kernel is compared to the original rasterizer
component within Simulator X. The results are evaluated to determine the
fitness of the raytracer implementation.

• Finally, chapter 10 provides a summary on the results of this thesis, and draws
a conclusion on the feasibility of raytracing on modern graphics hardware.

Page 8 / 184

Integration of a Raytracing-Based Visualization Component

2 Rasterization and raytracing

This chapter defines basic rendering-related terms used throughout this thesis, and
gives an introduction into both rasterization and raytracing. Similarities between
both approaches are named, and their respective benefits are contrasted.

In-depth details on both rendering approaches may be obtained from a variety of
academical and commercial sources, such as [AW00], [WPa] or [WPb]. In particular,
the explanations and arguments within this chapter are based on [FA09].

2.1 Basic concepts

In the context of computer graphics, rendering in general refers to the process of
deriving a 2D representation of a 3D scene by the use of a rendering algorithm.

Most commonly, the 3D scene is some in-memory, mathematical data set. For in-
stance, a scene may contain research measurements, medical data from a MRT device,
or the virtual environment of a computer generated movie. In many cases, the dataset
is formed by continuous objects, such as lines, triangles, or mathematical surfaces.

The 2D representation usually is any raster image with discrete pixel elements. Com-
mon raster images are RGB bitmaps for display on a computer screen or similar
device.

The rendering algorithm describes the mapping process that translates the 3D scene
dataset to its 2D counterpart. Within the development of computer graphics, two
fundamental algorithm families have evolved:

• Rasterization creates a 2D raster representation by projecting the 3D scene
into an intermediate 2D form. The intermediate form is sampled in 2D to
determine the result image.

• Raytracing creates the 2D representation by following rays directly within
the 3D scene. Thus, the scene is sampled in 3D without any intermediate 2D
form.

2.2 Rasterization

In traditional rasterization, graphic objects are tesselated into a series of 3D triangles.
For curved surfaces, this means a discrete approximation has to be determined.

The input triangles are projected in-situ into a flat, normalized screen space that
surrounds a virtual scene viewer. During this projection, the depth of triangles is
mapped to perspective distortion to simulate a true 3D view. Mathematically, this
involves a matrix multiplication operation that encapsulates the respective projection.

Finally, the resulting 2D triangles are sampled to the target raster image with a
scanline algorithm. This algorithm iteratively determines the first and last pixel
inside the triangle on each pixel row, and then fills all pixels in between.

Page 9 / 184

Integration of a Raytracing-Based Visualization Component

Figure 2.1: In this example rasterization process, a 3D triangle is first transformed
into planar view space. Then each scanline of the triangle is processed and results
in appropriate pixels in the final image.

For intuitive understanding, rasterization of a single triangle is presented in figure
2.1.

A vital problem that needs solving here is the rendering of multiple, overlapping
objects: Consider triangle A that is positioned between the camera and another
triangle B. This results in a depth conflict. The rasterizer must guarantee that B is
correctly hidden behind A within the result image to meet viewer expectations.

Depending on the actual rasterizer setup, separate algorithms are used to solve any
depth conflicts. In the original painter’s algorithm, triangles are depth sorted and
painted in back-to-front order so that closer objects overwrite any previously painted,
farther ones. In the state-of-the-art z-buffer algorithm, the closest-most distance to
the camera is stored for each pixel within an auxiliary, off-screen buffer. New objects
are only written if their incoming depth indicates they are even closer to the camera,
in which case the buffer is updated appropriately.

The depth conflict problem is symptomatic for the rasterization process. In particular,
rasterization is a pure algorithmic construct rather than a physically correct approach.
Thus additional workaround algorithms and hacks are required to fix up rasterization
results to match with reality.

2.3 Raytracing

Raytracing follows a different, more physically oriented approach.

As motivation, consider light flow and the human vision system in the real world. In
reality, light sources emit photons. Each photon travels through space until it hits
some object. The photon then may be deflected into another direction, or it may be
absorbed. At one point or another, the photon eventually reaches the human eye,
where it triggers an appropriate sensory reaction. In its entirety, this is a probabilistic
process. Each photon has its own starting direction and its own wavelength. Thus,
photons hit different objects, are reflected differently, or absorbed by different objects.
Overall, our vision system accumulates very many incoming photons for the final
visual perception.

Page 10 / 184

Integration of a Raytracing-Based Visualization Component

Figure 2.2: A photon tracer calculates the path that photons emitted from the
light sources take through the scene. Any photons that hit the camera are
accumulated, and determine the final pixel value.

These physical facts gave birth to the photon tracing algorithm. In particular, this
algorithm follows discrete light rays within the 3D scene. Light rays randomly orig-
inate from light sources, and correspond to an entire bundle of photons. Light rays
bounce around within the scene until they are completely absorbed. Whenever any
light ray hits an object, it may also spawn additional light rays to simulate material
behavior. As an example, a light ray that hits a glass surface spawns two secondary
rays: A ray that penetrates the glass surface, and another ray that represents the
reflected part of incoming light. The photon tracing algorithm is visualized in figure
2.2.

Disadvantages of this approach are obvious: Only those light rays that actually arrive
at the virtual camera contribute to the final image. All other rays are calculated in
vain. Additionally, since the approach is probabilistic, a metric has to be introduced
that indicates when enough rays have accumulated within the image.

To counter these disadvantages, a slight modification to the photon tracing algorithm
gives the actual raytracing algorithm: Instead of following light rays, a raytracer sends
out a scanning ray through each pixel within the viewport. The collision of this ray
with the first in-scene object is found to determine the pixel color. Again, secondary
rays are introduced at the initial ray hit point to simulate mirroring, refraction, or
translucency. Finally, secondary rays within a raytracer determine object shadowing
as well: Any point is only lit by a light source if a ray from the point to the light
source does not hit any other object. Compared to photon mapping, this yields
a performance improvement at the expense of graphical quality. A schematic of
raytracing is given in figure 2.3.

The above realization of raytracing under the use of secondary rays for shadow cal-
culations, translucency and mirroring often is referred to as Whitted-style raytracing
— named after its developer Turner Whitted.

In this context, one should also note that there are many different methods to adapt
or combine various raytracing algorithms, and that there is no consistent terminology
for these approaches.

Page 11 / 184

Integration of a Raytracing-Based Visualization Component

Figure 2.3: 3D raytracing sends a single ray through each pixel of the target
image and into the scene. Secondary rays are spawned to determine occlusion of
light sources, refraction effects, or translucency background.

Figure 2.4: A basic raycaster traces a ray through each pixel of the target im-
age into the scene. The first hit point of the ray with a scene object directly
determines the pixel color.

As an example, secondary rays may be omitted entirely for performance optimization.
The resulting algorithm came to be known as raycasting and played an important
part in early raytracing applications. Raycasting is shown in figure 2.4.

Another approach — this time for increasing image quality — implies spawning addi-
tional, random light sampling rays from the initial ray hit point. These rays consider
diffuse light interactions of nearby surfaces. For instance, light bouncing off a red
ball creates a slightly red highlight on a very close wall. Such approaches often are
termed diffuse raytracers or path-based raytracers.

Finally, Cook raytracing provides similar visual effects as diffuse raytracing, but
avoids secondary sampling rays. Instead, multiple primary rays are generated per
pixel of the input image and their results are combined to form the final pixel value.
On scene intersection, any ray spawns at most a single additional ray with random
behavior and direction. Thus, recursion is replaced by iteration at the cost of local
coherence — each per-pixel ray potentially takes an entirely random path through
the scene.

Page 12 / 184

Integration of a Raytracing-Based Visualization Component

2.4 Comparison

As whenever there are two competing solution candidates for the same problem, the
question arises which one is superior. Consequently, raytracing and rasterization
are compared in the following, both in regards to performance and design elegance.
Finally, an appropriate conclusion is drawn.

2.4.1 Performance

A typical measurement used in comparison of raytracer and rasterizer systems is the
number of pixels touched throughout the rendering process [AW00].

Given a scene with t triangles, each of which maps to around n pixels on-screen, it
is often stated that a traditional rasterizer requires O(n ∗ t) pixel operations. Due to
depth complexity and overlapping objects, n may grow rather large, possibly much
greater than the total number r of pixels in the target image.

In contrast, for the creation of an image with r pixels from t triangles, a raytracer is
said to require around O(r∗ log t) intersection tests. The logarithm here indicates the
use of a hierarchical optimization structure for the intersections within the raytracer
kernel. The optimization structure allows to quickly discard triangle groups at once,
thus not every scene triangle has to be tested against each ray.

At first, this performance comparison seems intuitive, and the naive conclusion is
quickly drawn that raytracing asymptotically performs better than rasterization.

Sadly, there are flaws in this derivation. For instance, while raytracing uses a back-
ground optimization structure, no such structure is used in the rasterizer. Yet, there
are many algorithms that allow for hierarchical occlusion culling of entire objects
before these are even processed by the renderer. This on the one hand reduces the
number of triangles drawn. On the other hand depth complexity is reduced, so that
almost no on-screen pixel is overwritten. Thus, it is quite possible to achieve an
average O(r ∗ log t) complexity even for normal rasterizers.

Finally, asymptotic argumentation leaves out one practically relevant fact: Intersec-
tion tests, per pixel, are one or even more orders of magnitude slower than a respective
pixel drawing operation within a scanline. Thus, in practice raytracers are known to
be less efficient than traditional rasterizers. Obviously, the often cited asymptotic
performance actually provides no usable measurement here.

2.4.2 Design elegance

A more important, though often overlooked argument in the comparison of raytracing
and rasterization approaches is the actual rendering process.

Within current rasterizers, there are many different strategies in use depending on
the rendering situation. For instance, portal culling and stencil shadows for indoor
areas might be combined with an outdoor scenery based on a geo-mipmapped terrain
and shadow mapping techniques. Environment mapping with a fake cubemap may
give an impression of reflection on certain surfaces, and translucent objects must be
depth-sorted before rasterization. Procedural surfaces and volumetric materials only

Page 13 / 184

Integration of a Raytracing-Based Visualization Component

can be displayed after tesselation into triangles. All this puts a great strain on the
rasterizer development, as the rasterization kernel needs many different code paths
for these situations. Furthermore, clients such as shader writers or artists must be
aware of the context any application asset is used in. For instance, a procedural
material shader must output different values depending on its use either in normal
rendering or in shadow mapping.

In contrast to the above, a raytracer provides an intuitive kernel, based on ray prim-
itives, that is applied to every scene and to every use case. The same raycasting
algorithm is used both for open and for closed scenes. Each shadow is created by
casting rays, as are reflections, refractions and translucency. Refraction and translu-
cency need not be faked, but are a direct result of the basic physical model. Objects
within the scene only need to provide a single set of material properties, and then are
compatible with the entire rendering kernel. Even procedural and volumetric objects
intuitively are integrated into the respective raytracing kernel.

Thus, raytracers benefit greatly in elegance of the rendering kernel and in usability
for client applications. At the same time, a raytracer needs less workarounds for a
realistic rendering of physically motivated effects.

2.4.3 Conclusion

In a nutshell, neither of the rendering algorithms is better or worse than the other. In-
stead, each one has its respective advantages and disadvantages: While rasterization
requires many workarounds to get realistic renderings, it also is quite fast even with
naive implementations. For raytracing, believable renderings come naturally from
the fundamental physical model, while efforts are necessary to achieve efficiency. A
good wording for this conflict comes from David Luebke, engineer at NVIDIA: ”Ras-
terization is fast, but needs cleverness to support complex visual effects. Raytracing
supports complex visual effects, but needs cleverness to be fast” [FA09].

2.5 Historical development

As precedingly explained, rasterizers and raytracers are quite different rendering al-
gorithms. However, it is only due to the popularity of rasterization based rendering
that interactive raytracing is possible on consumer grade hardware these days. To
gain further insight on this connection, it is important to examine the historical
development of both algorithms — as well as the general development of graphics
hardware.

2.5.1 Early years

Eventually, the first invention of the fundamental raytracing concept dates back to
an age before computers and even electricity. In ancient Greece at around 400 B.C.,
philosopher Plato studied the human eye and came up with an explanation for human
vision [IK07]: Plato was convinced that the eye sends out rays made from fire of
reason. Once these hit any object, they merge with god-sent fire rays from the sun.
This connection creates small particles on the object’s surface, which in turn allow

Page 14 / 184

Integration of a Raytracing-Based Visualization Component

an image of the object to enter the eye. There, the soul can reach out to the image
and thus the object is perceived.

While the general understanding of light and the human vision apparatus have evolved
since then, the idea of raytracing was taken on again at around 1960 for use in com-
puter graphics. In 1963, the University of Maryland presented the first computer-
generated, raycasted image on an oscilloscope screen. The first major publications on
a formal raycasting algorithm were released five years later by Arthur Appel, Robert
Goldstein and Roger Nagel [AA68] [RG71]. In 1979, Turner Whitted improved on the
basic raycasting algorithm by introducing secondary rays for light occlusion, trans-
parency, and mirror effects [TW79]. Thus, the fundamental raytracing algorithm had
been developed. Eventually, the focus of later research shifted from basic algorithms
to model improvements and performance optimization.

The first interactive raytracing system was introduced in 1987. Integrated into a
CAD modeling system, this early raytracer distributed its workload over a network
for parallel calculations. Thus, interactive framerates of several frames per second
could be achieved for basic geometric shapes.

Scanline-based rasterization algorithms were developed in parallel to raytracing meth-
ods. The first publications on scanline rasterization appeared around 1970, such as
in papers by Jack Bouknight [JB70] and Chris Wylie [CW67]. The original scanline
implementations directly integrated the resolution of occlusion problems and depth
conflicts into the pixel painting algorithm. However, with increasing triangle num-
bers, such calculations soon became infeasible, and alternative methods for depth
sorting were required. As a potential tool for this task, Edwin Catmull invented the
z-buffering algorithm in 1974 [EC74]. The fundamental combination of a scanline
rasterization process and a z-buffer for depth handling quickly had been accepted,
and even today remains the state-of-art interactive rendering algorithm.

2.5.2 The rendering equation

All previously named approaches to raytracing and rasterization did not care for
physically realistic lighting. Instead, experimental solutions had been used to color
the virtual scenes. This changed when James Kajiya developed a physical model of
light and surface interaction in 1986 [JK68]. The mathematical implications of this
model are represented by a compact integral equation [WPd]:

Lo(x, ωo) = Le(x, ωo) +

∫
Ω

fr(x, ωi, ωo)Li(x, ωi)(−ωi · n)dωi.

Due to its importance for all realistic rendering approaches this formula was termed
the rendering equation.

Within the rendering equation, x is some point on the surface of an object, n denotes
the surface normal at that point, and Ω is a hemisphere of direction vectors over x
centered on n. The direction vectors for incoming and outgoing light energy respec-
tively are expressed by ωi and ωo. Likewise, the functions Li and Lo determine the
amount of incident or outgoing light at x into direction ωi or ωo. The function Le
encapsulates any light directly emitted at x. Finally, fr is a bidirectional reflectance

Page 15 / 184

Integration of a Raytracing-Based Visualization Component

Figure 2.5: For a single observer direction ωo, the outgoing light Lo consists of
the light Le emitted into that direction, and the sum of all incoming light Li
reflected into that direction.

distribution function, or BRDF for short. This function states how much incoming
light from one direction ωi is reflected into another direction ωo.

Essentially, the rendering equation states that there always must be an equilibrium
between the total outgoing light energy Lo and the sum of incoming light energy Li
and directly emitted light energy Le at any point in space. Figure 2.5 presents an
overview over these relations.

Further refinements exist to consider wavelength-specific, colored light or time-
dynamic lights and objects.

Albeit the rendering equation does not consider all potential real-world lighting ef-
fects, it acts as the fundamental concept for most current lighting models. The
rendering equation later on even is used to derive a lighting model for the raytracer
implementation within this thesis.

2.5.3 Consumer adaption

In the late Eighties, basic research on both rendering approaches had been finished.
Further publications improved on algorithmic details and on image realism, but did
not introduce new concepts.

However, another development vitally influenced the further history of rendering:
The market for home computers was steadily growing. In turn, computers became
much more affordable, and provided ever increasing performance. Thus, 3D graphics
were soon possible on consumer grade equipment.

Due to the low calculation performance and limited main memory of early consumer
computers, initial 3D entertainment software centered around scanline-based rasteri-
zation. David Braben’s space trading game Elite, developed in 1984 during his studies
at the University of Cambridge, became an instant success. It internally used a scan-
line approach to represent a 3D rendition of the virtual space around the player’s
spaceship, including other spaceships, planets, and space stations. The algorithm’s
high performance allowed porting to a variety of then-popular consumer computers,
such as the BBC Micro, Commodore 64, or Atari ST.

Page 16 / 184

Integration of a Raytracing-Based Visualization Component

Figure 2.6: 2D raycasting sends but a single ray for each column of the result-
ing image. The ray is intersected with planar geometry. The distance to the
intersection point sets the height and vertical offset of the respective column
pixels.

Another important milestone in the development of rendering on consumer grade
computers was a certain computer game released by ID software in 1992. From a
technical point of view, the most noteworthy part of this game was the rendering al-
gorithm. In particular, the 3D component was based on a simple raytracing algorithm
instead of any prevalent rasterization approach. Many restrictions were enforced on
the geometry of the virtual world to allow for but a single ray per column of pixels in
the output image. The simplified calculations allowed the title to perform smoothly
on the Intel 286 series CPUs that were current at that time — unlike many competing
rasterizer based renderers that achieved the same graphics quality. An example scene
suited for this basic form of raytracing is given in figure 2.6.

In the following years, graphics within entertainment software became a driving fac-
tor for sales in the home computer market. Faster and better graphics required
new computers, which in turn allowed for a low-performance rendition of even more
graphics enhancements. Thus, improved hardware was desired yet again, and the
cycle continued.

2.5.4 Specialized graphics hardware

Apart from general performance improvements on consumer computers, the coming
years saw the advent of two important developments:

On the one hand, interactive rasterizer-based approaches became more sophisticated,
and outran interactive raytracing on home equipment both in performance and in
image quality. In particular, rasterizer approaches were able to provide a full 3D en-
vironment at interactive framerates. In contrast, the performance-induced limitation
on the number of rays and intersection geometry shapes in the competing interactive
raytracers did not allow for this. An often-named milestone in this context is the
1996 release of another game by ID software that dropped the raytracing engine of
its predecessors in favor of a pure triangle rasterizer.

On the other hand, 3D graphics became a vital selling point for specialized graphics
hardware on the consumer market. Up to then, 3D graphics had been processed on the
general-purpose CPU. The generated image was consequently sent on to the graphics
board, which only displayed rendering results on the attached monitor. However,

Page 17 / 184

Integration of a Raytracing-Based Visualization Component

hardware vendors such as S3 or 3DFX implemented additional hardware-side support
for 3D rasterization in their struggle for market shares. At first, only few operations,
such as texture mapping, were supported via vendor-specific programming APIs,
and provided just little performance gain. Shortly thereafter, additional competing
companies like ATI or NVIDIA entered the market. In this context, programming
interfaces were standardized, and additional rendering functionality was moved from
the CPU to the graphics processor. Soon, computer games and entertainment titles
even required 3D support from the graphics hardware.

While the introduction of specialized 3D hardware improved performance, one lim-
iting factor was the original restriction to a fixed function pipeline. In particular,
only a certain set of default operations — rendering with per-vertex lighting, depth
testing, alpha blending, and so on — was supported on initial 3D accelerator boards.
This disallowed the use of more complicated techniques already possible on multipur-
pose CPUs. For example, per-pixel lighting could only be achieved by a workaround
using static lightmaps. Due to competition for customers by means of improved
graphics and special effects, hardware-based 3D graphics evolved on its own in this
field. Starting with NVIDIA’s register combiners in 1999, certain parts of the by then
hard-coded pipeline were made customizable.

With the advent of pixel and vertex shaders in 2001, customization of the fixed-
function pipeline was extended by user-programmable pipeline components. Albeit
these components originally had been programmed in assembly, additional high-level
languages were introduced later on to make development more intuitive.

2.5.5 General programming on graphics hardware

As a final step in development of graphics hardware, the once separate pixel and
vertex shader units on a board were unified into a single processor type: A stream
processor on a graphics board allows to process some kind of general input data
stream to produce some general output data stream. In the context of graphics,
these input and output streams correspond to the graphics data once moved through
the fixed function pipeline. For instance, a stream processor might work on vertex
input data to produce pixel output data.

The performance benefit for graphics is achieved by exploiting the independence of
per-pixel calculations: In a traditional rasterizer, each pixel is treated independently
from its neighbors. Thus, many pixels may be calculated in parallel without worrying
about race conditions. A steam processor adapts to this by supporting the execution
of many, lightweight parallel threads — ideally one thread per pixel in the output
image.

Yet, stream processors are not limited to graphics data, but accept arbitrary input
and output streams. As an example, a stream processor may be used to perform a
calculation on a scientific data set. Unlike a CPU, a stream processor has certain
restrictions that originate from the use for graphics processing. However, due to
massively parallel processing of the input stream, a stream processor also performs
much faster than a general-purpose CPU on suitable, data-intensive problems. This
gave rise to the GPGPU programming paradigm: General Programming on Graphics
Processor Units.

Page 18 / 184

Integration of a Raytracing-Based Visualization Component

Figure 2.7: Development of the rasterization pipeline within graphics hardware
over the past decades. The final, fully programmable pipeline is able to perform
raytracing as well.

The shift from graphics-only processing to more general computations allowed the
use of graphics boards for a variety of applications — from physics calculations to
molecular folding. Coincidentally, this also allowed for the execution of raytracing
algorithms on hardware that originally was developed for rasterization use only.

An overview over the described development of the programmable pipeline is pre-
sented in figure 2.7.

2.5.6 Use in modern applications

Today, the application fields of raytracing and conventional rasterization are clearly
separated.

Raytracing is commonly used as an offline process, where quality matters more than
interactivity. Application fields include computer generated stills and movies and
product design as well as scientific data set visualization.

In contrast, rasterization mainly is used in interactive applications on consumer grade
hardware, such as computer games, virtual reality software, or architectural walk-
throughs. In these fields, the image need not be as exact or realistic as possible, but
rather need only look believably correct and provide a set level of immersion.

However, with the ever steady increase in computing power, interactive raytracing
slowly is becoming a viable rendering approach even for the latter use cases:

In 2007, the OpenRT project of the University of Saarland finished a programming
API and specialized hardware for realtime raytracing. Albeit specialized hardware

Page 19 / 184

Integration of a Raytracing-Based Visualization Component

was a novel approach to the raytracing problem, it also required a market shift and
thus was accepted neither by consumers nor by commercial users.

The year thereafter, the Intel corporation demonstrated the first software-based, in-
teractive raytracer integrated into a consumer-grade software title that runs on but a
single PC system. In particular, the ID software title Enemy Territory: Quake Wars
performed with around 20 frames per second on a high-performance, 16 core server
rig.

Finally, the NVIDIA company augmented their product line for general computations
on graphics hardware by the OptiX raytracing API. This API allows for out-of-core
interactive raytracing on most current NVIDIA GPU boards, even consumer-grade
entry level hardware. Eventually, OptiX also was used in the implementation work
associated with this thesis.

The next chapter provides a more in-depth discussion of state-of-the-art interactive
raytracing techniques from a scientific point of view.

Page 20 / 184

Integration of a Raytracing-Based Visualization Component

3 State of the Art

This chapter serves three independent purposes: The outline of recent scientific re-
search towards interactive raytracing, the selection of a middleware raytracing plat-
form for integration into Simulator X, and the discussion of current state-of-art design
for rendering components.

At first, current scientific approaches to interactive raytracing are reviewed. The
focus within this review was to gain general insights on the feasibility and potential
pitfalls of interactive raytracing within consumer-grade hardware.

Thereafter, middleware platforms for interactive raytracing are discussed, and the
reasoning behind the choice for NVIDIA’s OptiX API is elaborated.

Finally, the concepts behind select rendering engines — both traditional rasterizers
and raytracers — are investigated. Particular attention in the design evaluation is
put on the threading concept, as required for access from the multithreaded Simulator
X kernel. Further points of interest are general client-side design, such as rendering
process control, scene structures, and resource management.

The conclusions have been used as inspiration for the design of the actual raytracing
component for Simulator X. A more in-depth investigation into rendering engines is
available in [TW11a].

3.1 Interactive raytracing

In the following, recent academic results on interactive raytracing are presented. At
first, a general publication on the overall state of interactive raytracing is reviewed.
Thereafter, select algorithms specialized for various areas of interactive raytracing are
discussed in greater detail. The review ends with a universal resume on the current
state of affairs with interactive raytracing.

3.1.1 General review

One of the most recent and thorough surveys on interactive raytracing is provided
in [IW07b]. In the following, a short review on this publication is given.

As motivation, the work states that it has become possible to perform basic ray-
tracing in real-time due to algorithmic advances and increased computational power.
However, with the advent of real-time raytracing, a new problem arises: While real-
time raytracing by concept allows for dynamic scenes, the traditional optimization
hierarchies used over the past decades have not been designed for moving contents. In
particular, algorithms were optimized in regards to optimal raytracing performance,
not in regards to optimal hierarchy build time. In turn the updates to scene struc-
tures required by dynamic objects often limit performance of the entire raytracing
process.

Consequently, the work names recent interactive algorithms that propose improve-
ments on raytracing and rebuild time.

Algorithms are classified depending on a series of characteristics:

Page 21 / 184

Integration of a Raytracing-Based Visualization Component

Figure 3.1: KD-trees provide a good fit even for irregularly distributed objects
and primitives. Tree depth can adapt to provide resolution where needed. If
any dynamic object crosses node planes (red arrow), the tree cannot easily be
updated without any complex node restructuring. Thus, a complete rebuild is
often faster.

• Type of animation: Static scenes, translations only, skeletal animation or ran-
dom triangle movement.

• Ray coherency: Single ray traversal, ray packets, or volumetric rays.

• Data structure: Spatial structures or hierarchical structures.

• Bounding alignment: Axis-aligned or arbitrary positioning.

• Tesselation strategy: Adaptive or uniform data structure tesselation.

• Rebuild balance: Fast rebuild or optimal hierarchy.

• System architecture: Rasterizer-oriented or exposed scene graph.

• Rebuild variant: Update-based or full rebuild.

Thereafter, the work investigates few of the named algorithms in detail.

At first, construction algorithms for kd-trees are reviewed.

Kd-trees are the most popular structure for offline raytracing, as these in general
provide the best ray traversal performance [VH00]. Yet, updates on kd-trees are
known to be slow in practice. In turn, most interactive approaches try to rebuild
kd-trees for dynamic scene objects from scratch on each frame.

Figure 3.1 illustrates both kd-tree characteristics.

One algorithm suited for kd-tree rebuild is the complex Surface Area Heuristic (or
SAH for short).

The recursive SAH building process for a kd-tree recursively starts at a root node
corresponding to the entire virtual space. To find a good splitting position for the
introduction of children nodes, SAH considers the probability of a surface-ray inter-
section for all surfaces within either of two potential children nodes. For an uniform

Page 22 / 184

Integration of a Raytracing-Based Visualization Component

ray distribution, this probability is proportional to the surface area of contained tri-
angles. Intersection probabilities for two children nodes are weighted with heuristic
costs for a ray traversal of the entire respective child. The outcomes still depend
on the actual split position, but in sum represent the cost of a tree split at that
position. Consequently, an optimal splitting point is determined by minimizing the
sum of weighted intersection probabilities. This is possible with good performance
as any such split point is guaranteed to coincide with a primitive starting or ending
point. Thus only few points must to be considered. Finally, the optimal split is only
performed if another heuristic indicates that the cost for both children of the split
does not exceed the cost of the parent node.

Improvements on the SAH algorithm are named as well. For instance, one approach
replaces the surface area as a measure for probability with distribution sampling
at coarse tree levels. Other approaches perform the rebuild in parallel, and thus
achieve even further performance benefits. With such adaptions in place, SAH im-
plementations can handle the per-frame rebuild of smaller scenes with around 100.000
primitives at interactive framerates.

As an alternative to full SAH rebuilds on kd-trees, the work cites fuzzy kd-tree cal-
culations. Unlike the SAH strategy, fuzzy kd-trees do not allow for arbitrary object
animations. Instead, a set of predefined animations is used in an offline motion decom-
position process to calculate a universally fitting kd-tree representation. Within the
offline process, coherent parts of the animated object are recognized. For each such
part, the corresponding animation is separated into an arbitrary affine transformation
and a non-affine component. The former is used for the run-time transformation of
rays into a local space for each animation frame and object component. The latter
enlarges the boundings of each primitive for use in fuzzy kd-tree generation. Conse-
quently, affinely-transformed rays are tested against an optimization structure that
considers but non-affine movement of primitives. Thus, the resulting kd-tree can be
used in an interactive raytracer without any online rebuild.

While predefined animations at first seem like a harsh restriction, there are adaptions
that significantly loosen these. For instance, a fuzzy kd-tree can be calculated from
a skeletal mesh and then allows for arbitrary online bone animation without rebuild.

As a rather new contender to kd-trees, the survey names Bounding Volume
Hierarchies — BVH for short. These had originally been dismissed for offline raytrac-
ing due to their low intersection testing performance. However, BVHs are intuitively
updated on dynamic changes, thus currently reinvestigated for their use in interactive
raytracing.

Within bounding volume updates, leaf nodes of the bounding volume tree that contain
modified content are found. Any appropriate leaf nodes are adapted to match their
new primitive extensions. Bounding volumes are then updated from bottom to top
within the tree so that all parent nodes tightly fit around respective children nodes.
An early-out opportunity for an entire branch update is given once the bounding
volume of any higher-level node did not change due to lower-level modifications.
Consequently, most cases do not require a complete tree traversal.

Yet, even BVHs need a quick strategy for complete rebuilding. On the one hand, any
update of course requires an initial, optimal tree to work with. On the other hand,

Page 23 / 184

Integration of a Raytracing-Based Visualization Component

Figure 3.2: Even initially, ray traversal in bounding volume hierarchies may be
slow due to overlapping bounding boxes. These require additional node traversals
for rays within certain regions. An update from the left-hand side image to the
right-hand side image is intuitively performed by moving object boundings and
refitting parent nodes. However, there now is even more overlapping space. Thus,
tree structure and traversal performance further degrade.

the ray intersection performance of an updated BVH deteriorates over animation
time. Namely, while volumes are adapted, the structure of the tree is maintained.
However, the structure might more and more diverge from the optimum hierarchy for
the modified primitives.

Complete rebuilding strategies for bounding hierarchies match those for kd-trees with
but little adoptions. Most notably, the SAH approach applies to BVHs as well.

Figure 3.2 presents an example update on a bounding volume hierarchy.

As the last major category of algorithms for interactive raytracing, the general review
publication names grid-based approaches. Unlike previously investigated acceleration
structures, grids are non-adaptive, spatial subdivison schemes. Consequently, grids
only are suited for scenes with an even primitive density. Given any such scene, grids
outperform both kd-trees and bounding based hierarchies: Grids require about the
same time for complete rebuilds as updates for bounding volumes do, and incremen-
tal grid updates are even faster. At the same time, grids accelerate raytracing of
evenly distributed primitives by about the same amount as kd-trees do for arbitrary
geometry.

Advantages and disadvantages of grid acceleration structures are illustrated in figure
3.3.

Similar to both of the other approaches, grid-based algorithms allow for certain adop-
tions and improvements. For instance, grid rebuild can be performed by a rasterizer-
like parallel kernel, and grid traversal is easily improved by Bresenham-type line
drawing algorithms. Finally, the restriction on evenly distributed geometry can be
lifted at the cost of update and raytracing performance by the introduction of multi-
level adaptive grid hierarchies.

After recap of all three acceleration structures — kd-trees, BVHs, and grids — the
review comes to the conclusion that there is not a sole, optimal algorithm for interac-
tive raytracing. Instead, future raytracers will have to employ a variety of strategies,
depending on the exact type of scene contents: kd-trees for non-animated, detailed

Page 24 / 184

Integration of a Raytracing-Based Visualization Component

Figure 3.3: While the above grid structure holds a constant amount of evenly
distributed primitives over most grid cells, it cannot adapt to the high-detail
contents of one of the cells. Traversal performance thus is poor for this cell. On
side of benefits, rebuild and update are easily performed by reinserting primi-
tives into cells via fast lookup strategies. Actual traversal can be accelerated by
rasterizer-like methods — such as Bresenham’s line drawing algorithm.

geometry, grids for regularly spaced primitives, and bounding volume hierarchies for
animated geometry and the higher-level object tree.

In the following, this thesis elaborates certain noteworthy subordinate algorithms
referenced by the general review work in greater detail.

3.1.2 KD-trees

The kd-tree approach preferred by traditional offline raytracing is translated into an
interactive, GPU-based variant in [TF05].

Due to graphics hardware restrictions, the originally recursive tree traversal had to be
replaced by a stack-less iterative variant. This modification is possible since within
the standard algorithm all recursive calls appear as tail recursions.

The suggested adoption of the algorithm iteratively tests a ray against the kd-tree
in front-to-back order. Intersection tests are performed once the ray arrives at the
first previously untested leaf node. If the node is not hit, the ray starting point is
adapted to the point where the ray leaves the tested node, and traversal starts at the
tree root again. For a scene with n leaf nodes and a balanced kd-tree representation,
this variant implies a mean complexity of O(n) with an upper bound of O(n logn)
for rays that hit distant objects.

The worst case complexity is reduced by a further adoption to the kd-tree data
structure. If parent node pointers are kept inside each node, restart from the root
node after each miss can be replaced by tree ascend. The modified algorithm then
achieves an upper bound of O(logn), which matches the worst-case behavior of the
unmodified, traditional kd-tree traversal algorithm.

The GPU implementation associated with the publication is based on the little-known
general GPU programming front-end Brook [BR10] under development by Stanford

Page 25 / 184

Integration of a Raytracing-Based Visualization Component

University. Similar to more popular GPU programming languages, Brook employs the
concept of device-side kernels: small GPU-executed program fragments that perform
simple calculations on large-scale data with massive parallelism over all data element.

A series of Brook kernels is derived within the work, one for each step within the
modified kd-tree traversal algorithm. For instance, there is an intersection kernel
that iteratively calculates ray-primitive intersections within a single leaf node for
many rays in parallel. To allow for per-ray parallelism, the data elements that the
respective kernels work on are representations of each ray and the associated pixel
outcome. For further performance optimization, branching instructions are replaced
by masking operations.

Building of kd-trees is performed in an offline process on the CPU, dynamic scenes
are not supported. With optimal tree generation, the investigated approach achieves
almost interactive framerates on legacy graphics hardware with but small rendering
resolutions. The main performance bottleneck is identified as memory bandwidth
in combination with excess data-dependent and incoherent memory fetches. Com-
pared to a CPU-only realization, the work concludes that raytracing is not fit for
implementation on graphics boards yet.

The performance results of [TF05] are challenged in [DH07] by the development of
a new kd-tree traversal algorithm that adapts to specific hardware features of more
recent graphics hardware.

The reported performance gain is achieved by the move from multiple, CPU-controlled
raytracing kernels to a single GPU kernel invocation. This required the by-then novel
availability of branching and looping instructions on the GPU processor. Further
improvements include the realization of ray packets and the implementation of a small
fixed-size stack that is used instead of ascend or restart strategies for shallow trees.
Finally, the publication proposes the application of normal rasterization strategies
in place of primary camera rays. Raytracing is only applied to secondary rays for
shadow rendering and refraction simulation.

A performance evaluation concludes the presentation of the improved GPU-side kd-
tree raytracer. Compared to the original GPU implementation. framerate has been
increased by an order of magnitude to at most 20 frames per second for scenes with
up to 300.000 triangles. Thus, kd-trees are suited for static scenes within interactive
applications.

3.1.3 Bounding volume hierarchies

In [IW06b], detailed build, traversal, and update strategies for BVHs in deformable
scenes are elaborated. Deformable scenes — unlike completely dynamic scenes — do
not allow for arbitrary insertion or deletion of primitives. Instead, only the shape of
existing primitives is modified. This is sufficient for many applications, such as cloth
simulation or skeletal animation.

As its starting point, the publication describes a SAH method for building an axis-
aligned bounding box tree: The optimal split point for any node within the bounding
volume tree is derived by minimizing the split-induced cost on later traversal over
potential children sets S1 and S2.

Page 26 / 184

Integration of a Raytracing-Based Visualization Component

For axis-aligned bounding boxes, the respective cost heuristic for splitting a parent
node S into children S1 and S2 is cited as

T = 2TAABB +
A(S1)

A(S)
N(S1)Ttri +

A(S2)

A(S)
N(S2)Ttri,

where A is a surface area heuristic and N is the number of primitives in the respective
node. Ttri and TAABB express the relative estimated costs of per-triangle intersection
detection and coarse ray-box tests. In more illustrative terms, T is a weighted average
between the cost of the additional box test, and the cost from testing nodes in each
of the potential children.

To avoid unnecessary splitting, the cost-minimal split is only performed if T does not
exceed a cost estimate associated with the unsplit parent node.

The work names optimal selection of splitting sets S1 and S2 as a major difficulty
in tree generation for BVHs. Within SAH algorithms on kd-trees, there only are
O(n) potential split candidates, where n is the number of primitives in the later
parent node. In contrast, the number of potential split candidates within a bounding
volume node is bounded by O(2n). Therefore, the publication suggests the selection
of but few of these. While certain selection strategies have been discussed — such
as evenly aligned axis splits or centroid based approaches — the conclusion is drawn
that the actual candidate selection method does not significantly influence quality of
the later tree.

After introduction of the SAH-based tree building algorithm, the publication elab-
orates the optimization of ray traversal within a BVH. Since the axis-aligned box
intersection tests are rather expensive when compared to kd-tree plane intersection,
the paper suggests several strategies to minimize the implied costs.

A ray packet scheme is explained where bundles of four rays pass through the tree at
once. Low-level hardware SIMD instructions are applied to parallelize any necessary
per-ray tests. Early hit and early miss optimization are performed for the entire ray
group at once. Within the former, traversal descends into a node once the first ray
hits the bounding box. In the latter, a conservative bounding of the ray group is
tested against the bounding box, and recursion stops if the boundings do not overlap.
Finally, an approximate approach to front-to-back ordered traversal within a BVH is
detailed. Ordered descend allows for skipping certain expensive calculations on more
distant tree nodes.

Thereafter, the above build and traversal strategies are applied to deformable, dy-
namic scenes by the integration of an intuitive update algorithm. A post-order hier-
archy traversal is suggested where each node first updates both its children and then
rebuilds its own bounding box appropriately.

While such calculations are relatively fast for small scenes, the approach names two
potential problems: On the one hand, the update has O(n) complexity with scenes
of n primitives, and consequently is not suited for large scenes. On the other hand,
the BVH can degrade for certain types of animation — namely, when the initial tree
structure does not represent the new scene contents anymore.

The work concludes with a performance evaluation of the implemented strategies.
Tree build times for scenes with up to 200.000 triangles are reported just below five

Page 27 / 184

Integration of a Raytracing-Based Visualization Component

seconds. The resulting trees enable interactive, CPU-based raytracing of animated
scenes with around ten frames per second. The update of tree structures contributes
ten milliseconds, corresponding to around ten percent, of the total 100 milliseconds
calculation time per frame.

Further publications by the same author enhance the above basic strategies: [IW07a]
gives a strategy for complete, per-frame reconstruction of SAH hierarchies in the con-
text of bounding volume representations. The split point heuristic is adapted to pro-
vide better performance at the cost of tree quality and later raytracing speed. [IW08]
improves on the preceding algorithms by asynchronous processing within multiple
parallel threads. The final SAH reconstruction strategy is applied to the Intel MIC
(Many Integrated Core architecture) in [IW10].

Albeit the original publication proposes the selection of a good keyframe from any
given animation to build the initial bounding tree, there are more elaborate ap-
proaches. For instance, [DM06b] suggests a heuristic-triggered rebuild of subtrees
within the hierarchy. The respective rebuild heuristic compares the current ratio
of parent surface area to children surface area with the original ratio stored at tree
build time. Once the difference between these exceeds a certain threshold, the parent
node contains much empty space. Thus, it does not accurately represent its children
anymore, and a full rebuild is enforced.

[MS09] elaborates a BVH that incorporates both spatial and surface area heuristics
within tree building. This approach has been termed the SBVH algorithm — short-
hand for Split Bounding Volume Hierarchy. In particular, the work considers two
split candidates for each bounding volume: On the one hand an optimal splitting
candidate is determined as by the popular SAH strategy described above. On the
other hand, a clip-based binning technique is applied to derive a spatially motivated
split candidate.

The binning technique separates the bounding box of the parent node into regular
volumes (i.e. bins) by a set number of equidistant planes. Thereafter, the bounding
box of each primitive within the node is iteratively clipped into each of the bins.
Another area-based heuristic which considers all clipped bounding boxes in a given
bin is applied to determine the most cost-effective spatial split over all bin-delimiting
planes. Finally, axis aligned bounding boxes over all clipped primitive fragments on
either side of the optimal splitting plane are calculated as dimensions for potential
children nodes.

Both the SAH and the bin splitting heuristic have been designed to be compatible.
This allows to choose the candidate with smaller costs for the actual split. As pre-
viously detailed, the final split is only performed if the new children costs do not
improve over the cost of the parent node.

On evaluation of the proposed approach, the work states a framerate improvement
of an average 30 percent over pure SAH implementations, based on raytracing of
large-scale scenes with millions of triangles. No absolute figures are given.

An especially noteworthy performance increment has been observed on a testing scene
with greatly divergent level of detail: A densely tesselated, million-triangle statue is
placed within an environment made from but few, yet very regular triangles. In this
use case, pure SAH heuristics merge the environment and the statue within the top

Page 28 / 184

Integration of a Raytracing-Based Visualization Component

Figure 3.4: Morton codes are derived from bit-wise interleaving of integer-
rounded primitive positions. Sorting primitives by their respective morton codes
places neighboring primitives next to each other inside a linear array. Large
gaps within this sorting appear only at higher-level bit flips — such as for the
red primitives in the above example. After sorting, it is sufficient to build a tree
over the linear array to bundle close-by primitives.

levels of the entire tree, resulting in expensive ray traversal. In contrast, the combined
spatial and SAH-based approach clearly separates both geometries on the first tree
levels.

3.1.4 GPU-based bounding volume rebuilds

[CL09] derives a fast, GPU-based rebuilding strategy for BVHs, specifically aimed
at interactive raytracing of dynamic scenes. Unlike preceding approaches, animation
within dynamic scenes is not handled by fast updates, but by a full rebuild of the
hierarchy within each frame. This avoids degradation of the optimization structure
over the course of animation.

The rebuilding strategy described by the publication relies on the concept of Morton
codes. Given a point in 3D space, its Morton code is quickly constructed by bit-wise
interleaving of its coordinate components into a single integer representation. Most
notably, close-by points result in close-by Morton codes with but few exceptions.

Morton codes are applied to translate the problem of tree building to the problem
of sorting a linear array of integers. In particular, each primitive is approximated by
a single, integral point in 3D space, and the respective Morton code of this point is
inserted into a linear array alongside the primitive ID. The array of Morton codes
is sorted, consequently primitives with close-by positions end up within neighboring
array elements. This process is illustrated within figure 3.4.

Page 29 / 184

Integration of a Raytracing-Based Visualization Component

A tree structure over the entire sorted array is then intuitively built by recursively
dividing the array at each bit of the Morton code, up to primitive level. Thereafter,
bounding boxes are calculated in a bottom-up approach. Bounding boxes in general
provide a good fit, with the exception of few large boxes caused by 3D discontinuities
in between neighboring Morton codes.

Due to the linearization of tree construction, all similar strategies are categorized as
LBVH algorithms (Linear Bounding Volume Hierarchy).

The parallel implementation of Morton code-based tree generation on the GPU is
straightforward, and realized by but few device-side kernel calls. For all involved
sorting operations, the publication suggests a fast, parallel radix sort technique.

While fast rebuild times are observed for pure LBVHs, the work also names slow
traversal time as the most noteworthy disadvantage. Because Morton codes split
primitives based on their volumetric median, scenes with spatially varying detail are
handled especially poor. To counter these deficiencies, the publication proposes the
combination of both traditional SAH metrics and Morton codes. Morton codes are
used for higher levels of the tree, whereas surface area heuristics are applied on lower
levels for but few primitives.

Performance evaluation yields interactive rebuild and raytracing framerates both for
standalone Morton code, as well as for the hybrid Morton-SAH approach. Given
testing scenes between 50.000 and 1.5 million triangles, the former peaks at 10 frames
per second, while the later averages to 20 frames per second.

[JP10] improves on the hybrid Morton-SAH algorithm elaborated by the last publi-
cation. Both the GPU side kernel and the structure of the algorithm are optimized.
Most notably, only the first few bits of the Morton code representation are considered
for a first sorting pass. Once the high-level sorting pass has completed, a specialized
odd-even sorting kernel is applied to sort amongst the remaining Morton bits. All
modifications purportedly increase performance by a factor of four in comparison to
the original approach.

3.1.5 Memory coherence algorithms

Effects of higher-level memory coherency for interactive raytracing are discussed in
[DM06a]. As motivation, the work states that CPU performance alone is not sufficient
for interactive raytracing of large-scale scenes. Instead, memory bandwidth and disk
access performance are the limiting factors on current hardware. For instance, when
a mesh with billions of triangles is raytraced, each pixel maps to many triangles at
once. Thus, rays for neighboring pixels hit distant triangles which map to distant
memory locations. In turn, the hardware memory cache is incoherently accessed, and
slow caching operations regularly are required. Therefore, it is imperative to find an
optimal management strategy for ray-scene traversal that ensures coherent memory
access for intersection detection.

To achieve coherent memory access, the work proposes the extension of the standard
kd-tree raytracing acceleration structure with implicit level-of-detail representations.
At each kd-tree node, an additional plane is embedded that approximates the entire
contained geometry. If a certain node-specific metric in regards to the on-screen

Page 30 / 184

Integration of a Raytracing-Based Visualization Component

pixel error is met, incoming rays within tree traversal are then intersected with the
per-node plane instead of subordinate nodes and geometry. Consequently, a single
node potentially maps to multiple pixels and rays, and coherent memory access is
established.

The actual error metric considers two weighted criteria: The number of on-screen
pixels that a respective kd-tree node maps to, and the difference between the ap-
proximative plane and the primitives’ surface. The metric evaluation itself is not
explained in depth.

Offline construction of approximative planes is investigated as well. In particular,
principal component analysis is used to derive a matching plane for subordinate
primitives and node planes. These computations are applied hierarchically, thus
each original primitive is accessed exactly once. A special layout scheme is used for
resulting nodes to further improve cache coherency of the resulting data structure.

Finally, the work evaluates the presented solution: A performance improvement of at
most two orders of magnitude is gained at the cost of a preprocessing step for building
plane approximations. In respect to the performance benefits, the runtime penalty
of metric evaluations — which contributes 30 percent of the total raytracing time —
is considered acceptable. As a conclusion, two noteworthy disadvantages are named:
On the one hand, there currently is no strategy to fix any visual artifacts caused by
neighboring pixels from different level-of-detail representations. On the other hand,
the approach does not support deformable geometry.

[GS06a] provides a different view on memory coherency. Instead of caching effects
introduced by large-scale scenes, the work examines the caching effects introduced
by ray scattering. Given a low-detail scene with but few triangles, the effects of
cache misses are not observable on primary rays. Neighboring rays take similar paths
through the optimization structure, and often hit the same or close-by triangles.
Yet, even for coherent primary rays, secondary rays exhibit divergent behavior. For
instance, refraction rays that are spawned by neighboring camera rays usually trace
into vastly different directions.

Similar to [DM06a], the work suggests a level-of-detail approach to deal with the
problems of incoherent memory access. Instead of direct integration into the opti-
mization structure, level-of-detail representations are applied to entire objects at a
time. Visual artifacts caused by incontinuities in the object surface are thus avoided.
Artifacts are further reduced by run-time morphing between detail levels. Currently,
only procedural, patch-type surfaces are supported by the corresponding implemen-
tation. The support of arbitrary, locally varying level-of-detail surfaces — such as
required for large objects or scenes — and the integration of arbitrary objects are
named as the major focus of future research.

3.1.6 BSP-based optimization structure

Within [TI08], BSP trees are applied to interactive raytracing as a novel optimization
structure.

Unlike axis-aligned kd-trees, binary space partitioning trees allow for arbitrary place-
ment of separating nodes. In practice, this allows for a very tight fit of the bounding

Page 31 / 184

Integration of a Raytracing-Based Visualization Component

representation. Yet, BSP trees were commonly believed to be complicated to build,
slow to traverse, and numerically instable. Consequently, these had been ignored in
the development of raytracers for the past decades.

In contrast, the work shows that BSP trees are competitive with traditional kd-trees
even in interactive raytracing. Two aspects of BSP usage for raytracing are discussed:
Offline tree building and fast ray traversal.

The work achieves offline tree building by an approach similar to the SAH approach
of kd-trees. For each node, costs for children node traversal are estimated as implied
by certain splitting planes. An optimal splitting plane is found by minimization
of children traversal cost. The associated split is only performed if costs for both
children do not exceed estimated traversal costs for the current node itself.

All costs in the above process are based on weighted surface areas. Unlike the box-
bounded kd-tree nodes within the SAH algorithm, BSP nodes form convex polytopes.
Closed polytopes, instead of open half-spaces, are enforced by placing a bounding box
around the entire virtual scene. The surface area of each polytope face is used instead
of corresponding calculations in the SAH metric. Surface areas are iteratively refined
during the BSP build process to avoid complete recalculations on an entire complex
polytope.

In total, the expected splitting cost at any given split point is expressed by the metric

Cp =
SA(vl)

SA(vp)
cl Ci +

SA(vr)

SA(vp)
cr Ci + Ct.

Indices l and r are associated with the potential left-hand side and right-hand side
children nodes. The index p indicates the parent node. The SA function provides
the polytope-based surface area estimate. The variable c represents the count of
primitives on either side of the split. Constants Ci and Ct encapsulate the relative
costs of per-primitive intersection and node traversal.

Selection of splitting plane candidates for which to evaluate the above equation is
more complex for BSP trees than for SAH-based kd-trees. Within kd-trees, each
triangle primitive defines but six potential candidate for splitting a node. In contrast,
the number of split candidates for a node within a BSP tree is bounded by O(n3),
where n is the number of primitives contained in that node. To ensure practicability
the work suggests a strategy to select but few of these: Each triangle plane itself
is taken into account, as are the six candidates shared with kd-trees. Finally, three
planes constructed from the triangle normal and either of the triangle’s edges are
considered.

The work implements the above offline build process alongside an auxiliary bounding
value hierarchy for primitive counting in sub-quadratic complexity. The O(n logn)
build time of SAH-based kd-tree rebuilds is not achieved, as arbitrary split planes do
not allow for presorted triangles. Furthermore, improved build times have not been
the focus of the work. Consequently, resulting BSP tree building times are slower
than kd-tree building on the same scene by orders of magnitude.

The actual benefits are evident from the later interactive raytracing framerates. In
particular, the work cites framerate improvements of at most an order of magni-
tude when compared to traditional kd-trees: On the one hand, the generated BSP

Page 32 / 184

Integration of a Raytracing-Based Visualization Component

trees are better balanced than kd-trees, and less nodes need to be considered in any
ray traversal. On the other hand, explicit ray-primitive intersection tests may be
optimized with byproducts already generated during BSP traversal.

Finally, visual artifacts that arise due to numerical instabilities in between a triangle
and its respective BSP node are limited by an epsilon factor that is used both at BSP
build time and in later raytracing.

Thus the work relativized two of three common, negative claims on BSP trees.

3.1.7 Multi-frustum approach for soft shadows

[CB09] presents a fast, frustum-based algorithm for soft shadow calculation within an
interactive raytracer. The driving factor for this work was the improvement of visual
quality in competition to existing rasterization approaches. Namely, interactive ray-
tracers usually are limited to single shadow rays and thus to hard-edged shadows. In
contrast, rasterizers use various shadow mapping techniques to quickly approximate
soft shadows.

Preceding raytracing approaches simulated soft shadows by casting multiple, costly
rays per point and light. Packet-based techniques already improved on this by tracing
entire ray packets at a time instead of single rays. The investigated work provides a
further extension to packet-based approaches. In particular, packets — termed frusta
in context of this work — are grouped into a higher-level multi-frustum beam.

Coarse traversal for the multi-frustum beam is performed on a BVH composed of
axis-aligned bounding boxes. Culling is performed for the entire beam at once on
each traversed node: Either the entire beam does not hit the node bounding, or all
subordinate frusta and all contained rays have to be tested against subordinate nodes.

On primitive level, two different kind of optimizations are applied. On the one hand,
certain tests on primitives — such as back-face culling or edge tests — are performed
in parallel on all frusta. On the other hand, parallel, low-level hardware instructions
within intersection tests are utilized for all rays.

A single flag is carried alongside each subordinate frustum to indicate a previous
primitive intersection or any failed intersection tests. If raised, the flag disables fur-
ther intersection calculations for the respective frustum. This allows for compatibility
with certain low-level, massively parallel hardware designs. Within the work, this is
an adaption to Intel’s Larrabee architecture, but the same concept also applies to
GPU characteristics — for instance when compared with CUDA / OptiX thread
wraps in chapter 5.

On evaluation of the elaborated multi-frustum raytracing technique, the work states
a performance benefit of around half an order of magnitude when compared to tradi-
tional ray packing approaches. This gain is attributed to a reduction of bounding box
intersection tests to around five percent of those required by competing ray packing
strategies.

The work concludes that multi-frustum tracing is not only suited for soft shadows,
but any coherent raytracing task — including primary camera rays.

Page 33 / 184

Integration of a Raytracing-Based Visualization Component

3.1.8 Conclusion

From scientific review, it is evident that interactive raytracing is becoming more and
more feasible. Currently there is no one sole accepted interactive raytracing approach
— and probably there never will be one. Yet research already has developed a toolkit
of competing algorithms well suited for interactive raytracing of dynamic scenes.

However, even with a middleware platform that provides an appropriate algorithm
suite, potential application pitfalls remain: An appropriate optimization structure
must be chosen for various parts of the scene, restrictions in regards to dynamic
scenes must be adhered to, and coherency of emitted rays must be observed. All of
these aspects are considered in the later raytracer implementation within this thesis.

3.2 Middleware alternatives

The growing numbers of scientific publications indicate a general interest in interac-
tive raytracing. NVIDIA is not the only GPU manufacturer out there, and CPUs are
quite capable of raytracing on their own. Thus, there should be plenty of competing
middleware platforms for interactive raytracing. Sadly, however, there currently are
no alternatives to NVIDIA’s OptiX API readily available.

One potential alternative in form of a plug-in hardware card was developed by the
SaarCor project at the University of Saarland. As of this writing, development seems
to have halted, and the most recent publication of the research group on the OpenRT
project dates back to 2007 [WPe] .

These days, the computer graphics group at the University of Saarland still works
on interactive raytracing, but the concept of specific hardware has been replaced by
a GPU-oriented approach. A new, modular raytracing framework named GPURT
is currently under development. While official feature listings appear promising —
purported features match those of OptiX — there is no version available to the public
yet.

ATI and AMD, traditional market contenders of NVIDIA, do currently not offer
any similar API to OptiX. Their only contribution to interactive GPU raytracing
are several feasibility studies and videos that work on OpenCl-based, specialized
raytracing kernels.

IBM designed an interactive raytracing component by the name of alphaWorks. Yet,
this component is meant more for product visualization than for general raytracing
purposes. Most noteworthy, alphaWorks is restricted in use to proprietary IBM
cell processors — such as in the Playstation 3 or IBM’s Blade-type server systems.
Furthermore, there is but a standalone Linux scene viewer executable available to the
public. No source code is included, neither are animation features. Thus, integration
into the Simulator X environment is not possible.

Finally, Intel corporation, more a CPU than a GPU developer, integrated interac-
tive raytracing components into few ID software computer games. This aimed at
the demonstration of various interactive raytracing techniques. For instance one im-
plementation realized on-core interactive raytracing on a modern, many-core server

Page 34 / 184

Integration of a Raytracing-Based Visualization Component

CPU [DP09]. Another implementation achieved the same results by distributed ray-
tracing within a server cloud on a thin notebook client [DP10]. The corresponding
implementations are not available to the public, though.

As there are no middleware platform alternatives available, the only option for inter-
active raytracing on graphics hardware had been the development of an alternative
raytracing API from scratch. Yet, the common ground for GPU computing over all
GPU vendors is formed by the recently specified and still buggy [MR11] OpenCl GPU
programming language. The OpenCl approach consequently has been dismissed for
this thesis. A native, NVIDIA-specific CUDA implementation has been considered
as well, but was rejected for two reasons: For one, under consideration of the sheer
amount of recent scientific publications on interactive raytracing, this was deemed
more a research than an implementation task. Second, NVIDIA already provides a
proprietary, optimized raytracing kernel within the OptiX API, and there is no need
to reinvent the wheel.

In the overall context, the reason behind the focus on OptiX as the only solution
within this thesis becomes evident. However, even with OptiX, all is not well. Most
importantly, as OptiX is a proprietary solution, the resulting applications are fixed
on hardware from a single manufacturer. Furthermore, OptiX strives to be a general-
use raytracer instead of a raytracing-based renderer, which in turn leads to a rather
clumsy interface when used for rendering only. To counter these problems, an appro-
priate suggestion for upcoming implementation and research work in regards to API
alternatives is found in chapter 10.

3.3 Renderer architecture

Even though OptiX has been chosen as the implementing middleware API for the
raytracer component within Simulator X, it still needs several wrapping layers. Most
importantly, OptiX must be encapsulated in a standardized, OptiX-independent in-
terface front-end. This allows for the integration of multithreading support on the
one hand, and for later integration of alternative rendering platforms on the other
hand. Supported rendering platforms could both include rasterization and raytracing
based approaches.

In other words, a new, general renderer interface has to be designed. In this section,
several existing rendering systems are investigated as inspiration and motivation for
the new interface — both in terms of general architecture, as well as in terms of
multithreaded behavior.

3.3.1 Blender

Perhaps the most relevant case study for the implementation of a new rendering
kernel with both raytracer and rasterization support are conventional modeling and
rendering packages. In particular, these packages already provide a rasterizer for the
interactive WYSIWYG editor, and a raytracer for generation of high-quality final
images. Albeit the raytracer in general is not interactive, both rendering components
are fueled by the same background data structures. Thus there must be some sort
of concept for data sharing among them. Finally, most rendering packages allow for

Page 35 / 184

Integration of a Raytracing-Based Visualization Component

Figure 3.5: The Blender-internal rasterizer produces the left-hand side WYSI-
WYG preview of the middle raytraced image. The right-hand image [YF11] was
created by the interactive Blender game engine.

multithreaded rendering, and consequently need to consider threading guidelines in
their interface design.

Albeit most 3D rendering suites are commercial and thus do not provide public doc-
umentation for their internal design, there is one popular freeware package: The
Blender software suite [BL11a].

An aspect that makes Blender even more relevant is its integrated interactive game
engine, driven by the same rendering component as the WYSIWYG editor. Figure
3.5 illustrates the raytracing, rasterization, and game components within blender.

In terms of overall system architecture, the Blender system is centered around a
general-purpose scene graph. The structure of this scene graph closely follows the
needs of the main modeling component — apart from typical instancing or material
nodes, there also are nodes that store user preferences or tool settings. On a lower
level, each graph node is represented by a reference-counted data block. Data blocks
are arbitrarily linked within the final scene graph.

Both raytracing and traditional rasterization within Blender’s interactive rendering
component work on the modeling-oriented scene graph. This has particular implica-
tions for the game component. On the one hand, no rasterization-typical optimization
structures (portals or occluders) have been implemented. Instead, a CPU-based ray-
tracing process generates a low-resolution depth map that is used in a later rough
occlusion culling phase. On the other hand, the Python-scripted interface of the
Blender game engine maintains a rather hard relationship with the internal scene
graph — consequently, undesired coupling between unrelated components results. In
turn, development of the game component often lags behind that of other Blender
functions.

Separate from its general architecture, another relevant aspect in Blender is its mul-
tithreading functionality. Offline raytracing in blender is not particularly optimized
for performance and uses a basic tile-based parallelization scheme [BL11b]. While no
official statements exist on multithreading in the remaining codebase, including the
WYSIWYG rasterizer, experiments indicate that no extra OS-side worker threads are
spawned for complicated operations. The user interface even becomes unresponsive

Page 36 / 184

Integration of a Raytracing-Based Visualization Component

Figure 3.6: The above image was generated by the Ogre3D rendering engine.
Image courtesy of [OE11]

when working with many triangles, or hangs on resource loading. Thus, no further
insights are to be gained here.

3.3.2 Ogre3D

Unlike the raytracer-focused Blender system, the popular open source engine Ogre3D
[OE11] is specialized on pure rasterization-based rendering.

Most notable features include wide cross-platform support, a concise and easy to use
client-side interface, and a hard-coded lighting strategy with an integrated, customiz-
able shader system. Figure 3.6 provides an illustrative example of an Ogre3D-based
rendering.

One of the focus points within the development of the Ogre3D engine was its general
design and rendering API abstraction layer.

Within the Ogre3D engine, all major classes derive from a single root type, simu-
lating a Java-like class hierarchy. Base features — for example garbage collection or
container types — are implemented atop this hierarchy root.

On client-side, all of the engine’s functionality is accessible by abstract interface types.
For instance, an abstract RenderSystem class collaborates together with abstract
Texture and Model classes.

All abstract types are grouped into corresponding functionality modules such as scene
management or resource management. Implementations for the functionality modules
are connected by a plug-in-based strategy. To continue on the previous example, the
rendering system can easily be extended to support additional APIs by the integration
of a plug-in. Currently, there are back-ends for both the OpenGl platform and the
DirectX platform available.

In terms of general scene management, the Ogre3D engine employs a hard-coded,
unified scene graph system. This scene graph is directly exposed to client applications.
In turn, another application layer is required to abstract the rendering scene graph
from high-level application logics. In contrast to the rigorous client-side front-end,

Page 37 / 184

Integration of a Raytracing-Based Visualization Component

Figure 3.7: An overview over the general Ogre3D architecture. All classes derive
from a base root object. Client-side abstract interfaces are extended by plug-in
component implementations. Figure courtesy of [OE11].

the back-end of the scene graph module again is exchangeable. For example, there
are both octree and portal based modules available.

Figure 3.7 provides an illustrative example of certain functionality modules and plug-
ins within the Ogre3D engine.

The general feasibility and extendability of the abstract rendering API within Ogre3D
is demonstrated in [BS06a]. As proof of concept, this work develops an interactive,
GPU-based raytracing prototype for the Ogre3D engine from scratch. An early BVH-
based approach is integrated into a custom Ogre3D scene management plug-in. With
support for but affine transformations of entire objects, the BVH is entirely prebuilt
in an offline process. A corresponding GPU-side traversal algorithm that utilizes
NVIDIA’s legacy Cg programming language is integrated as a rendering module plug-
in. In total, the Ogre3D engine and the raytracer plug-in achieve almost interactive
framerates of up to ten frames per second at rather low resolutions.

In contrast to general extensibility concepts, the Ogre3D engine does not support
multithreading — neither by an internal rendering thread nor by multiple client-side
scene update threads. The only exception to this is an undocumented multithreaded
background resource loader that can be enabled by a compile time switch. Yet its
use is discouraged for stability reasons. The developer statement on multithreading
support hints at the complexities involved with retrofitting of thread safety into an
existing system as extensive as a 3D engine. The suggested approach for decoupling
client-side logics from rendering involves a separate rendering thread that communi-
cates with multiple client threads via a message-passing system. This strategy bears
similarities to the jVR renderer currently implemented within Simulator X. Further

Page 38 / 184

Integration of a Raytracing-Based Visualization Component

Figure 3.8: Even with but traditional rasterization, the Unreal Engine achieves
rich visual effects — such as reflections or realistic human skin and hair. How-
ever, this comes at the cost of a complicated, shader-based integration. Images
courtesy of [UE11].

discussion is provided in chapter 4.

3.3.3 Unreal Engine

In terms of released software titles and general popularity, the commercial Unreal
Engine [UE11] is the counterpart to the open-source Ogre3D engine.

Like the Ogre3D engine, the Unreal Engine intrinsically supports but rasterization.
Yet its proposed feature set is much more advanced in comparison to its open-source
competitor. Multiple dynamic and static lighting strategies are supported, as well
as a custom, graph-based shader editor. This is complemented by a wide array of
predefined rendering techniques, such as forward and deferred shading. Finally, cross-
platform compatibility for the Unreal Engine is not limited to personal computers, but
also includes handheld devices, entertainment consoles, and high-end mobile phones.

Figure 3.8 shows two example screenshots that utilize some of the above features.

As the Unreal Engine is a commercial product, little public documentation about its
internal structure is available. Apart from official feature lists, there only is a freely
available development kit that allows partial insights into the engine’s concepts.

Most of the application side logics within the Unreal Engine are written in a custom
scripting language. UnrealScript — as the language is called — merges features from
both C and Java to provide a high-level interface for virtual world control. The
language combines the concept of standalone entities with an intrinsic state system,
dynamic load balancing, and a multithreaded back-end interpreter. Thread safety is
not always maintained, certain race conditions and inconsistencies between objects are
allowed. Instead of a more intricate scene graph system, entities within UnrealScript
are managed in a flat object pool. All application logics are decoupled from the
rendering core by device-independent rendering representations that can be attached
to each entity.

The above architecture is further illustrated in figure 3.9.

Page 39 / 184

Integration of a Raytracing-Based Visualization Component

Figure 3.9: Within the Unreal Engine, multiple scripted entities are processed
in parallel with automated load distribution. State management is provided
as an intrinsic feature of the scripting language. There is no detailed public
documentation available for the rendering kernel itself.

As the actual rendering core is separated from the client-side script-able logics, no
definitive statement can be made about its multithreading capabilities. However,
the current online presentation by the developing company advertises the core as
inherently multithreaded in regards to various aspects of the entire rendering process
— such as occlusion culling or animation.

3.3.4 Conclusion

There are two conclusions that can be drawn from the investigation of existing sys-
tems:

First, there currently is not even one rendering kernel that was developed with sup-
port for both raytracing and rendering in mind. Existing systems favor but one of
the rendering algorithms. If both algorithms are to be supported, a general, API-
independent client-side interface is required. This interface must not expose imple-
mentation details — such as a raytracing tree structure or a rasterizer pipeline.

Second, freely available rendering engines in general do not provide any sort of so-
phisticated multithreading capabilities. This has multiple reasons. For instance, all
investigated software has grown over the years, starting at a time where multithread-
ing was simulated on a single core and thus gave no performance benefit. Therefore,
threading support was not included in the original design and cannot easily be inte-
grated into any complicated, existing system. Another reason might be the difficulty
in managing development of complex multithreaded systems — in particular for many
contributors in an open source environment. Consequently, a rendering system with
support for multithreading must consider thread safety in its initial design. Ap-
propriate safety rules should be lightweight and must be formulated explicitly and
concisely.

Both of these points will be addressed in development of the Simulator X render-
ing component: The component will provide a unified renderer interface for both
rasterizer and raytracer back-ends. Furthermore, the general renderer interface will
implement multithreading support, both on client-side and in terms of potential in-
ternal threads — with but few, short rules on thread safety.

Page 40 / 184

Integration of a Raytracing-Based Visualization Component

4 Simulation kernel

This chapter provides an overview over the Simulator X framework.

Simulator X was developed in a joint venture by the University of Bayreuth and the
Beuth University for Applied Sciences Berlin. It acts as a testing environment and
middleware platform for various architectural approaches to an intelligent, realtime
interactive system. Such systems are of particular relevance for the development of
virtual reality applications like computer games or scientific simulations.

The overview starts with the presentation of fundamental concepts within Simulator
X. The design metrics of coupling and cohesion are introduced, and a basic data and
object model for Simulator X is derived. Consequent sections discuss functional layers
within the simulator architecture. This includes the concept of state variables, the
message-based, event-driven communication scheme and the global world interface.
Finally, the existing rasterizer-based display component within Simulator X is studied
in depth.

Most of the descriptions herein are closely based on the research releases covering
Simulator X development, mainly [ML10], [ML11], and [DW10].

4.1 Fundamental concepts

The most fundamental goal of the Simulator X project is to provide a modern mid-
dleware platform for any kind of virtual reality software. This requires satisfying
a variety of requirements. The most important of these requirements is the imple-
mentation of an abstract, modular architecture. For one, a modular, well-defined
architecture encourages code reuse and extends the general life-time of any piece of
software. On the other hand, modularization eases the realization of additional re-
quirements - such as effortless, fine-grained parallelization, intuitive extendability or
painless integration of new components.

4.1.1 Coupling and cohesion

In Simulator X, a modular design is achieved both by minimizing coupling and by
maximizing cohesion within the system architecture. In this context, [ML10] defines

• coupling ”as the measure of the independence of relations between functional
units”, and

• cohesion ”as the measure of the semantic nature of relations between compo-
nents of a functional unit”.

In other words, minimized coupling refers to functional units that interface with but
few other units via small and unique interfaces. At the same time, maximized cohesion
indicates that a functional unit should contain a maximum number of components
that are closely related.

Page 41 / 184

Integration of a Raytracing-Based Visualization Component

As an example for these concepts, consider three traditional approaches to the sim-
ulation of logics and object relations within a virtual world: Scene graphs, event
systems, and entity models.

4.1.2 Scene graphs

The popular scene graph is a good example for a less than optimal system architecture
that violates the coupling and cohesion rules. In particular, a scene graph combines
all virtual objects into a single, abstract graph structure.

While a scene graph primarily contains hierarchical or spatial information, it also is
traversed for rendering, collision detection, sound playback, and simulation control
logics. Thus any graph traverser must pay attention to the types of objects it en-
counters. For example, the rendering traverser must ignore any objects that only
contribute sounds to the virtual environment. At the same time, objects within the
scene graph potentially are required provide a wide array of glue functionality, even
for functions that are not directly related to the actual object.

Consequently, the scene graph system generally tends to become a mess [TF10]. This
is an expression of its coupling and cohesion attributes: Scene graph coupling is high,
as it exposes all its separate functional components to all clients. At the same time,
cohesion is minimal, as each functional component (i.e. an object in the graph) may
be used for a wide area of distinct operations.

Cohesion and coupling within a scene graph is visualized in figure 4.1.

4.1.3 Event systems

From an architectural point of view, event systems can provide a vast improvement
on scene graphs. In an event system, objects do not directly collaborate by function
calls. Instead, notifications are sent to arbitrary receiver objects on certain occasions.

There is a wide range of implementations for such event systems. Simple systems
provide hard-coded event processing based on user-registered callback functions. In
contrast, there also are very flexible systems that allow for arbitrary customization
of the event dispatch mechanism — such as message passing schemes.

Depending on the actual implementation, event systems tend to improve functional
cohesion: Any object now contains all logics to handle various events that work with
the object’s state, and the state remains opaque to other objects. However, one
must also consider that this improvement comes at the price of reduced cohesion in
regards to overall functionality. For instance, the rendering code within an event-
based system might be implemented in a frame drawing event handler of each object
type — instead of a single shared rendering module.

Apart from improved cohesion, event systems also provide an opportunity to re-
duce coupling. Once more, the gain here is vastly implementation dependent: A
hard-coded dispatch scheme even increases coupling due to the hard links and order
requirements between separate objects. Yet, an event system that allows for flexi-
ble event routing establishes only mandatory object connections, and thus decreases
coupling.

Page 42 / 184

Integration of a Raytracing-Based Visualization Component

Figure 4.1: This example scene graph unites rendering, AI, audio, and logics func-
tionalities in a single hierarchical structure. Any functionality-specific traverser
within this graph potentially has to be aware of all object types. For instance,
a rendering traverser must be able to navigate past the AI brain controller and
the car logics representation to get to the actual geometry.

Figure 4.2 shows the coupling and cohesion implications of an event system architec-
ture.

4.1.4 Entity models

Entity models provide even better coupling and cohesion attributes than event sys-
tems.

Within an entity model, an entity represents the smallest logical object. However,
simulation functionality — such as rendering, collision detection, or AI — and the as-
sociated simulation states are not directly integrated into the entity object. Instead,
all simulation functions and simulation states are outsourced to specific functionality
modules. The entity then links to various states within various modules. Commu-
nication with the modules and contained states triggers module functionality and
provides state change notifications. The functionality modules, in turn, are free to
choose an arbitrary interface for encapsulated states, and thus hide the function im-
plementation from the entity.

In other words, an entity within the entity model is a general, abstract logics controller
that remotely controls functionality-specific representations of itself that separately
are held within functionality modules.

In this context, note that multiple states may be shared by each entity, and there may
be arbitrary links in between both entities and representations within each subsystem.

Page 43 / 184

Integration of a Raytracing-Based Visualization Component

Figure 4.2: In this rather hard-coded event system, each object is a composition
of all required states from various functionality types — rendering, AI, and audio.
Thus, general cohesion is better than for pure scene graphs, while functional
cohesion still is not achieved. Event handlers are registered on each object,
and remotely triggered on adapt occasions. If used correctly, event handlers
only induce dependencies where these are required for functionality, and thus
decrease coupling.

Only relations between state representations from different functionality subsystems
are forbidden to avoid coupling.

Entity models offer a similar abstraction of object relations as event systems. How-
ever, the additional gain in cohesion comes from the outsourcing of state and func-
tionality into function-specific modules. Coupling is reduced by the intermediate
entity instances that replace any direct communication in between modules.

For example, within a computer racing game, there might be a car entity that repre-
sents an abstract, logical car concept. For rendering, the car entity holds a reference
to a car geometry object within the rendering module. For audio output, the entity
links to an engine sound object within the audio module. Finally, collision detec-
tion is delegated to a special box-shaped collider object within the physics module.
This keeps the actual entity free from non-logics related functionality. At the same
time all related functions and states over the car entity and any additional entities
are grouped within each functionality module. This example for an entity model
architecture is visualized in figure 4.3.

Even though entity systems have been compared to event-based architectures, these
are not exclusive strategies. In contrast, it even is possible to merge both approaches
into a single unified data and object model: Entities reference separate functional

Page 44 / 184

Integration of a Raytracing-Based Visualization Component

Figure 4.3: Within the above entity model architecture, the car entity references
functionality-specific state representation within rendering (geometry mesh), col-
lision detection (reduced bounding boxes), and audio (engine sound instance).
Thus, maximal function-based cohesion is achieved within each functionality
module. At the same time, minimum coupling is realized by the intermediate
entity objects. Colored dots visualize any additional entities, state representa-
tions, and their relations.

states, and any communication in-between entities and states is managed by an event-
driven message passing realization.

This allows for exploitation of coupling and cohesion benefits from both system ar-
chitectures. Consequentially, a combined entity model and event system approach
was chosen for the Simulator X platform.

4.2 Architecture overview

As previously derived, Simulator X is based on a fundamental entity model with
an integrated event handling system to achieve maximized cohesion with minimal
coupling. The following sections discuss the integration of both strategies within
Simulator X and their embedding in the large-scale, layer-based system architecture.

In general, the architecture of Simulator X consists of separate functionality layers:
A high-level world interface layer acts as a client-side entry point into the Simula-
tor X platform. Functional components communicate within the world interface by
the event system layer. Relations between those components are represented by a
symbolic binding layer. The Simulator X actor system is implemented on a lower
level than preceding functionality modules. Entities are connected to the remaining

Page 45 / 184

Integration of a Raytracing-Based Visualization Component

Figure 4.4: An overview over the architectural layers within Simulator X. Image
courtesy of [ML11].

platform by symbolic binding. Their state contents are further made accessible by a
messaging-based state observation system.

Figure 4.4 depicts the above architectural layers and their dependencies within Sim-
ulator X.

The remaining section follows a bottom-up discussion of Simulator X layers in two
steps: In the first step, the realization of an actor model and an entity model in terms
of the Simulator X environment is discussed. In the later second step, the higher-level
world interface and component structure are reviewed.

4.2.1 Actors, entities, and state variables

The root concept for distributed processing within Simulator X is founded on the ac-
tor paradigm. In the actor paradigm, program execution is distributed over a series of
independent actor components. Within the Simulator X realization, each actor typ-
ically represents a single thread of execution. There is no globally available, shared
application state representation — such as a global scene graph. Instead, each actor
stores a local state copy of its own. This allows for intuitive, conflict-free synchroniza-
tion between multiple actors. Synchronization of states and general communication
in-between actors is implemented by asynchronous message transfer. In other words,
actor communication is realized by an adaption of the precedingly described event
systems. Finally, Simulator X allows for lightweight actor components: Actors may
be created or destroyed at any time without harsh performance breakdowns.

The local application states within each Simulator X actor implement the entity
model. The lowest-level building blocks within the entity model are formed by state
variables. A state variable in general stores an arbitrary value. However, this value
physically resides in but one actor. If other actors require access to a variable, they
insert a respective variable reference into their local state. In turn, the message-based
synchronization scheme automatically retrieves the value of a reference-typed state
variable from its respective owning actor. Consequentially, the Simulator X entity
model hides the internal details of message passing from client applications. This
view on state variables is represented in figure 4.5.

Page 46 / 184

Integration of a Raytracing-Based Visualization Component

Figure 4.5: A single, global state variable is accessed by multiple independent,
threaded actors. One of the actors owns the actual value instance of the state
variable. All others work but on transparent references. Image courtesy of
[ML11].

Figure 4.6: An entity combines multiple state variables that are housed within
different actors. Each state variable within an entity is associated with a property
to bind further semantic information. Image courtesy of [ML11].

Entities provide a further abstraction layer atop the state variable concept. Each
entity bundles a series of logically related state variables into a single collection. Still,
each of the state variables within an entity in this context may be owned by another
actor — respective a functional component in terms of the conceptual entity model
introduction. Further functionality-based grouping collects state variables within an
entity that are owned by the same actor or functionality component. The resulting
groups have been termed aspects, and completely describe a single functional facet
of an entity.

Apart from bundling and grouping state variables, an entity also associates each of
its encapsuled variables with a descriptive property. Each property in turn defines an
abstract semantic symbol for the respective state variable. Semantic symbols specify
the semantics and use of a single state variable within global application context.

Figure 4.6 provides an example for an entity and contained state variables and prop-
erties.

In regards to more formal architectural criteria, the concept of standalone, indepen-
dent actors with distributed state variables and grouping entities emphasizes func-
tional cohesion and data decoupling: On the one hand, each actor realizes an exactly
specified functionality and owns but state relevant for its function — consequentially,
cohesion is maximized. On the other hand, each actor has an unique representation

Page 47 / 184

Integration of a Raytracing-Based Visualization Component

of each entity and each variable. In turn, no direct access to data from other actors
is required, hence coupling is reduced.

4.2.2 World interface, events and components

For intuitive use in client applications and for the connection of components, the
world interface defines a configurable, event-based abstraction layer over entities and
state variables.

In particular, the world interface offers four major operation types: At first, a con-
figuration operation specifies a set of relevant general events and allowed actions.
Thereafter, the world interface performs notification operations to signal relevant
events. Likewise, execution operations are invoked to process any allowed actions
on state variables. Finally, the world interface provides an operation that explicitly
queries the value of any state variable.

Within the above, the concept of custom event selection has been introduced. Event
selection allows an application or component programmer to define a certain subset
of interesting state data that is required in higher-level application logics. Client-
side configurable events are a rather novel concept. In comparison, existing systems
only propagate fixed event types in between functionality subsystems and the main
application.

Within Simulator X, events further decompose into two separate groups: Generic
events and value-change events.

Generic events convey general information that need not necessarily be coupled with
a modification to any state variable. Here, the world interface acts as a mediator
between potential event senders and receivers: Each sender and receiver registers its
respective event types with the world interface. Matching sender and receiver pairs
are then automatically connected by the world interface, and consequently switch to
direct peer-to-peer communication.

Unlike generic events, value-change events directly signal changes in state variables.
Such messages are generated by the world interface itself, and contain a reference to
the modified state variable alongside a copy of the current variable value. This gives
non-owning actors the opportunity to update local state appropriately.

As the last relevant facet of the Simulator X architecture, high-level components de-
fine functional application modules that encapsulate a series of related actors. Com-
ponents are characterized by adding a single aspect type — a single group of state
variables — to certain entities. At the time of this writing, there are components that
handle rendering, audio output, physics simulation, AI, and various input devices.

4.3 Existing rasterization module

In this section, the existing jVR rasterization component is investigated. Its general
Java-side architecture is discussed in greater depth. Thereafter, particular attention is
placed upon the interface that the rendering component establishes in communication
with the remaining Simulator X framework.

Page 48 / 184

Integration of a Raytracing-Based Visualization Component

Figure 4.7: A high-level overview over the jVR rendering and threading concept.
Figure courtesy of [MR10].

4.3.1 Java-side architecture

The Java-based renderer jVR originally has been designed in terms of a Master thesis
[MR10] as an intuitive alternative to existing C++ engines for use within study
courses at the Beuth Hochschule fuer Technik Berlin.

The basic Java-side architecture of jVR is centered around two concepts: Scene graphs
and rendering pipelines. The former define the virtual scene — materials, light sources
or geometries. The latter contain a series of rendering commands for later processing.
This allows for the application of various standard rasterization techniques. For
example, deferred shading and forward shading can both be realized with the same
scene graph and rendering back-end by exchanging the pipeline setup.

The architecture further allots for a single-threaded client-side main loop that triggers
the accumulation of a rendering pipeline. Thus, the main rendering loop is restricted
to but a single scene graph user.

Yet, there still are separate back-end rendering threads. In particular, one such thread
is spawned for each output window. The main thread passes any complete rendering
pipeline to a corresponding rendering thread for final processing. This decouples any
rendering calculations from main logics. In turn, interruptions in application logics
due to excessive frame rendering times are avoided.

Figure 4.7 provides an illustrative overview over the entire jVR client-side rendering
and threading concept.

4.3.2 Simulator integration

Within the Simulator X project, the Java-based jVR renderer is integrated in terms
of two separate actors: JVRRenderActor and JVRConnector

The JVRRenderActor corresponds to a single jVR main thread and several attached
target windows. It is responsible for translation of Simulator X entities and state

Page 49 / 184

Integration of a Raytracing-Based Visualization Component

variables to corresponding jVR scene graph representations. To allow for various
application scenarios, a rendering pipeline can be constructed by an external, plug-
able pipeline provider. If no explicit pipeline is given, a default pipeline setup is
applied.

The JVRConnector abstracts over multiple JVRRenderActors, and provides a unified
client-side interface. In particular, incoming state variable and entity notifications,
as well as general rendering control messages are passed on to all referenced render-
ing actors. The JVRConnector also provides the main entry point into client-side
rendering: A special configuration message creates a series of ready-to-use rendering
actors, and defines initial display parameters.

In a system-wide context, both actors are controlled by means of two main Simulator
X concepts, the event system and the entity model.

On the one hand, there are few general graphics-related events — such as a message for
rendering a new frame. These are triggered by client applications whenever necessary,
and thereafter are processed by the rendering actors.

On the other hand, any scene management is performed by the concept of actor-local
entities. To be specific, a new graphics-based aspect is attached to each renderable
entity in the simulator. State variables that control the client-relevant part of the
object’s visual representation are encapsulated within the graphics aspect. Each
entity in turn is sent on to the rendering actors by Simulator X mechanisms. These
create entity copies with state variable references inside their local application state.
Thereafter, the rendering actors map their entity copies to jVR-internal scene graph
components and initialize these from state variables. Finally, the resulting scene
graph is processed on the next incoming rendering event.

Apart from general event and entity facilities, the current architecture does not further
abstract over the use of the jVR rendering actors.

Most notably, the graphics aspect defined in each entity still is quite specific to the
jVR rendering actors. For instance, the following Scala excerpt defines the graphics
aspect from a fireball-typed entity within a framework example application:

p r i v a t e de f d e s c r i p t i o n (pos : Vec3f , name : S t r ing) =
new Ent i tyDesc r ip t i on (
EntityAspect (Symbols . graphics , new TypedCreateParamSet (

SemanticSymbols . a spec t s . shapeFromFile ,
JVR. geometryFi le <= ” f i r e b a l l −model . dae” ,
JVR. i n i t i a l P o s i t i o n <=

ConstMat4f (Mat3x4f . t r a n s l a t e (pos)) ,
JVR. s c a l e <= ConstMat4f (Mat3x4f . s c a l e (1 f)) ,
JVR. shaderProgram <=

(”AMBIENT” , ”phong . vs ” , ” f i r e b a l l . f s ”)) ,
Ontology . trans form i sRequ i r ed) ,
/∗ . . . ∗/

Here, even general attributes like geometry or transforms are defined in a JVR-specific
representation.

Page 50 / 184

Integration of a Raytracing-Based Visualization Component

Furthermore, certain parts of client-specific code — such as management of a certain
type of on-screen user interface — are directly realized within the general rendering
component.

While the basic state variable and message-passing architecture achieves reduced func-
tional coupling, the direct communication with a specific rendering implementation
again induces coupling on semantic level. Semantic coupling against a functionality
module has several disadvantages, such as in this case disallowing for the intuitive
exchange of the rendering component. Consequently, this design inconsistency will
be revisited in chapter 8 alongside the integration of the new raytracer component
into the Simulator X platform.

Page 51 / 184

Integration of a Raytracing-Based Visualization Component

5 OptiX platform

The following chapter gives a tour over the API of the NVIDIA OptiX raytracing
engine and the underlying CUDA platform.

As mentioned in the introduction, OptiX is a raytracing wrapper built atop CUDA,
NVIDIA’s graphics hardware programming platform. As such, at least a basic un-
derstanding of CUDA is required to comprehend the later OptiX code.

Consequently, the section starts off with a short CUDA introduction. The custom
CUDA language for programming of the graphics hardware as well as the associated
high level language bindings are detailed. Finally, the required compilation process
is presented.

Then, the actual OptiX rendering process is investigated. This includes information
on API functionality as well as an overview of the programmable components within
OptiX and the background optimization hierarchy used for ray intersection tests.

The chapter ends with a small example raytracing application binds together the
previously described steps and operations on the CUDA and OptiX platforms.

In respect to bibliographic references, most of this chapter is based on the OptiX
programming guide [NV11a] and the accompanying quickstart guide [NV10]. An
in-depth CUDA programming guide is found in the respective manual [NV11c]. A
more compact editing of the CUDA manual that is particularly suited for beginners
is available in [TW08]. Further references are cited where appropriate.

5.1 CUDA overview

As described in the introductory chapter, ever increasing performance of graphics
hardware motivated its use for general computations.

In the absence of any programming interface suited for general computations, first
experiments abused pixel and vertex shaders alongside the respective programming
languages to perform the actual calculations. Input data had to be wrapped into
textures, and output data was generated within the framebuffer of the graphics hard-
ware. As such, it was for instance possible to perform a fast multiplication of two
large matrices by combining two textured quads in the framebuffer by means of a
pixel shader [AM03].

NVIDIA tried to accommodate the GPGPU trend by developing a language and a
high-level API specifically tailored to the requirements of general calculations on
graphics hardware. The resulting platform was called Compute Unified Device
Architecture, or CUDA for short.

In analogy to the original graphics APIs, the CUDA platform differentiates between
the host (i.e. the CPU and main memory) and the device (i.e. the GPU and graphics
on-board memory).

An overview over the entire GPU-augmented calculation process using CUDA is as
follows:

Page 52 / 184

Integration of a Raytracing-Based Visualization Component

1. A CUDA program for execution on graphics hardware — termed compute kernel
or kernel for short — is written in the CUDA language.

2. The kernel is compiled with the NVIDIA-specific compiler nvcc.

3. A host program written in a high-level language such as C++ copies input data
from host memory to device memory using a CUDA API call.

4. Execution of the CUDA program is triggered on the device from within host
application code, again using a CUDA API call, or alternatively a CUDA-
specific language extensions.

5. After kernel execution has finished, the results must be copied back from device
memory to main memory before further use, once more using a CUDA API call
within the host application.

5.1.1 Parallelism on graphics hardware

The actual performance improvement over CPU computations comes from the high
amount of parallelism supported on graphics hardware. Each CUDA kernel execution
spawns a high number of worker threads on the graphics hardware. Current graphics
hardware designed for general computation, such as NVIDIA’s Tesla series GPUs,
sports as many as 1000 independent thread processors that work in parallel.

Of course, an intuitive concept is required to allow for effortless management of that
many threads. In CUDA, thread management follows several separate guidelines:

First, all threads within a CUDA program start at the same device-side entry point
function. Program execution does not end before all threads have finished execution
of that function. As a short preview on the next chapter, the entire OptiX raytracing
process is encapsulated into a single such entry point.

Then, the user usually does not have direct control over thread count or thread
scheduling. In particular, the user does not specify the actual number of threads
to spawn. Instead, the user defines but an abstract thread grid that typically cor-
responds to the problem dimension. CUDA internally manages its thread pool and
distributes threads on this workload as required. During processing, it is only guar-
anteed that a single GPU thread runs through the main entry point function for each
problem grid cell. For instance, when working on a very large bitmap, the problem
grid holds a single thread for each pixel. This gives several orders of magnitude more
logical threads than natively available on the GPU. However, the hardware only pro-
cesses as many of these at once as possible. Figure 5.1 gives an overview over thread
grids.

Next, all threads in the problem grid are grouped into warps. A warp contains but a
small number of consecutive threads, typically around 16 threads. Due to hardware
restrictions, all threads within a warp must carry out the same processor instruction
in each processing cycle. The only workaround here is that output of certain warp
threads can be deactivated momentarily. This indicates a typical bottleneck within
CUDA device code: If only part of a warp enters a conditional if-else clause, both code
paths need to be run through with all threads of the warp in sequential order. This

Page 53 / 184

Integration of a Raytracing-Based Visualization Component

Figure 5.1: Distribution of threads into a problem grid. Threads are grouped
into blocks, and blocks are grouped to form the final grid. Figure courtesy of
NVIDIA, [NV11c].

Figure 5.2: Albeit only half of the provided threads within a warp enter each
path of the branch if equal beq instruction, the entire warp needs to process
both branches sequentially.

problem is visualized in figure 5.2. Thus, it is important to optimize all conditional
clauses for local coherence.

Finally, it is the user’s responsibility to avoid any write conflicts caused by concurrent
threads. Within CUDA, this is supported by certain atomic operations. However, to
allow for maximum throughput, all these operations are rather simple. For instance, it

Page 54 / 184

Integration of a Raytracing-Based Visualization Component

g l o b a l void vectorAddDevice
(const f l o a t ∗ va , const f l o a t ∗ vb , f l o a t ∗ out)

{
i n t index = blockIdx . x ∗ blockDim . x + threadIdx . x ;
out [index] = va [index] + vb [index] ;

}

Figure 5.3: An example, GPU-executed CUDA function that performs per-
component parallel vector addition on va and vb and stores the result in out.
The global keyword indicates an entry point into a GPU kernel. The per-
thread global variables blockIdx and blockDim provide thread and block indices
within the thread grid. The method vectorAddDevice is automatically called
once for each thread in the logical thread grid. The dimensions of the grid in
turn corresponds to the size of the input vector.

is only possible to synchronize all threads at once via a device code barrier. As thread
scheduling is entirely managed on GPU-side, no other synchronization is available.

5.1.2 Language and API

Unlike custom graphics shader languages, the CUDA language for GPU programming
was originally aimed at scientists in numerics. As C to this day remains one of the
most-used and most-supported language for numerics, CUDA was based on C to allow
for intuitive user adoption. For instance, most standard C libraries (such as math.h)
are available, and certain functions (e.g. sin() or log()) are optimized by GPU-side
intrinsics. For improved usability, a select few C++ concepts — such as classes or
namespaces — also found their way into the CUDA language.

Yet, certain restrictions and features for graphics hardware control have been added
to CUDA that exceed both C and C++. For example, there are global variables
with the index of the current thread within the owning thread block. These allow
GPU code to identify the workload that the current thread should process. Additional
keywords have been introduced to designate entry point methods or register variables.

A small example program for per-component parallel vector addition written in the
CUDA language is given in figure 5.3.

For triggering CUDA processing and graphics hardware communication from within a
high-level language, CUDA contains a library of C-style functions. As an example, the
C function cudaMalloc allocates memory on the graphics device, much like standard
C malloc allocates memory on the CPU host.

Additionally, extensions to the C and C++ languages that simplify certain tasks are
provided via a preprocessor front-end in nvcc. In particular, a series of boilerplate C
statements are required to execute a GPU kernel: The thread grid must be initialized,
the kernel entry point has to be located, and the host application must wait for
kernel success. However, CUDA also provides a one-line kernel starting point via a

Page 55 / 184

Integration of a Raytracing-Based Visualization Component

h o s t void vectorAddHost
(const f l o a t ∗ va , const f l o a t ∗ vb , f l o a t ∗ out , i n t dim)

{
f l o a t ∗vadevice , ∗vbdevice , ∗ outdev i ce ;
i n t s i z e = s i z e o f (f l o a t) ∗ dim ;

// A l l o ca t e on−dev i ce memory
cudaMalloc ((void ∗∗)& vadevice , s i z e) ;
cudaMalloc ((void ∗∗)& vbdevice , s i z e) ;
cudaMalloc ((void ∗∗)& outdevice , s i z e) ;

// Copy input v e c to r s to dev i c e
cudaMemcpy(vadevice , va , s i z e , cudaMemcpyHostToDevice) ;
cudaMemcpy(vbdevice , vb , s i z e , cudaMemcpyHostToDevice) ;

// Execute our ke rne l and wait f o r s u c c e s s
dim3 dimblock (1 2 8) ;
dim3 dimgrid (dim / dimblock . x) ;
vectorAddDevice<<<dimgrid , dimblock>>>

(vadevice , vbdevice , outdev i ce) ;

// Copy r e s u l t back to host memory
cudaMemcpy(out , outdevice , s i z e , cudaMemcpyDeviceToHost) ;

// Clean up device−s i d e memory
cudaFree (vadev ice) ;
cudaFree (vbdevice) ;
cudaFree (outdev i ce) ;

}

Figure 5.4: Before calling the CUDA vector addition from figure 5.3, the vectors
first need to be copied from host memory onto the GPU device via C functions
provided by the CUDA API. The GPU kernel then is executed by a CUDA lan-
guage extension (triple brackets), and the result is copied back to main memory.

C language extension: Triple pointy braces are used to indicate a device kernel call,
appropriate grid extents are intuitively passed in as template-like parameters.

Both the CUDA C API and language extensions are shown in listing 5.4.

5.1.3 Compilation

A custom compiler is required to translate the CUDA language itself and any CUDA
extensions in high-level code into an executable binary. NVIDIA provides two alter-
natives to approach this task, both based on the nvcc compiler toolchain shown in
figure 5.5.

On the one hand, nvcc is able to completely handle an entire application. NVIDIA

Page 56 / 184

Integration of a Raytracing-Based Visualization Component

Figure 5.5: CUDA compilation process: NVCC and a host compiler cooperate
to process extended high-level sources. CUDA-specific sources are compiled to
either standalone or embedded PTX assembly files.

extensions in high language sources are replaced by appropriate CUDA API calls, and
the resulting standard-compliant sources are automatically sent to some other com-
piler for the host machine. For instance, nvcc collaborates with the GNU Compiler
Suite under Linux, or with Visual Studio under Windows. In the same process, nvcc
compiles CUDA files and CUDA language sections within other sources into device-
independent assembly code. The resulting assembly is stored in human-readable text
files, also termed PTX files. PTX here is shorthand for Parallel Thread Execution
assembly language. The PTX files themselves in turn are embedded into the applica-
tion binary. At application startup, the PTX files then automatically are extracted
from the executable and recompiled for the current graphics hardware by the graphics
driver software.

On the other hand, nvcc directly can compile any CUDA language file into a device
independent assembler listing in the PTX text format. Applications can manually
load such files at runtime, then manually recompile them for the current GPU de-
vice, and finally execute the resulting hardware kernel. In this context, one should
especially take note that certain comfort functions within the CUDA API are only
available if used alongside the language extensions.

The latter use case of runtime-compiled CUDA code is rather atypical and sparsely
documented. Yet, this approach is required to extend the OptiX raytracer with
programmable components (e.g. procedural materials) at runtime without an entire
host program recompilation.

Page 57 / 184

Integration of a Raytracing-Based Visualization Component

This concludes the overview over the fundamental CUDA platform.

5.2 OptiX overview

The OptiX raytracing engine provides another convenience layer atop the previously
detailed CUDA platform: A series of exchangeable, CUDA-programmable compo-
nents works together with GPU control logics pre-implemented within OptiX to per-
form raytracing operations. An opaque OptiX-internal optimization structure is used
alongside a client-side scene hierarchy to further increase raytracing performance.

In the following, an overview over the high-level code flow required for raytracing
with the OptiX platform is presented, both on CPU and on GPU side. Consequent
sections explain the programmable components within the raytracing process and
scene management facilities in depth. Finally, the OptiX API itself and its native
multithreading capabilities are discussed from an implementation point of view.

5.2.1 High-level code flow

Raytracing with the OptiX API generally requires a series of high-level steps: At
first, programmable components need to be created and compiled, separate from
the remaining raytracing process. Within the actual application, the first task is
the creation of an OptiX program context. Thereafter, OptiX must appropriately
be initialized by loading programmable components and by sending scene data and
global variables to the hardware. Only then does GPU-side raytracing begin.

The above host-side raytracing process is detailed in the following:

1. Create and pre-compile programmable components

In a standalone step, code for programmable components of the raytracing
process is written in the CUDA language and compiled to device-independent
PTX text files with the nvcc compiler. Programmable components include ray
generation programs or ray-triangle intersection handlers, and are described in
depth in 5.2.2.

2. Create OptiX context

Within actual application code, an OptiX context is created via a call to the
OptiX API. This context provides the high-level entry point into raytracing,
and acts as a handle for all further operations.

3. Load and recompile programmable components

Previously generated programmable components are read from PTX files into
an in-memory text representation, and compiled to device-specific GPU code
with either the CUDA or the OptiX API.

4. Initialize scene

The client application encapsulates all scene objects into an OptiX-internal,
GPU-side scene hierarchy to include these into intersection tests.

Page 58 / 184

Integration of a Raytracing-Based Visualization Component

Small-scale, object-specific input data is attached to scene objects in form of
device-side variables. Any associated large-scale data is copied into device-side
memory buffers. Data in this context refers either to traditional vertex and
triangle indices, camera and light positions, or to any other custom data.

Certain programmable components, for example material programs or intersec-
tion tests for custom object data, are directly connected to the corresponding
OptiX scene objects as well.

Finally, the scene objects hold the OptiX-internal background optimization
structure required for efficient raytracing.

All OptiX-internal scene facilities are investigated in detail in 5.2.4. Large-
scale object data management is reviewed in 5.2.6, and 5.2.7 provides in-depth
information about global variables.

5. Initialize global parameters

Global programmable components, such as the ray generation program, are
attached to the OptiX context. Likewise, certain global input variables for the
later raytracing operation — e.g. the current window size or the starting node
within the client-side scene hierarchy — are directly set on the OptiX context.

6. Execute GPU raytracing

Once initialization has finished, the application starts the OptiX raytracing
process. Exactly as with a CUDA kernel execution, the client specifies a grid
of threads to determine parallelism here. Typically, there is one thread per
pixel of the output image. Then, the GPU-side raytracing process starts with
the initial ray generation program for each such thread. The GPU process is
described in detail just below.

7. Show resulting image

Currently, OptiX cannot directly render into any output window. Thus, ray-
tracing results must be rendered into any device-memory buffer. Results then
are shown using an alternative API such as OpenGl or SDL.

8. Repeat as required

Once raytracing has finished, interactive raytracing applications iteratively
modify the OptiX-side scene and re-render to display any modifications on
screen.

One should note the similarities to the fundamental CUDA calculation process here:
In CUDA, input data is uploaded to the hardware, processed there by a GPU kernel,
and results are retrieved again. Likewise, an OptiX input scene is wrapped up into a
hardware-side hierarchy, processed by a kernel there, and the results are transferred
back from a general device-memory buffer into some framebuffer.

For an in-depth understanding of the programmable functionality within the OptiX
raytracing operation, it is also vital to comprehend the actual GPU-side process flow
for the raytracing process. To be specific, GPU raytracing within the above step 6
encapsulates a series of subordinate steps: First, the optimization hierarchy must be

Page 59 / 184

Integration of a Raytracing-Based Visualization Component

rebuilt to reflect any scene updates. Thereafter, an initial set of rays is generated
and traced through the scene. Intersections with scene geometry must be handled
appropriately. Recursion is applied to determine the outcome of any secondary rays.
Finally, raytracing results are stored in a device-memory output buffer.

The preceding GPU-side raytracing steps are investigated in-depth in the following:

1. Rebuild the optimization hierarchy

On initialization and after certain client-side updates, the optimization hier-
archy that is attached to the OptiX scene representation becomes outdated
and must be updated or rebuilt. OptiX triggers such operations automatically
before raytracing once a relevant change is detected.

Just as the actual raytracing, the rebuild is performed by a GPU-side, massively
parallel kernel and does not require any CPU round-trip for scene data. Due
to the support for custom primitive types within OptiX, part of the rebuild is
customizable by programmable components.

The actual type of acceleration structure can be chosen per object, and is de-
tailed in 5.2.5.

2. Generate rays

For each position in the initial thread grid, an unique thread starts at the ray
generation program entry point. The user-written ray generation program cre-
ates one or more rays, and an OptiX-internal helper method is invoked to trace
these rays through the scene. The client must indicate the starting object for
intersection calculations within the OptiX scene hierarchy, typically by passing
a suitable root object onto the GPU in a global device-side variable.

Rays themselves carry a custom ray type to enable specialized behavior on scene
intersection. Additionally, each ray contains a user-defined data payload that
provides further customization options, such as input or return data.

For example, a common raytracer might use separate types for camera rays and
shadow test rays. While camera rays use their data payload to return the pixel
color for the output image, shadow rays hold a single boolean that indicates
detection of an occluding object. The initial ray generation program spawns
but a single camera ray for each thread, or respective for each pixel in the input
image.

3. Trace rays through scene

All of the rays sent on to the OptiX raytracing call by the ray generation
program are followed through the OptiX scene in parallel.

At first, rays are automatically sent through the optimization structure. On
object primitive level (traditionally single triangles), a programmable intersec-
tion test is invoked to determine if an intersection occurred. This test typically
evaluates the large-scale object data stored within device-memory buffers to re-
trieve primitive coordinates. Whenever a ray-primitive intersection is detected,
a user-programmable hit handler is invoked to provide an appropriate reaction.

Page 60 / 184

Integration of a Raytracing-Based Visualization Component

Hit handlers are assigned to each object via their associated material. Further-
more, special handlers can be specified per material for each potential type of
incoming ray, and both for an arbitrary intersection or the intersection closest-
most to the ray origin. If a material defines no handler for a certain ray type
and intersection event combination, the respective intersection with the object
is ignored.

To expand on the example from the previous step, object material handlers react
to camera rays but on the closest hit. The corresponding handlers run custom
program code to set the color of the output pixel within camera ray data.
In contrast, objects react to any secondary shadow ray hit, and appropriate
handlers set the hit indicator within shadow ray data to influence later lighting
calculations.

4. Recursion as required

As a reaction to any intersection incidents, a client-provided hit handler is
allowed to spawn arbitrary secondary rays. These are recursively traced through
the scene just as the original rays. One should note that recursive rays can carry
a type different from the original ray, and contain their own data payload.

Within the example scenario, recursive shadow rays are spawned within the
per-object closest-intersection handler program for the camera rays.

5. Store output data

Once tracing of the primary rays has finished, code flow transfers back to the ray
generation program. The raytracing results are returned within the associated
per-ray data of each ray. The ray generation program typically concludes the
GPU-side raytracing process by copying the return data of primary rays into
an output buffer.

In the preceding example, the ray generation program takes the pixel color from
the ray data of the camera rays and places it into the result image.

A more compact summary of the entire collaboration between OptiX objects and the
client application is presented in figure 5.6.

5.2.2 Programmable components

As seen from the above overview, the OptiX API uses the CUDA language to allow for
custom programming of certain plug-able components within the raytracing process.
Not only does this support the implementation of different raytracing strategies for
rendering, but it also enables the use of OptiX for more general raytracing purposes.
For instance, OptiX can be applied to accelerate sweep-and-prune based collision
detection as in [SG07].

Currently OptiX supports the following programmable components:

• Ray generation

This program defines the entry point for a single, parallel execution unit. It is
responsible for spawning one or more rays for intersection detection. Each ray
carries its own ray type and data payload.

Page 61 / 184

Integration of a Raytracing-Based Visualization Component

Figure 5.6: Overview over collaboration between application logics and the OptiX
platform.

In a raytracing renderer, the ray generation program simulates the virtual cam-
era by creating a primary ray for each pixel in the viewport.

In CUDA context, the OptiX-internal CUDA entry point distributes the gener-
ated rays over the thread grid, and executes corresponding parallelized hit tests
on the acceleration structure within the OptiX scene.

Ray generation programs directly are assigned to the main OptiX context.
While there may be multiple such programs assigned to a single context, only
one of these drives any given raytracing process.

• Exception

The exception program is called whenever any error occurs during intersection
calculations. This includes errors such as the overflow of the static stack for
recursive, secondary rays, or invalid out-of-bounds access to geometry elements.
As exception programs drastically decrease performance, their use is encouraged
for debugging purposes only. Similar to ray generation programs, exception
programs are assigned to the overall OptiX context.

• Bounding box

Page 62 / 184

Integration of a Raytracing-Based Visualization Component

OptiX uses hard-coded bounding box tests in its core optimization hierarchy.
On rebuild of the optimization hierarchy, the per-object bounding box program
is responsible for calculating the bounding box of some scene primitive — either
a traditional triangle, or a custom primitive type.

• Visit

This program is executed on a special condition-type object (see selector node,
5.2.4) before the actual intersection tests.

In particular, such objects house multiple subordinate representations, and the
outcome of the visit program determines which of these to intersect with each
incoming ray. Within a renderer, this allows to use multiple levels of detail in
an object, depending on its distance to the camera.

• Intersection

The intersection program is invoked to calculate the intersection between a ray
and any general primitive object.

In a typical raytracer, a low-level ray-triangle intersection program is combined
with a higher-level ray-bounding box intersection algorithm for optimization.
However, via programmable intersection code, OptiX also allows for more gen-
eral shaped objects, such as procedurally generated surfaces.

• Closest hit

This program is run whenever OptiX determines the closest-most hit-point be-
tween a ray and geometry. Closest hit programs are assigned to object materials
according to the type of the incoming ray.

Within a renderer, the closest hit program typically calculates the object color
at the intersection point via texture lookup and recursive, secondary rays. The
result then is stored in the frame buffer.

• Any hit

An any hit program executes whenever a first-chance intersection between a
ray and the environment is detected. This allows early-out optimizations for
occlusion or line of sight tests such as on rays used for shadow calculations. As
with closest hit programs, any hit programs are assigned to object materials in
respect to the incoming ray type.

• Miss

OptiX runs the miss program whenever a ray intersects with no scene object.
A renderer can use this program to draw a scene background image. For each
ray type, a single miss program can be defined on the OptiX context.

On GPU side, each programmable component is realized by a single CUDA function.
To allow for multiple programmable components within the same CUDA compila-
tion unit, all components are referenced from within host code by the name of their
associated implementing function.

Page 63 / 184

Integration of a Raytracing-Based Visualization Component

5.2.3 Building programmable components

Before use from within the OptiX API, any CUDA source files with programmable
components first must be compiled to the intermediate PTX assembly text format
via NVIDIA’s nvcc compiler.

The corresponding compilation process is sparsely documented and difficult to com-
prehend. The OptiX documentation proposes the adaption of the CMake-based build
process of the OptiX SDK sample applications for new projects. Yet, this workflow
is not suited for the integration of shader-like, run-time programmable material com-
ponents as desired for the raytracer implementation of this thesis.

The alternative approach of direct nvcc compilation suffers from a serious problem: If
no explicit machine architecture for the resulting GPU-specific PTX code is requested
on the command line, a seemingly unrelated compilation error occurs due to several
undefined intrinsic functions. In other words, it is not sufficient to invoke the nvcc
compiler with the ptx generation argument, but the arguments m32 or m64 are
required as well.

Once compiled to PTX assembly sources, programmable components intuitively are
recompiled into device-specific binaries from within host code. There are several
competing recompilation options: The traditional CUDA API can be utilized, the
OptiX API provides a convenience wrapper for PTX file recompilation, and there is
a similar wrapper for in-memory PTX string representations. The last option will be
employed by the later raytracer implementation to decouple resource loading from
the actual file system.

5.2.4 Scene hierarchy

To achieve best performance, a raytracer kernel must utilize some sort of hierarchical
optimization structure in the back-end for ray-triangle intersection tests.

In NVIDIA’s OptiX API, the corresponding structure is not directly exposed on
triangle basis. Instead, the API client must encapsulate all relevant objects into a
logical scene hierarchy, similar to a traditional scene graph. This hierarchy needs to
be aggregated from a set of fundamental node types that the OptiX API provides.
Finally, opaque OptiX-internal optimization structures are attached to certain nodes
within the hierarchy.

At the time of this writing, OptiX supports the following fundamental node types:

• Geometry

A geometry node houses multiple geometry primitives of the same type —
triangles in most applications.

Primitive data, such as triangle vertices and indices, is not stored directly within
the geometry node, but within a separate device-memory buffer. A device-side
variable within the geometry node links to an appropriate data buffer.

Apart from wrapping primitive data, a geometry node associates an intersection
program and a bounding box program with the entire primitive set. The former

Page 64 / 184

Integration of a Raytracing-Based Visualization Component

is invoked to test for ray-intersection with each primitive, while the latter is
executed on each primitive to rebuild the OptiX-internal optimization structure
whenever necessary.

Geometry nodes cannot be rendered on their own, but must be encapsulated
into geometry instance nodes.

• Material

A material node defines a series of closest-hit and any-hit programs for use dur-
ing raytracing. For optimization, specific intersection programs can be assigned
for each type of incoming ray. Materials are connected to one or more geometry
instance nodes.

• Geometry instance

A geometry instance encapsulates a single geometry node for placement in the
virtual scene and binds a material node for use on this geometry. Multiple
geometry instances may refer to the same geometry and material nodes to reuse
primitive data. On a high-level point of view, an OptiX geometry instance node
resembles a discrete object in a traditional scene graph.

• Geometry group

A geometry group holds one or more geometry instances, and binds them to an
OptiX-internal bounding box-based optimization structure.

• Transform

A transform node applies a general 4x4 matrix transformation on a single subor-
dinate node. This allows to place the same geometry or group at multiple places
inside the scene. At the same time, transform nodes offer simple scene graph
functionality, such as physical object relations and constraints. One should
note that a transformation is optimized in that incoming rays are transformed,
instead of contained geometry. Thus transformations may be modified without
enforcing a rebuild of the optimization structure.

• Group

General group nodes form the highest-level element in the bounding volume
hierarchy, and contain arbitrary group, geometry group, transform, or selector
nodes. Group nodes allow for complex instancing and object relation schemes.
Intersection tests within any such complex scheme manually may be optimized
by attaching higher-level optimization structures to certain group nodes.

• Selector

Just as a group node, a selector node binds together a series of arbitrary other
nodes. However, unlike the group node, a selector calculates intersections only
on one of the contained objects. The object to use for a given incoming ray
is determined by a visit program (see 5.2.2) attached to the respective selector
instance.

Page 65 / 184

Integration of a Raytracing-Based Visualization Component

• Program

Certain programmable components — such as hit or intersection programs –
must be attached to scene nodes, and thus become part of the node hierarchy.
Note that any program may be shared and reused by multiple scene nodes.

• Acceleration structure

Acceleration structure nodes are attached to either group or geometry group
nodes. Each acceleration node holds a complete, opaque optimization data
structure for all primitives contained in the entire associated subtree within the
scene hierarchy. To accommodate for various scene compositions, acceleration
structures may be customized in terms of their optimization algorithm. The
next section provides in-depth information about acceleration nodes and their
content.

Host-side management of scene objects is performed by a series of C helper functions
within the OptiX API. There are, for instance, functions for object creation, object
destruction, and the binding of programmable components.

The scene hierarchy compositions shown in figures 5.7, 5.8, and 5.9 provide examples
for data sharing and optimization structure integration.

5.2.5 Acceleration structures

At certain points throughout the preceding elaborations, the OptiX-internal acceler-
ation structures have already been named. It has been explained that such structures
are attached as nodes within the OptiX-internal scene hierarchy.

The process that derives an acceleration structure from primitives within subordinate
nodes has been mentioned already as well. For review, a bounding box program cal-
culates axis-aligned bounding boxes for each primitive within a geometry instance on
certain scene updates. The bounding boxes in turn automatically are inserted into
higher-level acceleration structures alongside a reference to the encapsulated primi-
tive. This improves performance for intersection tests. The acceleration structure is
responsible for a mean O(log t) raytracing complexity, as opposed to O(t) for a naive
intersection algorithm (t is the number of triangles).

In the following, the acceleration structures themselves are now investigated.

The most noteworthy facet about the OptiX-internal acceleration structure is that it
provides a choice of various algorithms suited for tree building and traversal. While
this choice does not support the same level of customizability as the general pro-
grammable components, it still allows for adaption to different kind of scene primi-
tives and scene animations. One must note the reference to the scientific state-of-art
review, where the conclusion was drawn that multiple acceleration algorithms are
required depending on the type of moving content.

On a conceptual level, OptiX separates between tree building and tree traversal al-
gorithms. Both builder and traverser are separately assigned to each acceleration
structure — with certain restrictions due to algorithm compatibility.

Page 66 / 184

Integration of a Raytracing-Based Visualization Component

Figure 5.7: This OptiX hierarchy holds two geometric primitives that share their
material and the bounding box program. The material itself holds a series of
hit handling programs, depending on the actual type of incoming ray. A single
acceleration structure is used for both geometry primitives. The primitives are
grouped by a transformation node for efficient movement within the scene.

Figure 5.8: An example OptiX node hierarchy that demonstrates multiple con-
current acceleration structures at various levels of the hierarchy. Note that it is
not possible to attach the acceleration directly to either geometry or geometry
instance nodes — thus, a geometry group is required even for a single geometry.
Materials and programs have been omitted for clarity.

Page 67 / 184

Integration of a Raytracing-Based Visualization Component

Figure 5.9: The OptiX scene system allows for the realization of complex in-
stancing graphs by stacking transformation and group nodes atop of geometry
instances and geometry objects.

Currently, OptiX comes with six different building algorithms, and three correspond-
ing traversers.

The most noteworthy supported tree builders are the SBVH and LBVH algorithms.
These already have been elaborated in their function and design within chapter 3.
For review, the SBVH algorithm is suited for the generation of a static, high-quality
bounding box tree in an offline process. Later on, the raytracer implementation will
use this algorithm for all non-animated models. In contrast, the LBVH algorithm
was designed for fast construction of a new bounding hierarchy from scratch. It is
suited for dynamic geometry, but does not provide the same raytracing performance
as the more thorough SBVH approach. The later raytracer component applies the
LBVH algorithm to bone-animated meshes.

Apart from both bounding volume approaches, three traditional kd-tree representa-
tions and a dummy empty structure are available as well.

Traversers exhibit less variety: There currently is a traverser for kd-trees, another
traverser for both of NVIDIA’s proprietary tree solutions (SBVH, LBVH), and a
final traverser that directly tests geometric primitives without any optimization.

This concludes the overview over the OptiX-internal scene management and raytrac-
ing functionality.

5.2.6 Data buffers

In the preceding, all structural input data for the raytracing process has been inves-
tigated. Yet structural data contains but high-level scene objects and programmable
components. This brings up the question of how OptiX actually manages large-scale
data such as primitive coordinates, input textures, or raytracing results.

Page 68 / 184

Integration of a Raytracing-Based Visualization Component

As a solution, the OptiX platform offers typed, device-side data buffers layered atop
CUDA’s untyped device memory allocations. Data buffers allow for arbitrary in-
put and output communications in between programmable components and the host
system.

In detail, host-side code creates a new data buffer by an OptiX API function call.
Thereafter, the size and element type — e.g. integer numbers or floating-point vector
tuples — of the buffer are defined, and the buffer is ready for use.

Data buffers reside primarily on device memory. Thus, any host-side data access
involves a mapping operation that creates a temporary copy of the buffer within host
memory.

In contrast, device-side reading or writing on an existing data buffer does not require
any explicit mapping operation. Yet, before access from a programmable component,
the buffer must be bound to a device-side variable name from within host-side code.
This process is described in the next section.

In respect to the original question, buffers are used for all three operations: Buffers
store primitives, hold texture data, and simulate an output framebuffer.

The latter use case requires some further elaboration: As the OptiX platform has
been developed for general raytracing operations, it does not provide implied access
to any sort of default framebuffer. A naive approach thus creates an appropriate
OptiX data buffer for storing the raytraced image. Once raytracing finishes, the
completed image is copied back to host memory and blitted to screen from there.

Yet there is still room for improvement. The above approach involves a GPU-CPU-
GPU round trip time that easily is avoided: Buffer objects from certain other GPU
programming languages (CUDA, OpenCL) and APIs (DirectX, OpenGl) can be inte-
grated into OptiX using a host-level function call. For instance, it is possible to bind
a DirectX surface into OptiX and to use that surface as raytracing target. Then, the
surface can be transferred to the actual window framebuffer by a hardware-optimized
blit operation. Consequently, the round-trip is avoided.

The same data sharing system allows for many more potential use cases: Interop-
erability with an OpenGl rasterizer for shadow rendering using shared geometry re-
sources, collaboration with texture units that have been initialized in DirectX, the
raytracing of CUDA-calculated scientific data sets, . . .

Sadly, the buffer sharing scheme is not fully implemented within OptiX yet. Apart
from several buffer-related, non-reproducible crashes during the raytracer develop-
ment, buffering currently does not support all buffer features from respective graphics
APIs. It is, for example, not possible to use the current OpenGl framebuffer object.
Instead, the legacy pixel buffer extension (which already has numerous issues on its
own [BS06b]) has to be applied. These problems hopefully will be solved in future
OptiX and graphics driver releases.

5.2.7 Device variables

As stated above, data buffers need to be bound to device-side variable names before
use. Yet, the concept of bind-able device-side variables is not restricted to buffers,

Page 69 / 184

Integration of a Raytracing-Based Visualization Component

but used for all small-scale communication between the host application and the
device-side raytracing process.

In general terms, the host application specifies some variable value alongside the name
of an associated device-side variable. On later GPU raytracing, existing and specially
marked variables that match the indicated variable name are located within PTX
device code — respectively within programmable components. Any such variables
are initialized to the host-specified value.

The exact binding scheme is more sophisticated. To be specific, complicated binding
and scoping rules are adopted by GPU variable lookup: On host-side, variables can
be assigned to arbitrary scene nodes or to the root context. Once OptiX tries to
resolve existing device variables against host-made bindings, only bindings on certain
objects are considered. Further scoping rules indicate in which order objects are
investigated in search for bindings. The lookup itself is dynamic, and depends on
the current raytracing process. For example, even a single programmable component
may have different variable mappings, depending on which parent object currently is
under processing.

This scheme is different from most other GPU programming languages — typically,
the host application queries a list of available device-side variables instead of inde-
pendent variable specification.

Compared to the traditional approach, variable binding at first seems unreasonably
difficult: The host code must explicitly set any desired variables before raytracing
execution. Host-side access to variable content is performed through unchecked by-
name declarations, and no variable-related errors are reported back to the client
application.

However, there is some benefit to the OptiX binding scheme for device variables
as well. In particular, the scoping rules allow to bind different variable settings on
different objects. For instance, the global camera position and orientation may be
bound to respective CUDA-side variables on the root context. These then are valid
from within each programmable component. In contrast, the binding of a single
texture buffer is reassigned on each geometry instance. Thus, the same closest-hit
program looks up the output color in different textures depending on the current
geometry object.

The advantages of variable binding are exploited in the later raytracer implementation
to allow for a reasonable amount of data sharing within a dynamic scene structure.

5.2.8 Programming interface

Up to now, only general concepts within the OptiX platform have been discussed. On
a more practically oriented point of view, the following section names and describes
certain relevant functions from the client-side C API — respective the optix.h header.

In this context, one must consider that an in-depth tour over the entire API is outside
the scope of this thesis. Instead, only certain noteworthy functions for controlling
OptiX have been selected for review to give an impression of the API. The OptiX
programming guide [NV11a] should be consulted for any further in-depth information.

Page 70 / 184

Integration of a Raytracing-Based Visualization Component

The most important function within the host-side OptiX API probably is the actual
invocation of the raytracing process:

RTresult rtContextLaunch2D
(RTcontext context , unsigned i n t en t ry po in t index ,

RTsize image width , RTsize image he ight) ;

Parameters specify the OptiX context to work on, the initial ray generation program,
and the extends of the CUDA thread grid — respective the size of the output image.

An appropriate OptiX context is created and destroyed by the next two functions:

RTresult rtContextCreate (RTcontext∗ context) ;
RTresult rtContextDestroy (RTcontext context) ;

With these two calls, an emerging concept within the OptiX C language API be-
comes evident: The object oriented, internal OptiX architecture has completely been
mapped to C-style functions. As such, most functions are simulated member meth-
ods that carry the object type within function name, and expect an object instance
within their first parameter. Return values are used to report back some of the errors
that occurred during execution of the relevant function.

As further examples, the following calls set material-specific hit programs, create
geometry instances, and declare global variables:

RTresult rtMaterialSetAnyHitProgram
(RTmaterial mater ia l , unsigned i n t ray type index ,
RTprogram program) ;

RTresult rtGeometryInstanceCreate
(RTcontext context , RTgeometryinstance∗ geometry instance) ;

RTresult r tContextDec la reVar iab l e
(RTcontext context , const char ∗ name , RTvariable∗ v) ;

Similar functions are used for control of the entire OptiX raytracing process — from
acceleration structure selection, over buffer creation, to scene management.

Because of the repeated type specifiers within function names, the OptiX C API
results in rather long and messy code.

In contrast to the C API, there is a much improved C++ API available as well.
However, the C++ API has not been stable when work on this thesis began, and
thus was not considered.

Page 71 / 184

Integration of a Raytracing-Based Visualization Component

5.2.9 Multithreading capabilities

As mentioned in the state-of-art review in chapter 3, the later rendering component
must be able to handle access from multiple independent threads without any harsh
performance break-in. Since the rendering component eventually must call the C
functions provided by the OptiX API, their multithreading behavior is relevant in
this context as well.

Yet while OptiX makes many statements on threaded processing within the GPU, it
sadly does not provide any explicit guarantees or safety for host-side threaded access.
While experiments have shown the OptiX API to provide at least basic thread-safety,
this cannot be used as groundwork for designing a stable client application without
official confirmation.

Thus the later design of the rendering component explicitly needs to lock on the
OptiX context and any attached OptiX objects. The global lock becomes especially
relevant in consideration of performance factors: Any GPU-side scene update that is
triggered by application logics only can be performed quickly when no rendering is
currently underway. Thus, some intermediate decoupling mechanism has to be found
to ensure fluid client logics. The respective decoupling strategy has been tightly
integrated into a general interface for a multithreaded renderer, and is described in
depth in chapter 6.

5.2.10 CUDA extensions

Apart from the C language API that is used to control the OptiX raytracing pro-
cess from within host code, the OptiX platform integrates few new extensions and
restrictions into the CUDA GPU programming language as well.

As with the OptiX C API, CUDA programs that use any OptiX functions must
include the header optix.h. When used within CUDA, this header specifies all func-
tions, defines, and types for use in OptiX programmable components.

The most important function within the CUDA-side OptiX API is the rtTrace call,
which traces a ray through the scene hierarchy, starting at an arbitrary user-provided
scene object.

Noteworthy defines include RT PROGRAM and rtDeclareVariable. The former pre-
cedes a C function definition and marks the respective function as an entry point
into one of the user-programmable OptiX components. The latter declares a global
CUDA variable that is valid over an entire source code file.

On declaration, global variables within OptiX are associated with various semantics
that define their program-wide behavior. For instance, a specific semantic is used to
mark data for automatic binding to host-side variable settings — already discussed
in 5.2.7.

Other semantics indicate that a single variable is present once for each parallel thread.
Per-thread variables include the per-ray structures that carry ray input and output
data. An often confusing specialty of global per-ray variables requires their redef-
inition within the scope of but certain calling functions. If this requirement is not
strictly adhered to, undefined behavior occurs in form of rare bugs.

Page 72 / 184

Integration of a Raytracing-Based Visualization Component

Figure 5.10: The image produced by the OptiX example application.

Types provided by the OptiX header mainly consist of opaque OptiX object handles
and helper structures, like matrices or vectors. Yet, there also is the type Ray, which
defines the core ray used in all raytracing operations.

In contrast to OptiX-specific CUDA extensions, the use of certain standard CUDA
functions is prohibited within any OptiX program. For instance, CUDA thread syn-
chronization with the syncthreads barrier conflicts with OptiX-internal ray schedul-
ing logics and stalls the entire system.

5.3 Sample application

Now that all components of the OptiX platform have been described, the collabo-
ration of those components is further detailed by an intuitively understood example
application. The goal of the example application is to generate a raytraced, stan-
dalone image of a sphere-based geometry primitive. The resulting image is shown in
figure 5.10.

One must note that — while modified at various locations — the example application
follows both the OptiX tutorial [NV10] and the introductory chapter within the OptiX
programming guide [NV11a]. However, the consequent steps are presented in a more
appropriate order, their relationship is explained in more detail, and feature usage
has been reduced for clarity.

At first, the CUDA-side implementation of the example application will be discussed.
The global variables used both for communication from host to device and for com-
munication in-between programmable components are introduced. Then, both global
and per-object programmable components are described. Finally, the main appli-
cation — including context initialization, scene management, and raytracing — is
elaborated.

5.3.1 Device-side variables

At the beginning of the main CUDA file, all global variables for communication
between host and device code are declared: The pixel currently under processing, the
camera position and orientation, the scene root object, and the output pixel buffer.

Page 73 / 184

Integration of a Raytracing-Based Visualization Component

r tDec l a r eVar i ab l e (uint2 , p i x e l i ndex , rtLaunchIndex ,) ;

r tDec l a r eVar i ab l e (f l o a t 3 , camera , ,) ;
r tDec l a r eVar i ab l e (f l o a t 3 , l o o k i n g d i r , ,) ;

r tDec l a r eVar i ab l e (rtObject , s c ene roo t , ,) ;

r tBu f f e r<uchar4 , 2> output ;

Variable declaration is usually performed with the rtDeclareVariable define. Here,
the first parameter indicates the variable type. Both uint2 and float3 are vector
types that are intrinsically defined by the CUDA language. rtObject is an OptiX-
specific handle to any scene object. The second parameter sets the variable name that
is used from within both device code and host code. An optional third parameter —
only rtLaunchIndex is present in this example — defines the variable semantic.

In the case of rtLaunchIndex, the per-thread variable pixel index is automatically
initialized to the respective thread index within the thread grid. In the example
application, the thread index directly corresponds to the coordinates of the associated
on-screen pixel.

The fourth parameter can be assigned to per-variable string annotations, and remains
unused within the entire thesis.

On a final note, the atypical syntax of missing parameters within rtDeclareVariable
attributes to the fact that rtDeclareVariable is a define, and not a function.

Unlike normal variables, buffer objects are not declared as opaque handles, but as
template-like container instances with specified encapsulated element and tuple sizes.
Still, the output buffer must be bound to an appropriate data buffer instance by name
from within host code just like the remaining globals.

Similar to the preceding segment, the following code excerpt defines another set of
global variables:

r tDec l a r eVar i ab l e (opt ix : : Ray , ray , rtCurrentRay ,) ;

s t r u c t camera ray data type { uchar4 c o l o r ; } ;
r tDec l a r eVar i ab l e

(camera ray data type , camera ray data , rtPayload ,) ;

s t r u c t shadow ray data type { unsigned char h i t ; } ;
r tDec l a r eVar i ab l e

(shadow ray data type , shadow ray data , rtPayload ,) ;

r tDec l a r eVar i ab l e (f l o a t 3 , h i t p o i n t , a t t r i b u t e h i t p o i n t ,) ;
r tDec l a r eVar i ab l e (f l o a t 3 , h i t normal , a t t r i b u t e hit normal ,) ;

Page 74 / 184

Integration of a Raytracing-Based Visualization Component

Yet, variables this time are used only for GPU-internal communication. The ray
variable with the rtCurrentRay semantic stores the per-thread ray that currently is
under processing, including its starting point and direction. It is initially set by the
ray generation program for primary rays or by a closest-hit program for recursive
secondary rays. Thereafter, intersection programs access the stored ray data for
testing against primitives and acceleration structures.

All variables with the rtPayload semantics hold per-ray data that is returned by
later hit programs: Camera rays store an output color, while shadow rays contain a
hit-testing result.

Note that data payload variables are defined globally for both camera rays and shadow
rays, independent of the actual program that currently is under compilation. This is
a restriction enforced by the underlying graphics hardware, where per-thread globals
must be declared within each compilation unit.

Finally, the hit normal variable is utilized for communication between the inter-
section program and the hit program: The normal calculated by the intersection
program is returned to the hit program for reuse in shading. This behavior is defined
by the semantic type attribute variable name, a legacy of the underlying GPU
architecture.

5.3.2 Global programmable components

The ray generation program marks the entry point into the programmable CUDA
pipeline. Namely, the raygen function is executed in parallel once per pixel of the
image and stores a respective output color.

RT PROGRAM void raygen ()
{

f l o a t sx (output . s i z e () . x) ,
sy (output . s i z e () . y) ;

f l o a t aspect (sy / sx) ;

f l o a t rx ((f l o a t) p i x e l i n d e x . x / sx ∗ 2 − 1) ,
ry (−((f l o a t) p i x e l i n d e x . y / sy ∗ 2 − 1) ∗ aspect) ;

f l o a t 3 f r o n t (normal ize (l o o k i n g d i r)) ,
r i g h t (c r o s s (make f loat3 (0 , 1 , 0) , f r o n t)) ,
up (c r o s s (f ront , r i g h t)) ;

f l o a t 3 r a y d i r
(normal ize (r i g h t ∗ rx + up ∗ ry + f r o n t)) ;

Ray ray (camera , r ay d i r , 0 , 0 .0001 f , RT DEFAULT MAX) ;
camera ray data type camera ray data ;
rtTrace (s c ene roo t , ray , camera ray data) ;

output [p i x e l i n d e x] = camera ray data . c o l o r ;
}

Page 75 / 184

Integration of a Raytracing-Based Visualization Component

The finer-grained procedure is intuitively understood: At first, a ray through the
output pixel of the current thread is constructed. A ray data structure specifically
suited for primary camera rays is initialized, and the rtTrace function is invoked to
process the appropriate ray against the global scene root.

On return, ray processing has filled the color field of the ray data structure with the
color of any hit object or with the background color. Consequently, the respective
color is stored in the output image.

The most noteworthy aspects of this function are safety-related: An integral ray type
is specified independently of the associated data type within the third construction
parameter of the ray object. In the example application, ray type 0 has been defined
as a camera ray, and type 1 corresponds to shadow rays. The integral ray type in turn
is used to bind corresponding closest-hit and any-hit handler programs from within
host code. In the example, the closest-hit program — which works with camera
ray data — is bound to ray type 0. The any-hit program — which expects shadow
ray data — is bound to ray type 1. However, there is neither a compile time nor
a runtime check whether a matching data structure type for the current ray type
has been passed into rtTrace. Such mistypings lead to hard-to-find bugs, including
random operating system freezes. There currently is no workaround except for the use
of defines or constants instead of integer ray types so that respective errors become
more obvious.

Further care is required to ensure that the names of local variables for ray data and the
ray itself match with those initially assigned by rtDeclareVariable. Otherwise, access
to these structures from within other programmable components yields unspecified
behavior.

Similar to the global ray generation program, the miss programs work independent of
any scene primitive. Camera rays that miss all scene objects return the color of the
background to the ray generation program. Likewise, shadow testing rays indicate
on miss that no occluding object was found.

RT PROGRAM void camera miss ()
{ camera ray data . c o l o r =

make uchar4 (170 , 200 , 255 , 2 55) ; }

RT PROGRAM void shadow miss ()
{ shadow ray data . h i t = 0 ; }

Particular attention is directed to the fact that the ray and ray data structures are
used within these and all later programmable components without any declaration
or definition. Ray structures must only be defined globally and once more within the
scope surrounding the associated rtTrace call.

5.3.3 Geometry-based programs

The bounding box of the square-shaped floor object is realized by another custom
component:

Page 76 / 184

Integration of a Raytracing-Based Visualization Component

RT PROGRAM void f l oo r bound ing (i n t index , f l o a t r e s u l t [6])
{

r e s u l t [0] = r e s u l t [2] = −100. f ;
r e s u l t [3] = r e s u l t [4] = 100 . f ;

r e s u l t [1] = −1.01 f ;
r e s u l t [4] = −0.99 f ;

}

The signature of bounding box methods is rigidly defined by OptiX: The index in-
put parameter references the current primitive within any geometry for which to
rebuild the boundings. The result output parameter is filled with the bounding box
coordinates of the respective primitive.

More complicated geometry objects potentially use the index to look up data for an
appropriate primitive within an OptiX data buffer. As there is but a single floor in
the example application, this lookup is omitted in favor of a constant bounding box.

Once the floor bounding box generated by the above program is hit by a ray within
ray tracing, the intersection program is invoked:

RT PROGRAM void f l o o r i n t e r s e c t i o n (i n t index)
{

f l o a t 3 n = make f loat3 (0 , 1 , 0) ;
f l o a t d = 1 ;

f l o a t a = −dot (ray . d i r e c t i o n , n) ;
i f (f a b s f (a) < 0 .0001 f) re turn ;

f l o a t do = dot (n , ray . o r i g i n) + d ;
f l o a t t = do / a ;

f l o a t 3 p = ray . o r i g i n + t ∗ ray . d i r e c t i o n ;

i f (p . x > −100. f && p . x < 100 . f &&
p . z > −100. f && p . z < 100 . f)

{
i f (r t P o t e n t i a l I n t e r s e c t i o n (t))
{

h i t p o i n t = p ;
h i t normal = n ;
r t R e p o r t I n t e r s e c t i o n (0) ;

}
}

}

Page 77 / 184

Integration of a Raytracing-Based Visualization Component

The intersection program for the floor primitive calculates the intersection point
between the ray and the floor square by few linear algebra formulas.

Intersection testing again takes an index parameter that identifies the respective
primitive, but the example continues to ignore this parameter.

Intersections are reported back to OptiX by two different calls from the CUDA-side
API: rtPotentialIntersection and rtReportIntersection.

The former queries whether the calculated intersection point is closer to the ray’s
origin than any previously found intersection. The latter is executed to trigger the
actual any-hit program.

In between both calls, the intersection program is allowed to appropriately adjust
communication attributes that are passed to the later any-hit and closest-hit han-
dlers. In this context, note that the closest-hit handler is not directly invoked by the
intersection program, but by OptiX on completion of the entire tracing process for a
single ray.

As the floor object does not drop a shadow within the scene, it does not have an
associated any-hit handler. However, its closest-hit handler — responsible for setting
the color returned by camera rays — is presented in the following code fragment:

RT PROGRAM void f l o o r c l o s e s t c a m e r a h i t ()
{

Ray ray (h i t p o i n t , normal ize (make f loat3 (1 , 1 , 0)) ,
1 , 0 .0001 f , RT DEFAULT MAX) ;

shadow ray data type shadow ray data ;
rtTrace (s c ene roo t , ray , shadow ray data) ;

i f (shadow ray data . h i t)
camera ray data . c o l o r = make uchar4 (100 , 100 , 100 , 2 55) ;

e l s e
camera ray data . c o l o r = make uchar4 (128 , 128 , 128 , 2 55) ;

}

While most of the above code is intuitively understood, particular attention is directed
to the recursive raytracing process that generates the sphere’s shadow: Another ray
primitive is instantiated, starting at the hit point calculated by the intersection pro-
gram.

The ray primitive must go by the variable name of the global ray. Yet, the ray type is
set to 1, corresponding to a shadow ray, and an appropriate data structure is passed
into the rtTrace invocation.

On return from shadow recursion, the result data is used to attenuate the floor color
within shaded regions.

Both sphere bounding box and sphere intersection programs are quite similar to
respective programs for the floor object, and thus omitted for brevity here.

The CUDA-side code review ends with the sphere’s closest-hit and any-hit handlers:

Page 78 / 184

Integration of a Raytracing-Based Visualization Component

RT PROGRAM void s p h e r e c l o s e s t c a m e r a h i t ()
{

f l o a t b = (h i t normal . y > 0) ? (h i t normal . y ∗ 128 + 64) : 64 ;
camera ray data . c o l o r = make uchar4 (b , b , 0 , 25 5) ;

}

RT PROGRAM void sphere any shadow hi t ()
{

shadow ray data . h i t = 1 ;
rtTerminateRay () ;

}

The former uses the normal already calculated by the sphere’s intersection program to
shade the sphere’s surface. The latter reports back an occluding object to the shadow
testing ray sent by the floor’s closest-hit program. The closing call to rtTerminateRay
indicates that further collisions of a shadowing ray may be disregarded. This is a vital
optimization employed in the later, main raytracer implementation.

Finally, the complete CUDA source containing all preceding code excerpts must be
compiled with nvcc. The building process has already been described in 5.2.3, and is
not repeated here.

5.3.4 Main application

The main application starts with the creation of the OptiX raytracing context:

RTcontext context ;
rtContextCreate(&context) ;

Once an OptiX context has been created, global programmable components are com-
piled from PTX files and applied to the raytracer setup:

RTprogram raygen ;
rtProgramCreateFromPTXFile

(context , ”OptixExa . ptx” , ” raygen ” , &raygen) ;
rtContextSetEntryPointCount (context , 1) ;
rtContextSetRayGenerationProgram (context , 0 , raygen) ;
rtContextSetRayTypeCount (context , 2) ;

RTprogram camera miss ;
rtProgramCreateFromPTXFile

(context , ”OptixExa . ptx” , ” camera miss ” , &camera miss) ;
rtContextSetMissProgram (context , 0 , camera miss) ;

RTprogram shadow miss ;

Page 79 / 184

Integration of a Raytracing-Based Visualization Component

rtProgramCreateFromPTXFile
(context , ”OptixExa . ptx” , ” shadow miss ” , &shadow miss) ;

rtContextSetMissProgram (context , 1 , shadow miss) ;

Most of the above code is intuitively understood. At first, the ray generation program
is retrieved from disk, recompiled, and defined as entry point 0 for the raytracing
process. Thereafter, miss programs are installed depending on their integral ray type
identifier.

Integral ray type identifier have already been introduced and criticized within the
GPU code elaborations. Yet, even within host code, these identifiers are error-prone:
If the total number of ray types has not been set correctly before ray-specific programs
are bound, the respective binding statements are silently ignored.

This has a vital implication on the later full raytracer implementation, as the run-
time extension of ray types requires a remapping of any ray-specific program bindings
over all OptiX objects.

Apart from binding the global programs, the host-side example application also cre-
ates the output buffer and applies initial values to the global GPU-side variables:

RTvariable camera var ;
r tContextDec la reVar iab l e (context , ”camera” , &camera var) ;
r t V a r i a b l e S e t 3 f (camera var , −5, 2 , −5);

RTvariable l o o k i n g d i r v a r /∗ . . . same as above . . . ∗/

RTbuffer output ;
r tBu f f e rCrea t e (context , RT BUFFER OUTPUT, &output) ;
rtBuf ferSetFormat (output , RT FORMAT UNSIGNED BYTE4) ;
r tBu f f e rSe tE l ementS i ze (output , 4) ;
r tBu f f e rSe tS i z e2D (output , s i z ex , s i z e y) ;

RTvariable output var ;
r tContextDec la reVar iab l e (context , ” output ” , &output var) ;
r tVar i ab l eSe tObjec t (output var , output) ;

The code for buffer creation and variable access seems mostly self-explanatory. At-
tention should only be directed to the variable binding process: Variable objects are
matched to GPU-side variables by their string-based name. For instance, the string
identifier for the camera variable declared on host-side must match up with the re-
spective CUDA variable name. While similar to by-name matching of programmable
component functions, mismatches in variable naming are not reported back to the
client application. On the contrary, GPU-side globals then simply remain uninitial-
ized.

Page 80 / 184

Integration of a Raytracing-Based Visualization Component

5.3.5 Scene management

After the example application initialized all global programs and variables, code flow
continues with management of the example scene.

In the following code excerpt, the OptiX geometry, material, and geometry instance
objects for the sphere representation are created:

RTprogram sphere bounding /∗ . . . load from PTX . . . ∗/ ;
RTprogram s p h e r e i n t e r s e c t i o n /∗ . . . l i k e w i s e . . . ∗/ ;
RTprogram s p h e r e c l o s e s t c a m e r a h i t /∗ . . . ∗/ ;
RTprogram sphere any shadow hit /∗ . . . ∗/ ;

RTgeometry sphere geometry ;
rtGeometryCreate (context , &sphere geometry) ;
rtGeometrySetBoundingBoxProgram

(sphere geometry , sphere bounding) ;
r tGeometrySetIntersect ionProgram

(sphere geometry , s p h e r e i n t e r s e c t i o n) ;
rtGeometrySetPrimitiveCount (sphere geometry , 1) ;

RTmaterial s p h e r e m a t e r i a l ;
r tMate r i a lCrea t e (context , &s p h e r e m a t e r i a l) ;
r tMater ia lSetCloses tHi tProgram

(sphe r e mate r i a l , 0 , s p h e r e c l o s e s t c a m e r a h i t) ;
rtMaterialSetAnyHitProgram

(sphe r e mate r i a l , 1 , sphere any shadow hit) ;

RTgeometryinstance s p h e r e i n s t a n c e ;
rtGeometryInstanceCreate (context , &s p h e r e i n s t a n c e) ;
rtGeometryInstanceSetMater ia lCount (sphe r e in s tance , 1) ;
r tGeometryInstanceSetMater ia l

(sphe r e in s tance , 0 , s p h e r e m a t e r i a l) ;
rtGeometryInstanceSetGeometry

(sphe r e in s tance , sphere geometry) ;

Once more, one should take note of the by-index binding of closest-hit and any-hit
programs to associated ray types within the sphere material.

Corresponding code for the floor object is mostly identical, and has been omitted for
brevity.

The final part of scene management handles the construction of a root grouping
object and the assignment of an optimization structure. As a last step before the
actual raytracing process, the GPU-side scene root variable is bound to the previously
generated root object.

RTacce lerat ion s c e n e a c c e l ;
r t A cc e l e r a t i o nC re a t e (context , &s c e n e a c c e l) ;

Page 81 / 184

Integration of a Raytracing-Based Visualization Component

r t A c c e l e r a t i o n S e t B u i l d e r (s c e n e a c c e l , ”Lbvh”) ;
r t A c c e l e r a t i o n S e t T r a v e r s e r (s c e n e a c c e l , ”Bvh”) ;

RTgeometrygroup s c e n e r o o t ;
rtGeometryGroupCreate (context , &s c e n e r o o t) ;
rtGeometryGroupSetChildCount (s cene roo t , 2) ;
rtGeometryGroupSetChild (s c ene roo t , 0 , f l o o r i n s t a n c e) ;
rtGeometryGroupSetChild (s c ene roo t , 1 , s p h e r e i n s t a n c e) ;
rtGeometryGroupSetAccelerat ion (s c ene roo t , s c e n e a c c e l) ;

RTvariable s c e n e r o o t v a r ;
r tContextDec la reVar iab l e (context , ” s c e n e r o o t ” , &s c e n e r o o t v a r) ;
r tVar i ab l eSe tObjec t (s c ene roo t va r , s c e n e r o o t) ;

With the exception of the by-name selection of acceleration structure builder and
traverser, the above source fragment is straightforward, and remains without further
explanation.

5.3.6 Raytracing

Once all programs, all parameters, and the virtual scene have been initialized, the
GPU-accelerated raytracing process is triggered:

rtContextLaunch2D (context , 0 , s i z ex , s i z e y) ;

The committed dimensions indicate the number of threads spawned — and thus
the number of times that the ray generation program is executed. Additionally, the
context-wide specifier 0 for the initially registered ray generation program must be
provided.

Once rtContextLaunch returns, the output buffer has been filled with pixel data for
the entire example scene. As this buffer resides on device memory, it must be mapped
to a host-side pointer before access from within the example application:

void ∗output mapped ;
rtBufferMap (output , &output mapped) ;

Buffer mapping potentially involves an internal device-to-host CUDA copy operation.
Benchmarking has indicated this to be a major performance bottleneck for interactive
applications, and thus the later Simulator X raytracer component chose a different
approach.

Yet the resulting, mapped pointer can be arbitrarily used by the client application.
For instance, the application might show the resulting image in a window or save all
data to an image file.

Page 82 / 184

Integration of a Raytracing-Based Visualization Component

After the example application has finished access to the rendered image, the buffer
is unmapped from host memory, and the OptiX raytracing context is destroyed:

rtBufferUnmap (output) ;
rtContextDestroy (context) ;

Context destruction automatically cleans up any associated OptiX objects and pro-
grams, as well as any device-side memory allocations. Thus, no further per-object
destruction is required.

As a final caveat, it should be noted that context destruction regularly failed with
an exception due to access violation on several test machines with various graphics
boards and NVIDIA driver versions. Thus, context destruction has not been compiled
into the example binary on the delivery disc. Albeit the operating system should clean
any remaining OptiX resources on program termination, small memory leaks on the
graphics hardware due to omitted destruction have been observed.

This concludes the tour over the example application.

5.3.7 Conclusion

As seen from the example application, the OptiX platform offers more of a raytracer
construction kit than an actual renderer implementation. This allows maximum
flexibility and intuitive extensibility for potential clients. For instance, the example
application required but few additional lines for the integration of shadow detection.

Yet, flexibility comes at a certain cost. In relation to traditional rendering APIs,
the OptiX API requires more complicated boiler-plate code both on CPU and GPU
side even for simple scenes. This is further aggravated by the inconsistent GPU-side
syntax and semantics, which necessitates both knowledge about the CUDA language
and the original shader influences. The latter statement is specifically aimed at the
mixed use of global, local, and parameter variables, and at the dual by-name and
by-index binding schemes. Finally, error checking and overall stability issues still
persist — although OptiX arrived at an official version 2 release half-way through
development of this thesis.

Within this thesis, most of the above problems are dealt with alongside the raytracer
component development: All OptiX functionality will be wrapped up into a more
accessible, less error-prone, and pure rendering-oriented interface in the next chapters.

Page 83 / 184

Integration of a Raytracing-Based Visualization Component

6 Renderer interface

This chapter elaborates the interface of the raytracing component that was developed
over the course of this thesis.

At first, certain requirements are reviewed that result from preceding state-of-the
art studies, Simulator X specialties, and traits of the OptiX API. These form the
foundations of the later interface design.

The remaining chapter follows a top-down route in explaining the interface archi-
tecture. Initially, an overview over the entire rendering process is presented. The
following sections diverge into subordinate modules of the renderer. The resource
management strategy of the renderer is detailed, and scenes are composed from re-
source instances. Scenes in turn are enqueued into a command buffer to control the
rendering process. Thereafter, guidelines on the implemented multithreading require-
ments and blocking behavior are defined in the context of application timing. Finally,
design alternatives that have been considered and dismissed during the initial design
phases are reviewed.

The chapter ends with a short recap of the entire interface design.

6.1 Requirements

The first relevant design requirement concerns the level of abstraction within the over-
all renderer architecture: Instead of a hard-coded, client-exposed integration with the
OptiX platform, it was decided to require but a general-purpose rendering interface.
Motivation for this requirement was the concise, API-independent interface design of
the Ogre3D engine.

There are several benefits to a general layer of abstraction that mediates between the
client and an actual API-specific back-end. For instance, a general interface must be
reduced to most noteworthy, shared aspects of the rendering process. This encourages
the development of slim and intuitively used rendering components. Furthermore, a
general rendering interface promises a seamless switch of the implementation from a
conventional rasterizer to a raytracing algorithm, both for performance comparison
and future extensibility. Finally, once in place, a standardized rendering interface
abstracts even from the current jVR-specific component within Simulator X. In turn,
semantic coupling between client components and the graphics system can be reduced.

Another design requirement concerns multithreading functionality. In particular, the
rendering component was required to support both client-side and internal worker
threads of various types. Such support is hard to retrofit into existing systems, and
comes at almost no cost if done correctly from the start. Even in the context of a
Simulator X rendering component, where there typically is but a single thread within
each actor, there are advantages to a multithreaded rendering kernel — for instance,
in terms of a subordinate resource loader or particle system actor.

Finally, certain performance factors have been a requirement for the interface design
as well. While early optimization in popular belief is despised as the ”root of all
evil”, this does not apply to general design strategies. In contrast, a performance

Page 84 / 184

Integration of a Raytracing-Based Visualization Component

bottleneck induced by the fundamental architecture of a system may even require a
total rewrite on deferred optimization.

On review of all three design requirements, one must note that these interact with
each other and formulate partially exclusive conditions. For example, multithreading
support must not be exposed on the client-side interface via unintuitive, mandatory
locking before certain operations. At the same time, multithreading support must
not be designed as to infer too much of a performance burden. Likewise, performance
optimization must not violate intuitive usability of the general interface.

For the resolution of potential conflicts, the above introduction order of requirements
has also been used in architecture priorities: The utmost goal was an universal and
intuitive client-side interface, followed by multithreading support, and performance
considerations on third place.

6.2 Rendering process overview

The preceding section named an universal, slim, and intuitive client-side interface as
the most important requirement of the renderer design. To provide this interface, the
core renderer architecture allots for several small functionality modules that trans-
parently collaborate with but few other modules — a contribution to the cohesion
and coupling concepts within Simulator X, albeit at a lower level.

In a typical scenario, the client applications create, use, and destroy functionality
modules in a well-defined order. At first, a client application needs to create the actual
renderer component. Within this thesis, the renderer component is also referred to as
a rendering context, realized by the RenderContext interface and later implementing
classes.

Once an appropriate RenderContext has been created, the client mostly communi-
cates with the RenderContext via the creation, update, and destruction of render-side
objects. Render-side objects represent data that is shared between the client and the
renderer, but is held in a format dependent on the implementation of the RenderCon-
text. Example render-side objects are textures, meshes, cameras, or scenes. Further
utility modules, such as a resource cache module, help the client with the management
of render objects.

To show the current state of one or more virtual scenes after any updates, the client
must trigger the actual rendering process. For this, a set of rendering commands is
collected within client logics. Commands contain viewer information, scene selection,
and additional rendering configuration. The command set is passed to the Render-
Context for display. Again, certain helper modules, like a separate rendering thread
instance, support this stage of the rendering process.

Finally, the client needs to shut down the application at one point or another. Thus,
all shared render objects need to be released on client-side. Only then should the
RenderContext itself be destroyed.

Figure 6.1 provides a more abstract overview over the relations between the client
application and various components of the renderer interface.

Page 85 / 184

Integration of a Raytracing-Based Visualization Component

Figure 6.1: Abstract overview over collaboration between a client application and
the renderer interface.

This concludes the overview over the entire rendering process. In the following,
certain submodules of the above process are re-investigated in detail. In particular,
this refers to various render object types, to the collection of commands that controls
the actual rendering, and to the standalone auxiliary modules.

6.3 Render-side objects

In the preceding summary of the rendering process, render-side shared objects have
been introduced as the most important communication channel between client and
renderer: Render objects such as textures or geometry instances are used to compose
the virtual scene that is later on shown by the application. The following text provides
more in-depth information about render-side objects, their life-cycle and their use
within client applications. The RenderObject interface is derived from the life-cycle,
and the two major functional varieties of RenderObjects are introduced.

6.3.1 Object life-cycle

From the point of view of the client application, render-side objects exhibit the fol-
lowing life-cycle:

• Creation

Page 86 / 184

Integration of a Raytracing-Based Visualization Component

Creation of render objects follows a run-of-the-mill factory pattern, where the
RenderContext acts as the factory instance for a concrete type of render object.
A shared reference to the new object instance is returned to the client.

Shared references are used to control the remaining object life-cycle to ensure
correct object release. At the same time, shared references enable sharing of
a single object even over multiple users within both the client application and
the rendering subsystem — even over users within different threads.

• Life

After object creation, the client is responsible for holding onto at least a single
copy of the returned reference to the render-side object as long as the object is
required.

In a standard use case, a client now regularly modifies render objects to update
and animate the virtual scene. At one point or another, the client might query
object states as well.

As a preview on later multithreading guidelines, any state-changing or state-
querying operations on render objects require particular design care to achieve
concurrency-free behavior and high performance within threaded applications.

The respective solution mostly involves intermediate buffering of incoming state
changes. Buffered changes are only applied to the render object contents on
certain synchronization events that are triggered by either the RenderContext
or client logics. Due to its importance, buffering must already be considered in
the initial render object design.

• Release

Once the last client-side shared reference to a render-side object (including
any client-accessible reference to said object within any other object) has been
released, the RenderContext is free to destroy the object at any later time.

The delay between client-side reference release and actual destruction of a
render-side object is required to accommodate for later multithreading. In par-
ticular, an object still may be in use from within a separate rendering thread
even though no client-side references remain. Destruction of any orphaned
render-side objects may be enforced by certain RenderContext operations such
as purge or forced synchronization. These are detailed at a later point.

Finally, one should note that cyclic, shared object dependencies are to be
avoided to ensure correct destruction. This implies that render-side objects
do not carry an owning reference back to the RenderContext to avoid shut-
down problems because of leaked object references. Yet this also means that
the RenderObject interface must provide a detach function to tell any object
that its associated RenderContext has been destroyed prematurely. This allows
the object to release any actual render-side data and fall back to a safe default
state.

With synchronization and rendering, the lifetime and usage of a single render-side
object might proceed as depicted in the sequence diagram of figure 6.2.

Page 87 / 184

Integration of a Raytracing-Based Visualization Component

Figure 6.2: Sequence diagram for RenderObject usage from creation over update
and rendering cycles to destruction.

6.3.2 RenderObject interface

The above life-cycle induces a basic RenderObject interface and associated functions:

Function Description

RenderObject—

create Default-initialize object.
modify Enqueue object state change.
query Query object state.
synch Apply any pending state changes.
release Release a single client-side shared reference,

objects are not destroyed immediately.
detach Detach leaked object from destroyed context.
destroy Destroy object during context-wide synch or purge.

In this context, any operations that involve the object’s state — buffering on modifica-
tion, query, and synchronization — exhibit a rather free functional specification: The
actual buffering scheme is not restricted. Such refinements are provided by functional
overrides but within derived interface types.

Page 88 / 184

Integration of a Raytracing-Based Visualization Component

6.3.3 RenderObject varieties

Concrete render-side objects come in two major interface varieties which derive from
the basic RenderObject interface:

• RenderResource

On the one hand, render-side resources capsule large-scale binary data. BLOBs
— or binary large objects — is a term often used here. Example resources
are GPU-stored textures or triangle meshes. Resources are represented by the
subordinate class hierarchy rooting at the RenderResource interface.

• RenderPuppet

On the other hand, render-side puppet objects represent remote controlled ob-
jects in the virtual, interactive scene. Typically, puppet objects combine one or
more resource objects into a single physical instance. For instance, a character
puppet might link to the appropriate triangle mesh resource and the associated
texture resource. However, there also are puppets with more abstract seman-
tics, such as scene cameras or light sources. Even the virtual scene itself is
considered a render-side puppet to allow for recursive scene compositions. The
base class for all puppets is the RenderPuppet interface.

Both RenderResources and RenderPuppets are detailed alongside their interfaces and
functional specialties in the following sections.

6.4 Resource management

This section explains the interface devised for renderer-side resource management.
For review, render-side resources are large-scale binary objects (i.e. images, geometry
data, shaders) that are managed in an implementation-specific storage format within
the rendering component for performance reasons.

At first, the RenderResource interface itself and its functional characteristics are
discussed in detail. Alongside this discussion, all concrete resource types derived
from the RenderResource interface are presented.

Thereafter, the management of resources is discussed. Intuitive and safe resource
management is a difficult topic, mainly because there are many different requirements
dependent on the later client application. Thus, a wide spectrum of use cases is
defined that the later resource management should comply to. Finally, the actual
management strategy is chosen.

6.4.1 RenderResource interface

As stated in context of the RenderObject interface, the actual buffering behavior of
state-changing operations (state modification, state queries, and synchronization) is
defined but by lower-level interfaces. Thus, RenderResource characteristics are now
analyzed to derive an appropriate interface refinement.

Page 89 / 184

Integration of a Raytracing-Based Visualization Component

The most important common ground of all resource operations concerns the amount of
data involved. As render-side resources hold large-scale data, appropriate operations
typically move large amounts of data as well. Thus, a simple two-state double-
buffering scheme — one state for a single, current renderer and another state shared
by all client threads — becomes infeasible.

Instead, a move semantic has been integrated as the resource buffering strategy. Any
resource operation that attempts to modify the resource state buffers appropriate
results within the resource. On state synchronization, the buffer is copied into the
state of the resource. Thereafter, the buffer is not required anymore, and thus is
discarded to conserve memory.

For example, if a texture resource is retrieved from disk, the resource is not changed
immediately. Instead, bitmap contents are read and stored in intermediate memory
within the texture object. Once state synchronization occurs, the in-memory image
is copied to the graphics hardware and used in consequent rendering. Finally, the
in-memory image is released again to conserve host memory.

As incoming, buffered resource modifications are discarded on synchronization,
queries cannot rely on the presence of any CPU-side resource representation. Thus,
it has been decided to always fetch resource data from the actual resource state on
any incoming queries.

The following table recapitulates the functional overrides within the RenderResource
interface:

Function Description

RenderResource—

modify Create new buffer with incoming data.
query Retrieve render-side data directly.
synch Apply modification to render-side state,

then drop client-side state to conserve memory.

6.4.2 Resource types

All actual resource types derive from the RenderResource interface. Within the cur-
rent concept, the following resources have been included:

• Texture

A Texture resource corresponds to a render-side stored bitmap image.

• Shader

The Shader interface represents some programmable component of an object’s
surface. This includes procedural textures and special material effects.

• Material

A Material resource binds together a Shader and a Texture resource, and de-
scribes the look of a scene object.

Page 90 / 184

Integration of a Raytracing-Based Visualization Component

• Model

Model resources store a potentially animated triangle mesh, associated bones,
skeletal poses, texture coordinates, vertex normals, and other auxiliary data.
Additionally, they link their contents to a series of corresponding Material re-
sources.

Note that certain resources contain owning references to other resources to allow for
reuse of shared assets. However, there is no cycle in the resource dependency graph.

Each resource type is implemented anew alongside each RenderContext implemen-
tation. Reimplementing in this respect still does not necessarily imply any code
redundancy, as each context implementation has its own internal storage format that
is optimal for the context’s rendering API. Certain components that are shared be-
tween resources or implementations later on can be decoupled by aggregation or
composition patterns to maximize code reuse and minimize redundancy.

On client-side, the actual resource implementation is hidden via the RenderContext
factory methods and the base resource interfaces.

While each resource type has an abstract interface of its own, a complete enlistment of
these exceeds the scope of this thesis. In particular, each resource type only diversifies
on the state change, synchronization and query concept for basic resources — new
concepts are not introduced. As a sole example, the following table provides concrete
functions for texture-typed resources:

Function Description

Texture—

set Copy in-memory image into state buffer.
load Copy on-disk image into state buffer.
query Copy render-side image into client representation.
synch Apply state buffer contents to render-side image,

release state buffer thereafter.

Corresponding explanations for other resource types may be found within the auto-
generated Doxygen documentation that accompanies the source code delivery.

6.4.3 Resource management requirements

As stated above, there are many concurrent requirements that may be impeded on
a resource management module for a rendering component, depending on the actual
client application. The following three example use cases present a broad spectrum
of potential client applications:

• Use case 1

For instance, a basic rendering client application desires but a slim resource
management interface. There are few resources, all of which are loaded into

Page 91 / 184

Integration of a Raytracing-Based Visualization Component

main or graphics memory on program startup. Each of the resources comes
from a single on-disk file that is intuitively specified on resource creation. At
fixed points throughout code — such as due to an environment change — all
resources are dropped, and new resources are retrieved from disk again. This
use case matches up with the proof-of-concept applications available for the
Simulator X platform.

• Use case 2

On the other extreme, consider a large-scale world simulation, such as provided
by MMORPGs like the popular World of Warcraft. Here, the entire world does
not fit into memory at once. Intermediate loading pauses are not acceptable,
as these disrupt both the simulation flow for the local client, and the feeling
of immersion into a boundless virtual world. Thus, an in-situ resource caching
scheme has to be devised. To ensure steady logics processing, this caching
scheme furthermore needs to be outsourced to an extra thread.

• Use case 3

Finally, a scientific visualization application may not use file-based resources at
all. Instead, all render-side resources are generated from an in-memory repre-
sentation of a large problem working set.

The current resource management design has been chosen as to allow the maximum
flexibility, without restrictions on either of these client-side use cases.

6.4.4 Resource management strategy

Resource management requirements are vastly different among the above use cases.
While one application requires near to no resource management, another relies on
heavy management logics with constant resource loading and unloading.

This conflict of interest cannot easily be solved by integrating resource management
into the renderer component. Each client would be affected by the chosen resource
management strategy, and undesired coupling would result.

Instead, it is advisable to create an optional, plug-able resource management compo-
nent. In this design, the core RenderContext interface — available even without any
resource manager instance — just is responsible for creation and destruction of plain
resources. The actual resource lifetime management is handled either directly by
client-side shared pointers, or by the plug-able resource manager. Use case 3 already
is satisfied by these options.

Through different resource managers, in turn, different resource management strate-
gies can transparently be realized. Within the current design, one example resource
manager component is implemented in the form of the RenderCache interface. This
component allows for many of the most typical resource operations, and thus benefits
both use case 1 and use case 2.

The most noteworthy feature here is the binding of shared resource references to re-
source names: Resources themselves have no concept of any associated file name,
mainly since there are types of resources — procedurally generated textures, or

Page 92 / 184

Integration of a Raytracing-Based Visualization Component

runtime-built materials — that do not have an associated file. Instead, file-based
resources may be requested at a RenderCache by their file name. The resource cache
in turn looks for the resource within a filename lookup map. If the cache contains no
resource with the provided filename, it creates a new resource at the RenderContext
factory. Then, the resource cache triggers resource loading from the client-provided
file, and on success attaches the completed resource to its internal lookup structure.
Finally, the RenderCache returns the shared resource reference to the client.

This setup even allows for the optional load-time resolution of shared resource depen-
dencies. For instance, two material resources might reference the same texture file.
Yet there should only be a single, shared texture instance within the application to
conserve memory and improve load times. This is achieved by integrating the Ren-
derCache into resource loading code: Whenever a RenderCache is provided alongside
a resource loading operation, any dependencies are recursively resolved by the use of
the resource cache.

On the downside, by-name dependency resolution obviously couples a dependency on
the RenderCache into any resource-specific loading code. Albeit this is generally un-
desired, the appropriate integration is not forcibly exposed to the client. Furthermore,
functional coupling cannot be avoided for this case study.

Suitability of the RenderCache for use case 2 is substantially improved by the provided
slim client-side interface: A slim interface can provide intuitive threading behavior
for the use from within an external resource loading thread.

Another facet that requires attention is the realization of the cache-internal lookup
map. Storing shared resource references within a RenderCache interferes with client-
side resource release strategies. In particular, a client then had to keep track of
resources within the cache, and had to release these alongside its own resource refer-
ences. Thus, a better design stores non-owning references within the resource cache.
On resource requests, any invalid non-owning references (i.e. references whose re-
sources have been destroyed already) are not considered. In this case, normal resource
creation and loading commences.

On constant resource loading and unloading, or after any large resource unloading
operation, it is advisable to clean any weak references to deleted resources from the
resource cache. This is especially relevant to avoid memory pollution within use case
2. Thus, a corresponding client-side purge function must be devised.

Finally, certain applications (consider use case 1) require a full cache-clearing opera-
tion that removes all by-name bindings from the cache.

In total, this leads to the following RenderCache interface:

Page 93 / 184

Integration of a Raytracing-Based Visualization Component

Function Description

RenderCache—

request Lookup resource in cache by file name.
Create, load, and store in cache if not found.
Any dependencies are resolved within this cache.

purge Remove orphaned resource references.
clear Remove all resource references.

6.5 Scene and puppet management

Similar to RenderResources, RenderPuppets also host render-side specific data. How-
ever, unlike resources, puppets have but small-scale data (e.g. position, direction, or
resource references) that is regularly updated.

This immediately brings up the question whether any such render-side representation
is required at all. In fact, within a traditional rasterization setup, such as in [OS11], no
separate scene representation is required within the rendering component. Instead,
scene data often is merged into the scene graph or the application logics graph.
Rendering then is performed by a visitor pattern, where traversing a node sends the
appropriate object on to the rendering component. In this case, the optimization
structure is not dictated by the rendering kernel, but by application logics. For
instance, both a PVS-based rasterizer and a portal engine can use the same rendering
back-end, but provide a different traversal logic.

Yet, this approach does not work out for a raytracing back-end: For the optimal
asymptotic performance of O(log t), a raytracer needs to maintain a hierarchical scene
structure. The layout of this structure heavily depends on the raytracer back-end.
As detailed in the previous chapter, OptiX uses a lose bounding box tree over all ob-
jects. This tree is not regenerated in-situ on each frame, but only adapted on object
movement to maintain time coherence for improved performance. Thus, client-side
encoding of the optimization tree via a visitor pattern is not possible. Furthermore,
directly merging the tree into application logics creates undesired hard coupling be-
tween application logics and the rendering subsystem implementation.

Consequently, RenderPuppets have been integrated into the RenderObject hierarchy
as a flat, interface-only representation of any render-side scene structure.

6.5.1 RenderPuppet interface

Just as RenderResources, RenderPuppets have certain traits that affect their basic
RenderObject functionality.

Contrary to RenderResources, the introduction of a temporary buffer for any incom-
ing state change is not desirable, though — in particular, due to the high update
frequency and small-scale involved data.

Instead, a constant double-buffering scheme is used. Within this scheme, each Ren-
derPuppet separates up into two internal states: A client-side state on the one hand,

Page 94 / 184

Integration of a Raytracing-Based Visualization Component

and a render-side state on the other. The former is used concurrently by any client
threads for state modifications and query operations. The latter is restricted for use
by any rendering thread, and holds the scene data that actually is displayed. On any
synchronization operation, the client state is temporarily locked and copied over to
the render-side state. Thus, pending modifications are accepted.

This elaboration yields the following puppet-specific interface:

Function Description

RenderPuppet—

modify Change client-side state.
query Query client-side state.
synch Copy client-side to render-side state.

6.5.2 Puppet types

Rendering puppets come in various types, all derived from the above RenderPuppet
interface. Each puppet type targets a very specific use case. Currently, the following
puppet types have been implemented:

• RenderScene

A RenderScene holds an assorted pool of RenderPuppets that can be rendered
in one go. A RenderScene itself also is a RenderPuppet to allow for stacking of
RenderScenes.

• LightPuppet

A puppet that represents a single light source within the scene. For compati-
bility with the fixed function pipeline of the original jVR rendering component,
lights provide a basic, fixed-function inspired parameter set. However, parame-
ter interpretation depends entirely on the RenderContext implementation. For
instance, a later advanced raytracer may introduce soft shadows or HDR ren-
dering.

• ViewerPuppet

A scene camera is encapsuled into the ViewerPuppet. Cameras are defined
via their position and orientation in space, as well as the associated projection
mode.

• SpherePuppet

This puppet provides a traditional raytracer testing sphere, with origin, radius
and a Material reference.

• RiggedModelPuppet

A rigged model puppet allows to position a skeleton-animated Model resource
into the scene. Additionally, the bone setup for the model is provided to select

Page 95 / 184

Integration of a Raytracing-Based Visualization Component

an appropriate pose. In this context, note that the raytracer back-end pro-
vides basic animation capabilities. However, skeletal animation is currently not
integrated within the Simulator X platform and thus unsupported.

• StaticModelPuppet

This puppet places a non-animated Model resource into the RenderScene. In
contrast to a RiggedModelPuppet, this allows for certain renderer internal op-
timizations, as no bones are used for display.

As with RenderResources, the implementation for each puppet interface type is hid-
den by the opaque base interface and the opaque RenderContext factory methods.

Once more, a full overview over functionality in each puppet type exceeds the scope
of this thesis. However, the following RenderScene and StaticModelPuppet interfaces
are representative for all other puppet interfaces:

Function Description

RenderScene—

add Add a puppet in client-side state.
remove Remove a puppet in client-side state.
get Return any puppet within client state by index.
synch Synch render-side and client-side puppet list.

StaticModelPuppet—

setPosition Apply client-side transformation.
getPosition Return client-side transformation.
setOrientation Apply client-side orientation.
getOrientation Return client-side orientation.
setModel Apply associated client-side model resource.
getModel Return associated client-side model resource .
synch Synch render-side and client-side model data.

This concludes the overview over the RenderObject hierarchy. Both RenderResources
and RenderPuppets have been described and their interfaces have been presented.

An example overview over the entire RenderObject hierarchy including potential
implementing classes is presented in figure 6.9.

The next section explains how RenderScenes actually are selected for rendering, and
describes how the client initiates the rendering process.

6.6 Process control

In this section, the mechanism that is used to control the rendering process is elabo-
rated.

Page 96 / 184

Integration of a Raytracing-Based Visualization Component

Figure 6.3: With push semantics, a client notifies the renderer whenever a new
frame should be processed.

Most importantly, the RenderContext must be notified whenever rendering of a new
frame shall commence. For each frame, the RenderContext additionally must know
which of the scenes to display, and which parameters to use for rendering. Parameters
include the camera position, the viewport within the application window, and an
implementation-specific rendering technique.

All such information is sent to the renderer by a command-driven interface. Render-
ing commands and their use are discussed in the following. With the discussion of
the rendering control mechanism, all essential renderer functionality has been intro-
duced. Thus, the section concludes with a final definition of the main RenderContext
interface.

6.6.1 Commands and command buffers

In the initial discussion on the command architecture, only general rendering param-
eters are considered — for instance, the source scene and the target camera.

All parameters that are required for single rendering pass on any scene are bundled
within the RenderCommand type. To continue on the above example, a RenderCom-
mand holds shared references to a single RenderScene and an appropriate Camera
puppet.

Rendering commands, in turn, are aggregated in a RenderCommandBuffer object.
Command aggregation allows to render various scenes and viewports in a single ren-
dering run.

It is the responsibility of the client to accumulate suitable commands for desired
rendering operations within a command buffer for each frame.

Finally, the client passes a complete RenderCommandBuffer to the RenderContext for
processing. This triggers the rendering of a single frame: The RenderContext runs
through all commands within the buffer in FIFO order, and executes appropriate
rendering operations for all objects within each scene via the implementing back-end.

The command-based strategy associates push semantics with renderer control. These
are illustrated in figure 6.3.

The advantage of push-semantics over other approaches — such as event-driven
schemes or pull-semantics — is the intuitive client-side interface. In particular,

Page 97 / 184

Integration of a Raytracing-Based Visualization Component

thread-safety guidelines are intuitively implemented and documented for a push-based
architecture.

6.6.2 Rendering techniques

Unlike implementation-independent rendering parameters, concrete rendering tech-
niques and their options cannot be included into the general RenderCommand type:
As seen in chapter 2, there are lots of different approaches to rendering, and each of
these requires few parameters of its own. For instance, a raytracing-based renderer
may expose whether to use secondary rays for lighting calculations. A rasterizer, on
the other hand, might provide a technique switch for choosing between forward and
deferred light calculations.

Consequently, rendering techniques can only be accessed on implementation level.
All technique parameter sets, however, must derive from a shared, function-less Ren-
derTechnique interface. A single object with the RenderTechnique interface in turn
can be attached to each RenderCommand to specify a technique for rendering of a
single scene.

This setup allows maximum flexibility while maintaining a common code path for
standard rendering operations. The setup also implies that any technique-specific
application code has to be written against an implementation class. This can’t be
avoided though, and usually any such code is small and well-placed.

6.6.3 RenderContext interface

With all subordinate functionality modules in place, the RenderContext interface
itself easily is assembled.

The first group of functions deals with high-level management of RenderObjects:

• For each RenderObject type (Material, RenderScene, Model, StaticModelPup-
pet, ...) an unique factory function is available.

• The entry point for global object synchronization is contained within the Ren-
derContext. On synchronization, buffered state changes within all RenderRe-
sources are applied, and the client-side state of any RenderPuppet is copied to
the render-side state.

• Finally, the context offers a global purge function. Purging enforces the actual
deletion of any RenderObjects that have completely been released by the client.

Apart from the management of render-side objects, the RenderContext interface con-
tains the main rendering entry point as well. Here, the client provides the accumulated
command buffer, and thus triggers the rendering process and the display of a new
frame.

In the current design, rendering has two side-effects:

On the one hand, the RenderContext automatically issues synchronization on each
RenderObject and RenderResource touched during rendering. This partially conflicts

Page 98 / 184

Integration of a Raytracing-Based Visualization Component

with the manual synchronization function, but in practice, both functions have been
useful for one client or another.

On the other hand, the RenderContext cleans up an arbitrary amount of orphaned
RenderObjects to keep a low memory profile. Again, this overlaps with interface
functionality — this time, the manual purge. However, for large virtual environ-
ments, the manual purge is inefficient and only used offline, for example at load-time.
In contrast, the renderer-internal purge always works online, and without further
difficulties for the client. This is a much larger benefit than the more clean design
achieved by exclusively manual purges.

The finished RenderContext interface is summarized in the below table:

Function Description

RenderContext—

createObject Create new, default-initialized RenderObject.
synch Accept all buffered changes for any RenderObject.
render Display render-side state of scenes in command buffer,

and remove some unreferenced, shared RenderObjects.
purge Remove all unreferenced, shared RenderObjects.

6.7 Window management

Albeit functionality for the actual rendering process is complete now, another vital
part of the renderer still is missing: The current architecture elaboration does not
consider any way to manage the output window.

This attributes to the fact that all windowing functionality has been outsourced into a
separate WindowContext interface. In turn, unnecessary coupling between two mostly
unrelated modules — namely the renderer and the window manager — is avoided.
In particular, a single window manager can be attached to several other subsystems
(audio, input), and can be reused over various different renderer implementations.

The WindowContext interface itself is implemented intuitively for support of different
OS-side window management systems, such as the Win32 API or Linux’s X Window
System. A window context provides both client-side and system internal functionality.
Available operations include window size and position queries as well as handlers
for certain UI element events (e.g. window closing, maximization, minimization).
However, the full interface and implementation of the WindowContext are outside
the scope of this thesis. Respective details can be found in the code documentation
that accompanies the thesis source code.

On construction of a RenderContext implementation, an appropriate WindowContext
instance is bound to it by non-owning reference. Thereafter, the RenderContext
consults the bound WindowContext for any window-related tasks. For instance, the
renderer might query the current window size to appropriately scale a pixel-sized font
image.

Page 99 / 184

Integration of a Raytracing-Based Visualization Component

As a matter of facts, one must note that certain relations between WindowContext
and RenderContext are possible on implementation level only. In particular, several
run-time and compile-time switches are required on renderer construction to adapt to
various kind of windowing systems. For example, the OpenGl rendering API requires
different calls for initialization on the Microsoft Windows and Linux platforms. Such
functionality cannot be provided by general RenderContext and WindowContext in-
terfaces. Yet, the affected code sections are small, and clean code is maintained —
thus this remains a rather theoretical design problem.

This concludes the description of the overall rendering process. In the following
section, various aspects of the renderer interfaces will be revisited, and refined in
regards to their behavior under multithreaded use.

6.8 Blocking and threading behavior

Modern CPUs provide a series of independent cores. For optimal performance, cal-
culations need to be distributed over these cores. Thus, an ideal modern rendering
component allows access for multiple client threads. For instance, there may be a
thread that reloads resources in the background, while another thread performs the
actual rendering operations, and yet another two threads update scene objects in
parallel.

However, the design of threaded components with soft realtime attributes is intu-
itively understood to be difficult: If an improper locking scheme is used for concur-
rent access, application threads may spend more time waiting for critical sections
than a standalone thread would require to perform the entire workload. Thus, a
well-considered multithreading and timing semantic has to be associated with the
precedingly defined interface functions.

This section first discusses application timing and its implications on the renderer
and client applications. Then, certain relevant interfaces within the rendering com-
ponent are reviewed in terms of multithreaded access. For each interface, additional
multithreading and blocking behavior is derived.

6.8.1 Timing

A base factor to consider when deciding on timing-related multithreading require-
ments is the application timestep mechanism.

As computers are only capable of discrete calculations, any continuous simulation
timeflow needs to be broken down into discrete steps. The timestep mechanism
describes how these steps are organized. In the following, three different time-stepping
schemes are presented. All of these are supported by the renderer and multithreading
design.

The most basic time-stepping scheme is a variable timestep. The simulation measures
the time ∆t an entire step takes for calculation. In the next simulation step, the
simulation advances all its objects by ∆t. For instance, all moving objects calculate
a new position based on their old position and their velocity by integration over ∆t.

Page 100 / 184

Integration of a Raytracing-Based Visualization Component

Rendering then typically is integrated into variable time-stepping by displaying a
single frame with the current simulation state after each simulation step.

Albeit variable time-stepping is intuitively understood, it has certain caveats. For
instance, physics simulations tend to become unstable if the step interval becomes too
small or too large. Large simulation steps may for instance be caused by a complicated
rendering image, or by a renderer resource loading operation within logics. If an
increase in the simulation step interval ∆t introduces additional complexities into
the simulation, the application may even run into a vicious cycle and come to halt.

The traditional workaround to stabilize simulations and to achieve more fluid simu-
lations is a fixed timestep system. The corresponding assumption is that the target
machine with minimum set requirements always is capable of running a single simula-
tion frame in a certain, fixed time ∆tconst. The application main loop then regularly
checks if at least ∆tconst time has passed since the last simulation frame. If so, another
simulation frame is calculated and rendered.

While the resulting fixed-timestep simulation is more stable than a variable time-
stepping approach, it does not handle peaks in simulation or rendering very well. Ad-
ditionally, most applications require different simulation and rendering rates. Eventu-
ally, most current games try to maintain a constant simulation rate of around 100hz
for responsive game logics, while rendering rates of 30hz are considered satisfying.
The fixed timestep system does not support such constellations.

Finally, a time accumulator system represents a compromise between fixed and vari-
able timestep systems. In particular, the simulation main loop in this system adds up
all time passed while idle or during calculations into an internal time accumulator.
Each complete, fixed time ∆tconst that is available in the accumulator is extracted,
and a corresponding fixed-time simulation step is executed. A single rendering step
only is performed once all potential simulation steps have been extracted (i.e. accu-
mulated time < ∆tconst). Thus, the simulation performs multiple steps to catch up
with reality if a simulation or rendering frame takes more than ∆tconst time.

To avoid a vicious cycle that results in an ever-filling time accumulator, the maximum
number of time to accumulate has a constant upper bound. On systems that are too
slow for the actual simulation, this limit is reached rather quickly, and the simulation
then slows down in relation to realtime.

In all three described time-stepping systems, the influence of the frame rendering
time on simulation logics may further be reduced by multithreading. In particular,
the actual rendering operation may be carried out in another thread. Thus, the actual
time required within simulation logics is reduced to a mere function call, instead of
an entire graphics frame. Consequently, logics steps are evenly distributed over time,
instead of batch processing. In turn, the simulation runs more fluidly and feels more
responsive.

Yet, it then is imperative to keep the remaining simulation logics code free from
conflicts with the renderer. For instance, a naive implementation might prohibit
access to any renderer object while rendering to avoid inconsistent states. The re-
sulting synchronization again serializes rendering and logics, and the advantages of
multithreaded rendering are lost.

Page 101 / 184

Integration of a Raytracing-Based Visualization Component

6.8.2 Blocking behavior

As seen from the introduction on application timing, concurrency-related waiting
times are to be avoided for a fluid simulation.

However, a completely block-less multithreaded rendering kernel cannot be realized.
For instance, access to most structures must be protected to avoid inconsistencies or
hard program crashes. At the same time, too fine-grained locking is not desirable
either. In particular, such locking strategies result in a general performance bottle-
neck, and ease the introduction of cyclic, hard-to-find deadlock situations. Thus,
multithreading and blocking behavior for all functionality within the renderer must
carefully be balanced.

In this context, the less common term blocking behavior refers to the expected waiting
time that occurs on concurrent access to a shared object. This must not be confused
with the time the actual operation takes — an operation with a large potential waiting
time still may perform quickly once access to the shared state is granted.

The relevant concept within the renderer architecture is to separate between two
different types of blocking behavior:

• Behavior for functions that potentially wait for a long time, mostly until an
entire frame has been rendered.

Such functions typically require a lock on the entire RenderContext, and access
the global state of the entire renderer. This behavior is often paraphrased as
”block on the RenderContext” or ”block on the renderer” within the remaining
thesis.

• Behavior for operations that block for a short time at most — typically orders
of magnitude less than blocking on the entire RenderContext.

Generally, such functions do not work with renderer-internal state. The remain-
ing thesis at times terms this ”non-blocking behavior”.

The ideal blocking behavior for a function depends mainly on its usage frequency:
Functions that are frequently used, such as very often per frame, must never block
on the RenderContext. Operations that are invoked less frequently are better suited
for the less intricate blocking on the entire RenderContext.

Finally, certain operations might be better off without any complete thread-safety at
all. For instance, a function might be restricted to invocation by another function
which already guarantees thread-safety.

6.8.3 Blocking on RenderContext

At first, the above concept of blocking is applied to the functions within the main
RenderContext interface: Blocking behavior is defined for RenderObject creation,
synchronization, rendering, and purging of unreferenced objects.

The creation of any sort of render-side object has unsteady, but potentially frequent
access characteristics. In detail, most frames do not involve any object instantiation

Page 102 / 184

Integration of a Raytracing-Based Visualization Component

at all. Yet, any spawning operation within a frame potentially creates many objects
in one go. For instance, once a new user enters a virtual world, her avatar puppet
has to be created, and corresponding textures and meshes have to be loaded. If each
of these operations blocks on the RenderContext, the respective waiting times cause
a perceivable on-load stutter in the simulation. To avoid this, object creation must
never block on the entire RenderContext.

This non-blocking requirement has certain implications on the implementation of
render-side objects that must be considered from an architecture point of view. Since
most rendering back-ends do not provide blocking-less multithreaded access, objects
must be initialized to some safe default state that does not contain a render-side,
implementation specific representation. For illustrative purposes, consider an OptiX
based puppet representation. On creation, no OptiX scene node can be created and
assigned to the render-side puppet state, as OptiX is not threadsafe and blocking
were required.

Consequently, a zombie state for default-initialized objects is introduced. The zom-
bie representation is replaced by actual render-side data structures but on the first
synchronization. Most design guidelines despise of zombie-like default states [MC10],
as a second code path is introduced for all object-related code that must handle ob-
jects in this state. However, there is no other way around blocking behavior here.
Furthermore, the zombie state also is required by the detach functionality that has
been included within any RenderPuppet.

Unlike object creation, object synchronization in general is required once per frame.
Obviously, multiple scene synchronizations within a frame have no effect and are easily
avoided. The only exception to this rule are background resource loaders that want
pending resource modifications applied immediately to conserve memory. However,
blocking behavior on the entire renderer is tolerable in both cases.

Object purges occur even less often than synchronization. In particular, the renderer-
internal online purge that is performed automatically during rendering operations
suits most applications already. Offline purges are executed only whenever a large-
scale loading operation has left too many orphaned objects for efficient online purging.
Thus, purges may block on the entire RenderContext as well.

In the context of object creation and object purges, it is reasonable to reconsider
client-side object release and object destruction as well. In the initial life-cycle review,
the delayed destruction scheme for RenderObjects has already been introduced. For
review, objects are not immediately deleted once the last client-side accessible pointer
is released. Instead, the RenderContext still maintains at least another reference to
each object, and releases that one on purging. This scheme was devised exactly
because of blocking behavior consequences. On the one hand, object destruction
requires mutual access to the RenderContext and thus must always exhibit blocking
behavior. On the other hand, client-side pointer release is hard to control, and could
again interfere with simulation timing. Therefore, the purge mechanism delays any
destruction operations to a point where blocking does not hurt. This elaboration also
holds for the intermediate purging performed by on each actual frame rendering.

Finally, blocking behavior for rendering itself has to be decided. The choice was made
to enforce another block on the entire context during rendering. Albeit this choice

Page 103 / 184

Integration of a Raytracing-Based Visualization Component

seems intuitive at first, it has certain less obvious implications: The invocation of
the render function blocks on the RenderContext, as rendering directly processes all
commands within the buffer and immediately displays the corresponding frame to the
user. Thus, there is no internal thread hidden within the RenderContext — but the
calling thread becomes the rendering thread. This constellation is further discussed
in the next section, where a helper class with an encapsulated, separate rendering
thread is introduced.

The below table provides a summary over the preceding blocking discussion:

Function Threadsafety Blocking on Usage

RenderContext—

createObject safe none frequent
synch safe RenderContext per frame
render safe RenderContext per frame
purge safe RenderContext rare

6.8.4 Decoupling via rendering thread

As mentioned in the initial elaboration of timestep mechanisms, a major benefit in
smooth timing is achieved by outsourcing the rendering from the main application
loop into a separate rendering thread. In other words, the blocking behavior of the
original RenderContext interface is avoided by an intermediate thread.

For client-side convenience, the interface architecture within this thesis allots a sep-
arate RenderThread class that hosts an internal rendering thread. For non-blocking
rendering, a single client thread may first test if the rendering thread is idle. In this
case, the client thread accumulates a command buffer, and provides this buffer to the
RenderThread. The buffer then is copied and sent on to the RenderContext by the
internal thread. In the meantime, program flow on client-side thread directly returns
without blocking, and the client is free to do other things.

Both of the above RenderThread functions are combined in the below interface:

Function Description

RenderThread—

isIdle Test if RenderThread is not rendering anything.
render Render provided command buffer,

blocks only if not idle currently.

The above RenderThread interface functionality overlaps with the following threading
behaviour:

Page 104 / 184

Integration of a Raytracing-Based Visualization Component

Function Threadsafety Blocking on Usage

RenderThread—

isIdle safe none frequent
render safe RenderThread per frame

and RenderContext

Finally, some thoughts are contributed to the fact that a separate rendering thread
was preferred over a solution directly integrated within the RenderContext. For one,
decoupling the RenderThread from the RenderContext interface allows to reuse a
single rendering thread over all potential RenderContext implementations. Next,
the client application is free to either use standard, blocking rendering, or the non-
blocking, threaded approach within the current design. Last but not least, the sepa-
rate rendering thread provides an option to avoid blocking against the framerate for
certain operations: Any potentially blocking operation may be performed depending
on the RenderThread’s isIdle test. For instance, an explicit synch operation does not
block against the framerate if the RenderThread indicates idle state, as no concurrent
frame rendering occurs at that time.

6.8.5 Blocking on puppets

Within a scenario involving a multithreaded client application, concurrent access to
rendering puppets must be allowed as well. Threaded updates to the rendering scene
even represents one of the most important use case for client-side parallelization.

Creation and destruction of render-side objects and thus of rendering puppets has
already been discussed alongside the blocking behavior of the main RenderContext
interface. In the following, the remaining puppet operations — state access and state
synchronization — are investigated.

In a common use case, multiple client threads perform frequent asynchronous updates
and queries on rendering puppets. Due to the update frequency, access to puppet
state must consider performance as the major design goal.

At the same time, there may be a background rendering thread that displays the
scene at the same time. Designs that involve locking a single, shared puppet state
both within renderer and client side access are error prone and lead to undesired,
long blocking. For instance, a RenderScene then had to be blocked for almost the
entire rendering pass.

This observation led to the integration of the double-buffering scheme that already
has been introduced when the puppet interface was elaborated. For review, there is
a client-side state that is accessed by clients, and a render-side state that is used for
display by any rendering thread. Both states are synchronized regularly by copying
over all client-side data to the render-side state.

With this double-buffering scheme in place, an efficient blocking mechanism for pup-
pets is intuitively found:

Page 105 / 184

Integration of a Raytracing-Based Visualization Component

On the one hand, any client-side access to a puppet only blocks against any concur-
rent access on the puppet’s client state. With but the little amount of data that is
associated with a puppet, a single access takes little time, even with locking in place.
Consequently, the system remains responsive even for many client threads.

On the other hand, access to the render-side state is only allowed for a sole rendering
thread. The rendering thread in this case already holds a lock on the RenderContext
itself, and thus the access is concurrency-free.

Synchronization fits seamlessly into the above picture if a small restriction is applied:
Synchronization may only be performed by the global synchronization function that
is contained within the RenderContext interface. Client-side per-puppet synchroniza-
tion is not allowed. Then, within the per-puppet synch function, it is sufficient to lock
but the affected puppet. As synchronization again only copies the small-scale puppet
data, the lock is fine-grained enough not to disrupt application flow for normal client
threads.

The restriction on renderer-triggered state synchronization seems arbitrary at first.
However, the alternative had been the introduction of two locks per puppet, one for
each state, which in turn created potential for cyclic deadlocks and misuse.

In this context, note that the synchronization function within the RenderPuppet
interface is not threadsafe on its own: The render-side state is not explicitly protected.
Thread-safety, however, is later on guaranteed by making the function only accessible
from within any RenderContext implementation.

In total, rendering puppets exhibit the following blocking and threading behavior:

Function Threadsafety Blocking on Usage

RenderPuppet—

modify safe single puppet frequent
query safe single puppet frequent
synch unsafe none frequent

On the implementation side, the above blocking behavior is easily realized by a single
mutex within each puppet object. The mutex then is acquired on synchronization
and on any client-side access to puppet state.

6.8.6 Blocking on resources

Thread-safety and blocking is a relevant topic for render-side resource operations
as well. Similar to puppets, resources offer five different operation types over their
lifetime: Creation at a RenderContext, resource update and readout operations, syn-
chronization, and release.

Resource creation, release, and synchronization operations match those of Render-
Puppets in their relevant access characteristics. Consequently, the same derivation of
blocking behavior and thread safety applies for resources as well. For review, creation

Page 106 / 184

Integration of a Raytracing-Based Visualization Component

and client-side release of resources are performed frequently, and thus must not block
on the RenderContext. This is achieved by a zombie-like, render-side default state
on resource creation, and by delayed destruction after client-side release by means of
the global purge function. Synchronization is only called internally by the Render-
Context as a reaction to a client-triggered global synch, and thus not threadsafe on
its own.

Just like creation and release, resource updates exhibit non-blocking behavior within
the current architecture. As already introduced alongside the RenderResource inter-
face, this is guaranteed by two separate states within each resource: one temporary
client-side state that holds any pending modifications, and one render-side state for
use by any rendering thread. On synchronization, pending modifications are applied
to the render-side state. Thereafter, the client-side state is discarded.

One might argue that most resources are updated with data only once on construction,
and that duplicate states thus only increase memory consumption. However, non-
blocking resource updates guarantee that a background resource loading thread is able
to run without disturbing the framerate of any concurrent rendering client (compare
with use case 2 of resource management).

In contrast to the above resource operations, resource queries are rather rare and
well-defined. In most interactive applications, the only data ever retrieved from a
render-side resource is viewport contents for use as a screenshot. Here, blocking
behavior is acceptable. If client-side states are dropped to conserve memory, there
anyways is a large code and time overhead for retrieving the resource from graphics
hardware. Finally, if desired, blocking on resource queries even can be averted by a
separate code path that only runs if the RenderContext is known to be idle — such
as after a call to the isIdle functionality of a RenderThread.

The overall safety and blocking behavior on the RenderResource interface is compiled
in the consequent table:

Function Threadsafety Blocking on Usage

RenderResource—

modify safe single resource frequent
query safe RenderContext rare
synch unsafe none frequent

6.9 Interpolation

The blocking behavior specified up to now already avoids most framerate inconsis-
tencies. Yet, another small improvement in rendering smoothness may intuitively be
achieved by interpolation in between logics frames.

In particular, frame rendering up to now only considers a single, completed sim-
ulation state for display. Depending on the actual time-stepping scheme, a single
rendered frame may however correspond to a fractional number of simulation frames.

Page 107 / 184

Integration of a Raytracing-Based Visualization Component

Figure 6.4: Rendering exact simulation frames results in micro lag, as one ren-
dered frame corresponds to an uneven amount of logics frame.

Figure 6.5: Timing for interpolated logics.

If this fractional part is not considered, rendering skips an inconsistent number of
simulation frames on each rendering frame. This results in a rough, micro-lagging
framerate at certain rendering and simulation rates. A corresponding situation on a
time accumulation scheme is shown in figure 6.4.

Interpolation works around this problem by keeping two states for certain objects
within the renderer. One of these holds the current simulation state, while the other
holds the state from the preceding simulation frame. On rendering, an interpolation of
these is shown, depending on the fractional part of a timestep that has passed when
rendering begins. Figure 6.5 provides an example for rendering with interpolated
logics frames.

Albeit this approach reduces timing-related micro lags, it comes at the cost of a con-
stant lag of at most one simulation frame between the current simulation state and
frame rendering. While this lag adds to the application’s irresponsiveness, it is gen-
erally less perceiveable than the micro-lag introduced by small framerate variations,
in particular for the typically high simulation rates.

In this context, one must also note that client applications are not bound to use
interpolation. In particular, an application can also always pass an interpolant of 1
to enforce display of the most current simulation state.

Finally, interpolation is only supported on objects and object states that allow for rea-
sonable and effortless interpolation. As an example, transformations of scene object
are lightweight data that is intuitively interpolated. On the contrary, texture data
is not interpolated for many reasons, such as large additional memory consumption
and rather few actual state changes.

Page 108 / 184

Integration of a Raytracing-Based Visualization Component

Figure 6.6: Multiple client threads update render-side objects (scenes, puppets,
resources) in parallel while processing a single simulation frame. All client
threads need to finish their simulation step before the corresponding, synchro-
nized state can be rendered. Then client threads restart work on the next frame.
A separate control thread manages the root application loop in this example.
Note that this figure depicts a simple, fixed timestep. Alternative timestep mech-
anisms work similarly.

6.10 Multithreaded client applications

The preceding elaborations on timing and blocking behavior already considered ac-
cess from multiple client threads at the level of single functions within each interface.
In the following, the interaction of multiple client threads with the renderer is inves-
tigated from a much higher point of view.

In particular, calculations for each simulation frame may be performed by an arbitrary
number of parallel threads. For instance, a single thread may be used to simulate
each object within the virtual scene. The specified threading and blocking behavior
then ensures that any renderer access from within client code need not consider any
further concurrent threads. Yet, to achieve a synchronized final simulation state, a
barrier over all client threads is required once each thread has performed its per-
frame workload. Only then — and only if an optional rendering thread is idle — can
another frame be rendered.

A potential multithreaded client setup is visualized in figure 6.6.

6.11 Extendability

Another vital point that up to now has not been considered in the architecture review
is the extendability of the base design with new features.

However, upgrades of the object system are rather intuitive. If any use case emerges
that has no associated object type, there are two possible design choices: First, one
tries to simulate the new object type by combining one or more existing types. If
this is not possible, or yields suboptimal performance, a new object type interface

Page 109 / 184

Integration of a Raytracing-Based Visualization Component

deriving from either RenderPuppet or RenderResource needs to be defined. Finally,
the new interface must be implemented once for each RenderContext type.

For instance, a large-scale height-field terrain with texture splatting and geo-
mipmapping is not included in the core design. On the one hand, this terrain can
be simulated by using a series of StaticModelPuppets alongside Model resources, one
for each LOD level and terrain cell. On the other hand, a new resource type might
be implemented that handles caching and LOD rebuilds automatically for improved
performance. A new puppet type would then allow to place this new terrain resource
within the virtual world.

RenderContext implementations for the support of additional rendering back-ends
are easily integrated into an existing system as well: Each predefined interface has
to be reimplemented for context specific functionality. On client-side, the interface
design does not expose any implementation details, except for a single instantiation of
a RenderContext implementing object. Yet, context creation corresponds to at most
a single line of central code, and thus is easily exchanged. An application may even
consider script-able logics that allow for runtime selection of a rendering component.

6.12 Design alternatives

During the development of the renderer interfaces and their respective functionality,
several alternative design ideas have been tested, and discarded for various reasons.
For future reference, the following text lists some alternative design choices, their
advantages, and the respective reason for rejection.

• Owning back-reference from RenderObject to RenderContext

The first design alternative relates to RenderObject handling. In particular, the
current design allots for a non-owning back-link from each RenderObject to the
corresponding RenderContext instance. This enforces an inelegant workaround
for order-of-destruction problems (i.e. detach functionality) and violates object-
oriented design semantics. Yet, with owning objects, the client application needs
to ensure that all objects are released before the actual RenderContext can be
destroyed. This is undesirable, as a single, accidentally leaked object keeps
the entire application from clean shutdown. In particular, such leaks regularly
occur within the Java integration due to the destruction semantics in the Java
garbage collector.

• Internal rendering thread in RenderContext

In the original design, the external rendering thread has been devised directly
into the RenderContext interface. The blocking behavior of the render call
was slightly modified, as to allow for an independent isIdle query directly on
the RenderContext. The advantage here is a more compact, less cluttered
system interface. Any context implementation would then, however, have had to
reimplement a thread of its own, and to provide appropriate methods for remote
control. Furthermore, resource upload operations could then not be clearly
separated from any ongoing rendering process from a client-side perspective.

Page 110 / 184

Integration of a Raytracing-Based Visualization Component

• RenderThread-internal RenderObject updates

A rather intuitive first approach places the update of RenderObjects into the
RenderThread functionality. In particular, to ensure non-blocking behavior, the
client only updates objects if the RenderThread is currently idle. This simplifies
the blocking definitions required for all interfaces, and avoids updates to Ren-
derObjects in unrendered simulation states. However, this approach also yields
a second code path through the entire application logics graph. Each relevant
logics object needs to provide a separate, logics internal state, and copies that
one over to the corresponding RenderObject on a special trigger event. Fur-
thermore, the client application must be wary not to accidentally perform any
blocking operation outside the separate code path for RenderObject updates.

• Message-based RenderObject updates

Another way to achieve the previously described non-blocking interface design
works with a general message queue setup. Within this setup, the client does
not update RenderObjects by method calls. Instead, the client accumulates
all modifications as messages inside some sort of client-side queue. Once all
updates for a synchronized simulation state have been enqueued, the message
queue is applied to the RenderContext by a single blocking call. This setup
provides a less cluttered interface, as there are fewer blocking guidelines for the
client to consider. It also is possible to unify both resource and puppet up-
dates with a single message system. On the downside, however, the messages
themselves add another, heavy-weight interface layer atop the actual Render-
Objects. Additionally, special provisions need to be provided to encapsulate
state queries into messages. Finally, the Simulator X application already im-
plements message queues for communication with the rendering system, thus
there is no need to replicate this functionality in the actual rendering kernel.
A rendering core that is centered around multithreaded messaging support is
currently under development in [TW11b].

• Rendering with pull semantics

Currently, the rendering process control is implemented with push semantics.
The client explicitly tells the renderer when to render. Yet, an alternative
design involves a pull semantics, as shown in figure 6.7. Here, the renderer
notifies an arbitrary client via a callback method or similar interface that a new
frame should be rendered. In reaction to this notification, the client performs
an appropriate scene update. This mechanism allows for more logics inside
the actual RenderContext, which in turn simplifies certain client tasks. For
instance, the entire interpolation code could be replaced by a timestep that the
renderer sends back to the client application. Yet, in the context of the Scala-
written Simulator X application, the simulation logics already run as standalone
components. Thus, a pull semantics renderer is not easily integrated. However,
the concept of a master rendering system with pull semantics again is under
current investigation in [TW11b].

• Extrapolated rendering

Apart from the currently supported interpolated rendering mechanism, support
for extrapolation intuitively is possible as well. In particular, instead of interpo-

Page 111 / 184

Integration of a Raytracing-Based Visualization Component

Figure 6.7: With pull semantics, client-side updates to scene objects are triggered
by the renderer once a new frame can be processed.

Figure 6.8: Timing for extrapolated logics.

lation in between the last two simulation frames, the current ratio of a timestep
may also be used to extrapolate from these frames. Extrapolation removes the
one-frame lag of interpolation, while still providing the smoothness of interpo-
lated rendering. Yet, extrapolation has a severe side effect: Extrapolation may
induce errors if the extrapolated state does not match up with the result of the
next simulation step. One such case is shown in figure 6.8. Subjectively, the
resulting graphics glitches have been considered worse as the small rendering
lag, thus interpolation was chosen for implementation. Finally, one should note
that extrapolation behavior can be simulated with the current interpolation
setup by adding a full timestep to the interpolation factor on rendering.

6.13 Interface summary

In the preceding sections, a general rendering interface has been designed based on a
series of initial requirements.

For review, the requirement of a slim and intuitive interface has been realized by

Page 112 / 184

Integration of a Raytracing-Based Visualization Component

small, standalone functionality modules and interface types that collaborate with
client applications by few transparent method invocations. Multithreading and safety
rules have been specified per-function. However, at no point need any client thread
know about any concurrent access by competing threads. The entire thread safety
realization has been hidden away in the actual renderer implementation. In a similar
context, most frequently used functions do not block against the framerate. This both
accounts for more intuitive client-side use, and for general design-based performance
optimization. Finally, blocking behavior has been accepted for few and rare calls on
terms of memory conservation and implementation simplicity.

As a conclusion to the interface development within this chapter, the following figures
and tables provide a summary over all interfaces within the rendering component.

The next chapter translates the below interfaces to the C++ language, and provides
an implementation based on the OptiX API.

Figure 6.9: A potential class hierarchy based on the devised RenderContext
interface and the OptiX Api.

Page 113 / 184

Integration of a Raytracing-Based Visualization Component

Function Description

RenderContext—

createObject Create new, default-initialized RenderObject.
synch Accept all buffered changes for any RenderObject.
render Display render-side state of scenes in command buffer,

and remove some unreferenced, shared RenderObjects.
purge Remove all unreferenced, shared RenderObjects.

RenderThread—

isIdle Test if RenderThread is not rendering anything.
render Render provided command buffer,

blocks only if not idle currently.

RenderCache—

request Lookup resource in cache by file name.
Create, load, and store in cache if not found.
Any dependencies are resolved within this cache.

purge Remove orphaned resource references.
clear Remove all resource references.

RenderObject—

create Default-initialize object.
modify Enqueue object state change.
query Query object state.
synch Apply any pending state changes.
release Release a single client-side shared reference,

objects are not destroyed immediately.
detach Detach leaked object from destroyed context.
destroy Destroy object during context-wide synch or purge.

RenderPuppet—

modify Change client-side state.
query Query client-side state.
synch Copy client-side to render-side state.

RenderResource—

modify Create new buffer with incoming data.
query Retrieve render-side data directly.
synch Apply modification to render-side state,

then drop client-side state to conserve memory.

Figure 6.10: Function overview for renderer interfaces.
Page 114 / 184

Integration of a Raytracing-Based Visualization Component

Function Threadsafety Blocking on Usage

RenderContext—

createObject safe none frequent
synch safe RenderContext per frame
render safe RenderContext per frame
purge safe RenderContext rare

RenderThread—

isIdle safe none frequent
render safe RenderThread per frame

and RenderContext

RenderCache—

request safe single cache frequent
purge safe single cache rare
clear safe single cache rare

RenderObject—

create unsafe none frequent
modify varies for puppets and resources
query varies for puppets and resources
synch unsafe none frequent
release safe single share frequent
detach unsafe none rare
destroy unsafe none frequent

RenderPuppet—

modify safe single puppet frequent
query safe single puppet frequent
synch unsafe none frequent

RenderResource—

modify safe single resource frequent
query safe RenderContext rare
synch unsafe none frequent

Figure 6.11: Threading and blocking behaviour for renderer functions, as well
the estimated usage frequency.

Page 115 / 184

Integration of a Raytracing-Based Visualization Component

7 Raytracer implementation

After the base component interface has been introduced, this chapter describes the
actual OptiX raytracer implementation.

First, the basic choice of C++ as an implementation language is discussed. Then, cer-
tain C++ adaptions to the interfaces from the preceding chapter are developed and
corresponding C++ interface classes are provided. This also includes full implemen-
tations for some of the auxiliary modules. Finally, the actual OptiX implementation
of the C++ interfaces is detailed, and the core raytracing process within the raytracer
component is explained. An example client application for the raytracer component
and an introduction into the conducted unit testing close this chapter.

7.1 Native and Java approaches

The primary implementation question that needs to be answered is what language
and level to implement the raytracing kernel in.

Since the Simulator X application already is written in a high level language, the
first option that comes to mind is a direct Java or Scala implementation. This yields
many advantages, such as existing high-level, OS-independent helper components and
automatic object management.

However, the OptiX SDK as well as most other rendering APIs are not directly avail-
able within Java. Instead, a custom native wrapper has to be written for optimal
performance. Direct JNA calls lead past this problem, but at an intolerable perfor-
mance penalty for the transfer of large-scale resource data.

Additional difficulties arise when combining C-style resource management with Java-
style automatic garbage collection and exception safety practices. Generally, the
only practicable choice is to use the Java finalize() method, which carries a heap of
synchronization and order-of-destruction problems.

Thus, in the course of this thesis, it was decided to use C++ as an implementation
language for the rendering kernel. This allows to both directly access the C-style
OptiX API, as well as to exploit high-level object-orientated language features. The
resulting slim C++ interface can then be integrated into Java via a low-bandwidth
wrapper that generally does not require large-scale data transfers. The resource
management problem, however, remains unsolved even by this choice, and is discussed
separately in chapter 8.

7.2 Interface implementation

Using native C++ as an implementation language, the first implementation step
involves generating C++ interface classes from the original, abstract interface defini-
tions. However, the translation from abstract interfaces to C++ code involves certain
modifications to the initial design, driven by language limits. These are detailed in
the following. Only then are some of the actual C++ interface classes presented.

Page 116 / 184

Integration of a Raytracing-Based Visualization Component

7.2.1 C++ specifics in the RenderContext interface

C++ is a rather old high-level language and thus by default does not have many
popular features known from more recent languages — such as Java’s garbage collec-
tion, pure interfaces and intrinsic thread safety. While many of these are currently
under consideration for a new C++ standard, C++ standard releases are rare, and
acceptance by compiler vendors takes some time. Finally, there are excellent exten-
sion libraries that provide various missing features. Yet, the inclusion of auxiliary
third-party libraries has been kept to a minimum to maintain a slim implementation
package.

Consequently, it was decided to use but basic C++ for the implementation work
within this thesis. Therefore, the following relevant implications on the interface
implementation have been recognized:

• C++ does not support distinct interface types. Thus, all interfaces are realized
by abstract classes.

• Up to the most current standard, C++ did not come with a standardized way
to deal with shared references. Consequently, all shared references to Render-
Objects within the base interface design have been wrapped up into a cus-
tom SharedPointer implementation. This implementation is compatible with
boost::shared ptr, and thus with the C++0X std::shared ptr — yet works even
on systems without a recent C++ compiler.

• Certain non-owning references (such as the reference from RenderContext to
WindowContext) within the interface descriptions are realized by plain C++
references or pointers. Life-time management for bindings between major com-
ponents has to be performed by the calling application. Bindings within a
functionality module are managed automatically.

• Exceptions are used to signal any errors during program execution — e.g. failure
to retrieve a resource file or out-of-memory conditions. Any client applications
must be aware of exceptions and must ensure exception safety. Due to missing
garbage collection and finally constructs, maintaining exception safety in C++
is not a trivial task.

7.2.2 Interface classes

Under consideration of the above guidelines, the C++ interface classes are intuitively
created.

As interfaces already have been defined from a functional point of view, a full elab-
oration of their C++ realization has no further benefit. Thus, the following listings
just present select few interfaces for illustrative purposes. Remaining interfaces can
be found within the source code delivery.

The main RenderContext interface is realized in the below listing. One should par-
ticularly note the separation of the logical createObject functionality into separate
factory methods for each object type.

Page 117 / 184

Integration of a Raytracing-Based Visualization Component

c l a s s RenderContext :
p r i v a t e NonCopyable

{

pub l i c :

RenderContext () ;
v i r t u a l ˜RenderContext () NOTHROW;

v i r t u a l void synch () = 0 ;

v i r t u a l void render
(const RenderCommandBuffer &b u f f e r) = 0 ;

v i r t u a l SharedPointer<RenderScene>
createRenderScene () = 0 ;

v i r t u a l SharedPointer<LightPuppet>
createLightPuppet () = 0 ;

v i r t u a l SharedPointer<ViewerPuppet>
createViewerPuppet () = 0 ;

/∗ . . . ∗/

v i r t u a l SharedPointer<Texture> createTexture () = 0 ;
v i r t u a l SharedPointer<Mater ia l> c r e a t e M a t e r i a l () = 0 ;
v i r t u a l SharedPointer<Model> createModel () = 0 ;
/∗ . . . ∗/

v i r t u a l void purge () = 0 ;
} ;

Further relevance is attributed to the fact that interface classes from the entire Ren-
derObject hierarchy already provide certain shared implementation aspects. From
a pure design point of view, this practice is questionable. However, there are just
few ways to achieve a functionality-induced implementation. Thus other solutions in-
volving aggregation or multiple inheritance have less benefits than the chosen direct
approach.

As an example, consider the back-reference to the RenderContext and the per-object
mutex in the below RenderObject interface:

c l a s s RenderObject :
p r i v a t e NonCopyable

{

pub l i c :

v i r t u a l ˜ RenderObject () NOTHROW { } ;

Page 118 / 184

Integration of a Raytracing-Based Visualization Component

protec t ed :

RenderObject (RenderContext∗ r endercontextb ind ing) ;

v i r t u a l void synchStates () = 0 ;
v i r t u a l void unbindContext () NOTHROW = 0 ;

RenderContext∗ RenderContextBinding ;

mutable DefaultMutex ObjectMutex ;
} ;

A more intricate example of shared implementation details within an interface class
is given by the RenderScene interface:

c l a s s RenderScene : pub l i c RenderPuppet
{

pub l i c :

void i n s e r t
(const SharedPointer<RenderPuppet>& puppet) ;

void remove
(const SharedPointer<RenderPuppet>& puppet) NOTHROW;

void c l e a r () NOTHROW;

protec ted :

RenderScene (RenderContext∗ r endercontextb ind ing) ;

v i r t u a l void synchStates () ;

typede f TreeSet<SharedPointer<RenderPuppet> > PuppetSet ;

s t r u c t I n t e r n a l S t a t e
{

PuppetSet Puppets ;
} ;

I n t e r n a l S t a t e C l i en tS ta t e ;
I n t e r n a l S t a t e RenderState ;

} ;

In particular, the entire list of puppets is already integrated into the RenderScene
class. This includes puppet management and synchronization between client-side and
render-side state. Renderer-specific implementing classes only have to add their own
background structures and must appropriately update these on state synchronization.

Page 119 / 184

Integration of a Raytracing-Based Visualization Component

Similar default functionality is integrated in all other RenderPuppet interfaces. For
instance, StaticModelPuppets hold a client state and a render state with instance
transformations and a pointer to a RenderModel object. State synchronization code
is readily available within StaticModelPuppet as well.

RenderResource interfaces have less default functionality than their RenderPuppet
counterparts: Only the blocking and buffering behavior for incoming client-side mod-
ifications as well as default loading routines have been implemented. The actual
processing and clearing of any pending resource data is left to the context-specific
implementation.

Finally, certain of the previously discussed functional interfaces directly translate
to C++ classes. For instance, the RenderCommand and RenderCommandBuffer
types that are used to control the RenderContext are a rigid part of the client-side
interface. Thus a context-specific implementation makes but little sense. Instead,
there are hard-coded, hand-optimized command and command buffer classes.

Likewise, there is no gain in allowing for a customizable RenderThread or Render-
Cache: Both auxiliary modules provide rather inflexible functionality, which maps to
a fixed C++ implementation. However, the use of a rendering thread and a resource
manager is optional. Therefore, clients are free to use custom modules with different
functionality if the original modules do not fit their requirements.

For reference, the below C++ class both represents and implements the original
RenderThread interface:

c l a s s RenderThread
{

pub l i c :

RenderThread (const S t r ing& renderthreadname ,
RenderContext& rendercontextb ind ing) ;

˜RenderThread () NOTHROW;

bool i s I d l e () ;
void render (const RenderCommandBuffer& b u f f e r) ;

const S t r ing RenderThreadName ;

p r i v a t e :

void renderThread () ;
s t a t i c void renderThreadStat i c (void ∗ startupparam) ;

RenderContext& RenderContextBinding ;

DefaultMutex ClientMutex ;
DefaultThread Interna lThread ;
De fau l tS i gna l HasBuf f e rS igna l ;

Page 120 / 184

Integration of a Raytracing-Based Visualization Component

RenderCommandBuffer I n t e r n a l B u f f e r ;
} ;

This concludes the presentation of noteworthy C++ interface classes.

7.3 OptixContext implementation

In the preceding section, the client-side C++ interface classes have been discussed.
In the following, their OptiX-specific implementation is examined.

At first, the general implementation-side class layout is presented. Thereafter, the
realization of classes within the context of the OptiX platform is explained in more
detail, and the collaboration between raytracer components and the OptiX API is
elaborated. The section concludes with a tour over the RenderContext implementa-
tion from construction over the rendering entry point and predefined programmable
components to context destruction.

7.3.1 Mirror hierarchy

RenderObjects carry most of the communication data between a client application
and the raytracer implementation. Thus, the respective implementing classes for
RenderObjects, RenderResources, and RenderPuppets form the foundations of the
later main RenderContext implementation.

To allow for intuitive management of RenderObjects, the OptiX implementation in-
troduces another class hierarchy, in parallel to the class hierarchy already defined by
the client-side interfaces. The new hierarchy starts with a separate OptixObject inter-
face that corresponds to the RenderObject interface. In turn, interfaces OptixPuppet
and OptixResource inherit from OptixObject. All final implementing classes de-
rive both from the original client-side interfaces defined in the preceding chapter
and from either OptixPuppet or OptixResource. For instance, OptixModel imple-
ments both OptixResource and RenderResource. Figure 7.1 further illustrates the
implementation-side class hierarchy.

Arguably, multiple inheritance is often despised — even more so when data-carrying
parents like the raytracer’s C++ interfaces classes are involved. However, the above
constellation is a corner case. Most notably, the resulting hierarchy is an extension on
the well-known Facade pattern [EG04], where the facade reference has been replaced
by inheritance. The original Facade pattern was considered, but required additional
implementation and management effort. In particular, further measures would have
been necessary to coordinate life-times of the client-side facade object and the actual
render-side implementation. In contrast, multiple inheritance allows for convenient
life-time management on both client-side interface and implementation-side data by
means of a single shared pointer.

Each of the final implementing classes within the implementation-side hierarchy ag-
gregates objects from the OptiX API to realize respective functionality. For instance,

Page 121 / 184

Integration of a Raytracing-Based Visualization Component

Figure 7.1: The final, implementation-side RenderObject hierarchy.

Figure 7.2: The above graph shows the translation of references in-between client
interfaces to respective objects from the OptiX API via intermediate implement-
ing classes. Any links to OptiX data buffer objects are not hard references, but
instead realized by device-side variables.

each OptixRenderScene instance is attached to an OptiX group node that encapsu-
lates all further scene objects. Certain device-side variables are mapped to imple-
menting classes as well. General relations between client-side interfaces and OptiX
API objects are further illustrated in figure 7.2.

In the following, the internals of the OptiX API integration are investigated in depth
for all RenderPuppet and RenderResource implementations.

Page 122 / 184

Integration of a Raytracing-Based Visualization Component

7.3.2 Resource implementation

The below list elaborates the contents and behavior of each OptixResource imple-
mentation class:

• OptixTexture

An OptixTexture implements the Texture interface and houses the OptiX rep-
resentation of a single texture. All texture data is stored in form of a device-side
data buffer.

In terms of texture data updates, the client application first sends an image to
the parent Texture instance by an appropriate client-side interface invocation.
The Texture instance buffers the respective image directly within the client-side
interface class. On synchronization, the OptixTexture implementation detects
any such incoming image within its parent’s data. The image is then copied
into the device buffer, and the host-side image is cleared thereafter.

The convenience texture loading function provided by the parent Texture in-
terface works similarly: It loads a texture image (BMP, TGA, or JPG format)
from disk, and buffers the resulting host-memory representation for processing
by the OptixTexture implementation.

In the context of texturing, two vital restrictions in the OptiX API must be
noted:

On the one hand, OptiX currently supports but four-component, floating point
RGBA images. Any incoming textures are automatically converted into this
format at the expense of device-side memory. Any other image formats result
in graphics artifacts or system freezes. This stability problem is reviewed in
greater detail in chapter 9.

On the other hand, one must note that the OptiX API for now does not support
mipmapping. Thus, a single data buffer is sufficient at the moment. Yet, code
for automated mipmap generation has already been included in the implemen-
tation, and can be enabled by uncommenting once OptiX mipmapping support
is released.

• OptixShader

As an implementation of the basic Shader interface, an OptixShader houses
entry points for both programmable components that are directly involved in
the calculation of ray results: Closest-hit and any-hit programs.

Initialization and updates on an OptixShader are rather intuitive: Alongside
the respective loading method invocation, the client passes a general name for a
shader file. This name is buffered as pending data within the basic Shader class.
On synchronization of an OptixShader, any incoming file name is retrieved from
the parent Shader. An intermediate virtual file system (which is outside the
scope of this thesis — see appendix A for details) translates the incoming file
name into an actual on-disk file.

The file extension is used to figure out file contents:

On the one hand, clients can directly pass in a .ptx shader file. In this case, the
assembly is retrieved into memory by the virtual file system and re-compiled for

Page 123 / 184

Integration of a Raytracing-Based Visualization Component

the current GPU device. Finally, closest-hit and any-hit programs are located
by compulsory function names. These are described in depth alongside the
overview over client-side programmability in 7.3.4.

On the other hand, custom XML shader definition files are supported. These are
recognized by a .shd extension, and contain a map of context type to context-
specific shader files. Within this map, the OptiX implementation finds the file
name of a suitable PTX shader file. The PTX shader file in turn is applied
regularly.

The latter approach is particularly relevant because it allows to specify shaders
within client code in an implementation-agnostic way. In turn, the RenderCon-
text implementation can be exchanged without touching any client-side resource
names.

• OptixMaterial

An OptixMaterial serves three purposes: It integrates an OptiX material object
into the Material interface, connects closest-hit and any-hit programs from an
OptixShader, and binds the image data buffer from an OptixTexture.

Material loading follows a scheme quite similar to the loading process for shader
resources. The base Material class buffers an incoming material file name, which
is applied by the OptixMaterial class but on synchronization.

Usually, the client specifies the name of a general XML description file, exten-
sion .mat. This file contains a tuple of shader file name and texture file name.
The OptixMaterial retrieves both file names, and either creates corresponding
OptixTexture and OptixShader objects, or fetches these from an optional Ren-
derCache. Thereafter, shared references to the connected shader and texture
resources are stored within the parent Material interface for life-time manage-
ment and client accessibility.

Instead of a material XML file, the client can directly indicate the name of
either a Shader or Texture resource. These are recognized by appropriate file
extensions. In turn, only a single corresponding resource is created or retrieved
from the RenderCache. Instead of the omitted texture or shader, a default
OptixShader or OptixTexture instance is referenced.

Once shader and texture resources have been linked, the OptixMaterial creates
an OptiX material node. Consequently, the any-hit and closest-hit programs
from the OptixShader are attached to the new node. Finally, a device-side
variable for the texture buffer within the OptixTexture is created on the material
node and assigned appropriately.

On a side-note, a default texture is required even for purely procedural surfaces.
Otherwise, the device-side texture buffer variable remains unset, and OptiX
raytracing does not commence.

• OptixModel

The OptixModel class implements the Model interface based on the OptiX API.

The parent Model class already provides most of the model loading functionality.
Namely, various types of model files (Collada DAE, Wavefront OBJ, Autodesk

Page 124 / 184

Integration of a Raytracing-Based Visualization Component

FBX, . . .) can be retrieved into a general in-memory representation by the
intermediate virtual file system. The host memory representation in turn is
stored as pending data, and fetched by the OptixModel implementation on
synchronization.

The OptixModel thereafter translates all host-memory geometry data into re-
spective OptiX API data buffers and corresponding OptiX scene nodes.

During the translation to OptiX structures, the original geometry is split into
mesh groups with unique materials. Each mesh group is represented by an
OptiX geometry instance and a subordinate OptiX geometry object.

The actual material of each group is either created directly or requested from
a RenderCache instance. The respective material file name is typically stored
within the original mesh format or provided by an external XML mapping file.
Once an OptixMaterial has been obtained, its internal OptiX API material
object is bound to the geometry instance node. Finally, shared pointers to all
referenced Material interfaces are exposed to clients by the base Model interface.

After all materials have been handled, all geometry data of each mesh group —
vertex coordinates, normals, and texture coordinates — is moved into device-
side data buffers. Each buffer is bound to a device-side variables on the geom-
etry instance node with a predefined name. This enables a single intersection
or bounding program to work with various meshes through use of the same
code-side variables.

In this context, the OptixModel also binds global triangle intersection and tri-
angle bounding programs to each geometry instance object. These default pro-
grams are loaded on OptixContext creation, and described in 7.3.8.

Finally, the OptixModel groups all geometry instance objects within a geometry
group and an associated acceleration structure. The resulting geometry group
can now be instanced into any OptiX scene without further effort.

7.3.3 Puppet implementation

The next list describes the features of OptixPuppet implementations:

• OptixRenderScene

The OptixRenderScene class translates the puppet list within the render-side
state of the base RenderScene interface into an OptiX representation. A new
OptiX API group node is created on the first synchronization. Any children
nodes that correspond to puppets within the scene are dynamically attached
below this group object. Most notably, scenes can recursively be combined
to realize complex instancing schemes by the use of OptiX group hierarchies.
Further potential children nodes are discussed in the following.

• OptixStaticModelPuppet

The OptixStaticModelPuppet implementation class provides OptiX-specific
functionality for the non-animated StaticModelPuppet interface. In partic-
ular, the base interface already holds a shared pointer to the bound Model

Page 125 / 184

Integration of a Raytracing-Based Visualization Component

resource within the render-side state. The corresponding resource implementa-
tion class OptixModel contains an OptiX geometry instance node that bundles
together all object geometry and material parameters. The OptixStaticMod-
elPuppet only encapsulates the existing geometry instance node into an OptiX
transformation node. The transformation node finally is made available to Op-
tixRenderScene.

• OptixRiggedModelPuppet

An implementation for the skeletally animated RiggedModelPuppet client-side
interface. Unlike static models, rigged model puppets do not instantiate any
geometry. Instead, the OptiX API contents of any linked model resource are
copied into another, duplicate representation within the rigged model implemen-
tation. Then, the CPU updates respective vertex position buffers according to
the current animation pose on each state synchronization. This is quite ineffi-
cient and complicated, but attributes to the fact that OptiX intrinsically does
not support any animated geometries. An alternative implementation based on
loose bounding volumes is left for future work.

• OptixSpherePuppet

The procedural sphere class differs from the previous model classes in that it
supports but a single type of geometry with hard-coded OptiX nodes, programs,
and materials. However, one must understand that this object was designed as a
diagnostic for general renderer capabilities, and not for actual use within client
applications.

• OptixViewerPuppet

This class implements the client-side ViewerPuppet interface. All respective
functionality has been realized in ViewerPuppet already, as there is no corre-
sponding camera object within the OptiX scene structure. Instead, all camera
parameters are associated to context-wide global variables which are managed
by the OptixContext class. Further details are given in 7.3.9.

• OptixLightPuppet

OptixLightPuppet implements the general LightPuppet interface. Similar to
the OptixViewerPuppet, lights do not directly have any corresponding node
within the OptiX scene hierarchy. Any active lights rather are copied into a
specialized OptiX data buffer at the start of each new frame. This buffer in turn
is made available to any programmable components for lighting calculations by
means of a global device variable. The global light buffer is directly managed
by the OptixContext and detailed in 7.3.9.

7.3.4 Programmable component interface

As mentioned in the preceding implementation elaboration, certain predefined PTX
variables are used for communication with both custom client programs and default
programmable components. Further global variables are introduced by the Optix-
Context. The following table provides an overview over all these device-side variable
names and associated usage guidelines:

Page 126 / 184

Integration of a Raytracing-Based Visualization Component

Type Name Usage

rtBuffer<float4, 2> OutputBuffer Floating-point output image.
uint2 PixelIndex Current pixel within thread grid.

float3 CameraPosition Camera transforms.
CameraUp
CameraRight
CameraDepth

rtObject RootObject Geometry group of current scene.
rtBuffer<Light> GlobalLights Active lights, defined in 7.3.7.

optix::Ray CurrentRay Global ray for current thread.
CameraRDT CameraRD Ray data of camera-type rays,
ShadowRDT ShadowRD and shadow-type rays.

rtBuffer<float3> ModelVertices Model data of geometry instance
ModelTexCoords currently under processing.
ModelNormals Only defined for hit, intersection

rtBuffer<int3> ModelIndices and bounding box programs.

rtTextureSampler TexSampler Current texture data buffer.
<float4, 2>

float3 HitPoint Interpolated hit point, normal, and
float3 Normal texture coordinates sent from
float3 TexCoord intersection to hit program.

Similar to device-side variable names, device-side function names are relevant for
custom programmable components. In particular, functions with predefined names
are extracted from PTX files within the OptixShader implementation.

Currently, only closest-hit and any-hit functions are customizable per shader. The
raytracer employs a total of two different ray types — the already introduced camera
rays and shadow rays. Consequentially, there are four different functions that can be
defined by the client: CameraClosestHit, CameraAnyHit, ShadowClosestHit
and ShadowAnyHit. The respective function names are explicit enough that no
further explanation is required.

All four device functions must be specified inside each custom PTX file. However,
corresponding standard implementations can be pasted into the CUDA sources by
inclusion of certain CUDA headers provided within the source code delivery.

7.3.5 General OptixContext functionality

With the introduction of mandatory device-side variables and functions, most OptiX
functionality has already been described. Only the OptixContext remains for elabo-

Page 127 / 184

Integration of a Raytracing-Based Visualization Component

ration in the following sections. This section concentrates on general functionality —
construction, resource management, and synchronization. Consequent sections inves-
tigate the lighting implementation, default programs, the actual rendering process,
and OptiX context destruction.

From the perspective of a potential client application, the creation of an OptixContext
marks the entry point into raytracing.

On construction, the OptixContext is bound to a respective WindowContext imple-
mentation via a constant reference. The context uses an OS-specific switch to build
a GL output context on the target window. For review, the GL output context is
required to display the OptiX rendering result because OptiX has no display func-
tionality of its own.

After creation of the target window, the main OptiX API context is created. A GL
pixel buffer object is initialized, and mapped to an OptiX data buffer. In turn, default
OptiX programs, variables, and nodes not suited for client-side customization are cre-
ated. These are investigated in depth in the next section. Finally, the OptixContext
is ready for use.

At this point, the client typically generates a series of resources and puppets for later
rendering. On implementation side, it is not sufficient to return default-initialized
OptixObject instances. Instead, these must additionally be inserted into a renderer-
wide, shared pointer set to meet later purging and destruction specifications. This is
one of many cases where the need for a separate mirror hierarchy becomes evident:
Storing OptixObject shared pointers within this set instead of general RenderObjects
avoids many instances of dynamic casting.

Insertion of shared resource pointers into a global set of course must maintain both
thread-safety and blocking behavior rules. This is achieved by a separate creation
mutex that protects a separate set of recently created OptixObjects. On synchro-
nization, this set is merged with the global set of OptixObjects — in other words,
creation of objects is double-buffered within the Optix implementation.

The actual synchronization functionality requires but little effort in implementation:
As frame-blocking behavior is acceptable, a global lock on the entire OptixContext is
acquired, and state synchronization is invoked on every registered OptixObject. Due
to the node- and reference-based design of the OptiX platform, synchronization must
ensure that referenced objects are already up to date once the referrer is updated.
Thus, objects are synchronized in order of potential dependencies: OptixTexture and
OptixShader first, then OptixMaterial, OptixModel, thereafter all non-scene puppets,
and finally any OptixScenes.

Similar to synchronization, RenderObject purging also locks the entire OptixContext.
Thereafter, all shared pointers within the global set of OptixObjects are checked for
uniqueness. Any unique shared pointer is not used by the client anymore. Thus, the
pointer is released and the associated render-side object is destroyed. This process
iteratively continues until no more OptixObjects could be deleted.

Page 128 / 184

Integration of a Raytracing-Based Visualization Component

7.3.6 Lighting algorithm

Before any default programs of the raytracer can be presented, it is important to
review the fundamental lighting algorithm that has been implemented within the
raytracer kernel.

As described within the initial raytracing introduction, any realistic rendering process
aims at finding a solution for the rendering equation

Lo(x, ωo) = Le(x, ωo) +

∫
Ω

fr(x, ωi, ωo)Li(x, ωi)(−ωi · n)dωi.

Solving the entire equation over a discretization of all points x within the scene typi-
cally is not possible due to the involved numeric complexity. Instead, most renderers
solve but an approximation of the rendering equation. Within the approximation, a
trade-off must be found between performance and quality of rendering.

Over the years, several lighting models have evolved that consider but certain parts
of the above equation. The most popular of these models is the Blinn-Phong model
[WPf].

Within Blinn-Phong shading, only discrete parallel or point light sources are con-
sidered in terms of generated light energy. The entire light distribution integral is
further reduced to but three separately modeled effects: Ambient, diffuse, and specu-
lar lighting. Ambient lighting models transfer of general, direction-independent light.
Diffuse lighting additionally considers the angle in-between incoming light and reflect-
ing surface, and models light transfer on a completely dull surface. Finally, specular
highlighting models transfer of incoming light into a single direction — such as char-
acteristic for most shiny or metal surfaces. The final equation for light output at any
given point then is composed by adding the effects of all three models.

This yields an approximative rendering equation

Lo =
∑

Sa La,i + Sd Ld,i (Di · N) + Ss Ls,i (H · N)αi=1,...,n.

Here, Sa, Sd and Ss are constants that describe the weight between ambient, diffuse,
and specular behavior of the surface at the current point x (omitted above for brevity).
Likewise, La,i, Ld,i and Ls,i represent respective components within the incoming
light from a given light source i. In practice, these depend on the distance between
x and the light source in accordance to some attenuation rule. The total number of
light sources is indicated by n. Di defines a vector from point x to the position of
light i, and H denotes the reflection of Di along the surface normal N at x. Finally,
the exponent α controls the sharpness of the specular highlight.

Image 7.3 provides a more visual explanation of the Blinn-Phong shading model.

The most relevant benefits of Blinn-Phong shading are simplicity and performance.
For instance, Blinn-Phong shading has been in use within the fixed-function pipeline
of both DirectX and OpenGl standards. Consequentially, the Blinn-Phong model has
also been chosen for implementation within the default lighting calculations within
this thesis.

Page 129 / 184

Integration of a Raytracing-Based Visualization Component

Figure 7.3: In the Blinn-Phong shading model, the final lighting is composed
from the effects of ambient, diffuse and specular components. Image courtesy
of [WPf].

7.3.7 Device-side light buffer

In the raytracer implementation, lights for use with the Blinn-Phong model are stored
inside a custom-typed OptiX data buffer. The data buffer holds tightly packed structs
of the following Light type:

s t r u c t Light
{

f l o a t 3 Pos i t i on ;
f l o a t DummyPaddingA ;
f l o a t 4 ColorAmbient ;
f l o a t 4 Co lo rD i f f u s e ;
f l o a t 4 ColorSpecu lar ;
f l o a t SpecularExponent ;
i n t P a r a l l e l ;
i n t HasShadows ;
i n t Enabled ;
i n t DummyPaddingB ;

} ;

Most of the fields are self-explanatory or correspond to respective variables from
the above Blinn-Phong model. Thus, only few special variables are discussed in the
following:

The Parallel flag denotes the type of light: Parallel lights (such as the sun) are not
attenuated with distance, and their Position component directly identifies the uni-
form direction of incoming light. In contrast, point lights are attenuated by distance,
and the light direction Di within the Blinn-Phong model is recalculated for each point
x.

Specific lights within the data buffer can be enabled or disabled with the Enabled
flag. This works around a problem within the OptiX API that would freeze the
system once a buffer has been resized too often. Hence, the light buffer is stati-
cally allocated but once on context construction. Then, only a maximum number of

Page 130 / 184

Integration of a Raytracing-Based Visualization Component

(most prominent) lights are selected within each scene and transferred into the buffer.
Consequentially, unused lights within the statically-sized buffer simply are disabled.

The dummy padding fields require some further elaboration:

In C++ terms, the above Light structure is a POD (Plain Old Data) type: It
has but data members, no parent class, and no member functions. For POD types,
the C++ standard makes certain guarantees on memory layout. A shared, standard
memory layout is required for binary compatibility of light buffer data in-between
host and device code.

Yet, while NVCC officially should match the memory layout of the host compiler,
this does not seem to work in practice. Instead, differences in size on host and device
side have been detected by the OptiX API for a naive Light struct. Consequentially,
the rendering process was aborted.

Thus, the above padding fields have been inserted to ensure that the Light structure
has the same internal memory layout both in device and in host code. Yet, this is
not a preferred solution, and padding will have to be adapted when porting to new
compilers or operating systems.

7.3.8 Default programs

As already mentioned before, default programs are used both for non-customizable
parts of the raytracer implementation, and for materials that do not come with a user-
defined programmable shader. In the following, all default programs are reviewed.

The first program invoked by the OptiX raytracing process is a hard-coded bounding
box program that updates the acceleration structure of all Model-typed resources.
The device-side variables ModelVertices and ModelIndices have already been
set depending on the current object. Consequentially, the data for each triangle
primitive within the current object can be retrieved and an appropriate bounding
box is calculated and returned.

In the next step of the raytracing process, a predefined ray generation program is
executed. The implementation of the default ray generation program within the
OptixContext closely matches the ray generator of the example application in 5.3
and is not repeated here.

All resulting rays are sent through the geometry, where triangle-ray intersections are
detected by a fixed ray-triangle intersection program. The original implementation
used a naive, angle-based approach in this phase. Even though the naive approach
successfully had been applied to other intersection detection problems, it exhibited
numerical stability issues within raytracing. Thus, an optimized implementation
based on barycentric coordinates had been adopted thereafter. In the final version,
the hand-written intersection code was replaced by an even more optimized, more
robust, but undocumented intersection helper routine from the OptiX API libraries.

Apart from pure intersection detection, the default intersection handler program de-
termines the exact ray endpoint on each triangle, and calculates interpolated normals
and texture coordinates. The respective device-side attribute variables are set for
later use in shading.

Page 131 / 184

Integration of a Raytracing-Based Visualization Component

Ray-triangle intersections trigger default closest-hit and any-hit handlers, unless these
have been redefined by a custom shader attached to the respective model.

Behavior of default hit handlers depends on the type of incoming ray:

Primary camera rays do not react to any-hit events, the respective program directly
returns. Once the closest intersection has been determined, the closest-hit program
evaluates the Blinn-Phong lighting equation at the provided hit-point. In particu-
lar, all lights within the global light data buffer are considered. For each light with
enabled shadowing attributes, an appropriate shadow ray is generated. If a light is
not occluded, its contribution to specular, diffuse, and ambient lighting at the sur-
face point is calculated. For point lights, contribution factors further are attenuated
based on light distance. Thereafter, light contribution is merged with surface color
effects. In terms of surface colors, the current implementation only considers a single
2D texture for ambient and diffuse effects, and a hard-coded white specular high-
light. Results of lighting calculations are accumulated over all lights, and ultimately
returned within the camera ray data.

In contrast to the more sophisticated camera ray behavior, both hit programs for
shadow-typed rays match those of the example application: Once any intersection has
been detected, the ray data returns an occlusion flag to the main lighting calculations.

Finally, default miss handler programs for camera and shadow ray types exhibit
the expected behavior: Camera rays return a default black background color, while
shadow rays indicate that the light source is not occluded.

7.3.9 Rendering process

Given the preceding OptiX integration, the realization of the actual rendering process
— i.e. the implementation of the render function — is straight-forward.

At first, blocking behavior and thread safety requirements are maintained by a global
lock on the entire OptixContext.

Thereafter, any command in the incoming command buffer must be processed. The
RenderScene associated with each command is translated into an OptixRenderScene
by dynamic casting. The corresponding OptiX group node of the OptixRenderScene
is transmitted to the GPU by means of a global device variable. The OptiX buffer
that contains light data is initialized with the most prominent lights contained within
the scene. Other global parameters — such as the camera position and orientation
— are initialized as well. The ray generation program loaded at construction is
executed and calls both construction-loaded and runtime-loaded OptiX components
for raytracing. In turn, the pixel buffer shared between OpenGl and OptiX is filled
with raytracing results.

Once all commands have been processed, the GL pixel buffer with the final rendering
is copied to the main application window by invocation of the OpenGl drawPixels
method.

Page 132 / 184

Integration of a Raytracing-Based Visualization Component

7.3.10 Renderer destruction

Whenever the application shuts down, the OptiX renderer must be destroyed again.
This implies several steps:

1. The OptixContext releases all of its default programs, variables, and resources.

2. The OptixContext iteratively purges OptixObjects until no more objects could
be deleted.

3. Consequently, any remaining puppets and resources are still referenced by the
client and need to be detached to maintain safety requirements. This follows
the interface suggestion of releasing the associated renderer-side objects (e.g.
OptiX nodes and programs), and resetting the RenderObject internal Render-
Context back-reference. Any access to OptiX API internals via the client-side
RenderObject pointers then results in an appropriate C++ exception.

This step is especially relevant for the later Java and Scala integration, as order-
of-destruction rules within the VM regularly leak resources.

4. Finally, the internal Optix API handle is destroyed, and the GL context binding
is released. Thus the entire OptixContext shut down cleanly.

As with the OptiX example application, one must note that the final context
release currently is not built into the delivered application due to OptiX-internal
instability issues.

The destruction of the OptiX renderer concludes the implementation of the raytrac-
ing component. The next section recaps the entire implementation within a small,
illustrative client application.

7.4 Example client application

In the following, a small C++ client application is presented as an example for ray-
tracer usage. The application opens up a new window for rendering, a mesh and
associated textures are loaded, and a basic scene is composed. Thereafter, code flow
loops through rendering until the window is closed. Rendering is outsourced to a
separate thread, and the use of a RenderCache resource manager is demonstrated.
One should note that the client does only access renderer internals where necessary,
such as on creation and technique management. Management of render-side objects
is performed completely independent of any implementation via few, abstract calls.

DefaultWindow window (”Caption : : ExampleApplication ”) ;

OptixContext opt ix (window) ;
OptixTechnique technique (opt ix) ;
RenderThread thread (opt ix) ;
RenderCache cache (opt ix) ;

Page 133 / 184

Integration of a Raytracing-Based Visualization Component

RenderCommandBuffer commands ;

SharedPointer<StaticModel> ca s t l e mode l
(cache . requestModel (” c a s t l e . dae”)) ;

SharedPointer<RenderScene> scene (opt ix . createRenderScene ()) ;

SharedPointer<ViewerPuppet> viewer (opt ix . createViewerPuppet ()) ;
scene . i n s e r t (v iewer) ;

SharedPointer<LightPuppet> l i g h t (opt ix . createLightPuppet ()) ;
scene . i n s e r t (l i g h t) ;

SharedPointer<StaticModelPuppet> ca s t l e puppe t
(opt ix . createStat icModelPuppet ()) ;

c a s t l e puppe t . s e tStat i cMode l (ca s t l e mode l) ;
scene . i n s e r t (c a s t l e puppe t) ;

whi l e (! window . getExi tF lag ())
{

viewer−>move(Vector (1 , 0 , 0)) ;

i f (thread . i s I d l e ())
{

opt ix . synch () ;
opt ix . purge () ;

commands . add (RenderCommand(scene , viewer , techn ique)) ;
thread . render (commands) ;
commands . c l e a r () ;

}
}

Figure 7.4 shows the results of raytracing within the example application.

7.5 Testing suite

To ensure correctness of the raytracer kernel and the remaining framework, a C++
testing suite has been designed in the proceedings of this thesis. This suite is delivered
as a standalone executable, and performs both component and integration tests. Tests
consider basic functionality, such as hash maps or shared pointers, and higher-level
classes, like system counters, render-side resource, or the actual rendering function.

In this context, one must note that validating the correctness of a rendering process
is not an easy task. For instance, it is not possible to pre-render a single refer-
ence screenshot of some complex scene, and then regenerate that screenshot within
automated testing. In particular, even the same executable on the same operating

Page 134 / 184

Integration of a Raytracing-Based Visualization Component

Figure 7.4: A demonstration scene rendered by the raytracer implementation.
Particular attention is directed to the hard-edged shadows that naturally arise
from raytracing.

system may generate slightly different rendering results depending on inaccuracies
and performance optimizations within graphics hardware from various vendors.

Thus, raytracer testing applies an approximate comparison between desired rendering
results and the actual testing render. This only aims at finding harsh incompatibilities
or bugs. For instance, one such bug in the CUDA compiler generated completely white
surfaces on certain texture lookups during development of this thesis.

Page 135 / 184

Integration of a Raytracing-Based Visualization Component

8 System Integration

The preceding chapters introduced the interface of the raytracer kernel and provided
its C++ implementation. This chapter in turn integrates the finished raytracer com-
ponent into the Simulator X framework.

In particular, as Scala is only a Java wrapper itself, two separate steps are required:
First, the C++ raytracer kernel is encapsuled into Java classes and methods. Then,
resulting Java calls must be integrated within the Scala code of Simulator X. Both
steps are discussed in order. Finally, this chapter explains certain noteworthy caveats
that were discovered during the wrapping process.

8.1 Java wrapper

The first step of the raytracer integration within Simulator X involves the translation
of C++ interfaces and classes to corresponding Java representations.

In this section, the translation step is discussed in detail: Initially, both alternatives
for C++ to Java wrapping — the JNI and JNA platforms — are reviewed in regards
to respective benefits. Consequentially, the choice for the JNI route within this thesis
is motivated. Thereafter, the concepts behind the translation of C++ specialties to
Java code are given, and few example interfaces are detailed both on native and Java
sides.

Thus, at the end of this section, the entire raytracer is ready for use in Scala and the
Simulator X application.

8.1.1 JNI and JNA solutions

As mentioned before, there are two state-of-the art approaches for translation of C++
code to Java wrappers: both the JNI and the JNA platform allow for the binding
of native language level code. As these are two competing platforms, the respective
advantages and disadvantages are to be reviewed before settling on either solution.

JNI (Java Native Interface) was the original method of native code use within the
Java language [CA99]. JNI is based upon automated binding to a native C or C++
library, where the access points into the library are generated at compile-time by a
Java-side preprocessor.

Using JNI, one first creates a Java class that encapsulates the desired native func-
tionality. Within this class, certain methods — both static and object-bound — are
tagged with the native keyword. The implementation for native functions is omitted
within the Java source. Instead, a sole static initializer block that loads the later
native library is inserted into the class.

Once the Java class is completed, the class is compiled and the resulting VM byte
code is fed through the javah preprocessor. The preprocessor, in turn, generates a
C header which provides method signatures for implementation in the native library.
In particular, the native header gives direct access to the internals of Java objects,
arrays, and variables. Thus, no performance is lost on intermediate data conversions.

Page 136 / 184

Integration of a Raytracing-Based Visualization Component

This is the major advantage of the Java native interface — but comes at the price of
a convoluted and error prone implementation workflow.

JNA (Java native access) was developed as a less effort-intensive alternative to the
original JNI interface [JF98].

JNA does not require any additional boiler-plate, native language code for Java col-
laboration. Instead, any methods exported by name from a native library can be
invoked automatically. The only requirement here is that a respective native library
for the current operating system has to be loaded explicitly via a runtime code switch.
Then, Java code may call all exported methods from the native library. JNA auto-
matically wraps any outgoing parameters into native representation, and likewise,
any incoming return values are translated into Java VM variables and objects.

Yet, while the JNA approach is much easier to handle, it has several important short-
comings for the integration of a rendering module. Most importantly, the wrapping
process for shared pointers is even more problematic with JNA, as another layer of
indirection is required between the actual C++ pointer object and its Java side rep-
resentation. Additionally, both the translation of data in between Java and native
formats and the per-call by-name function lookup take their toll on application perfor-
mance. For instance, any Java-side array may be encapsulated into an intermediate
copy within a C-style pointer array before it is passed on to native code.

After both alternatives have been considered, JNI was chosen for the actual inte-
gration work for several reasons: For one, the rendering core should be as efficient
as possible. Especially for the transfer of application-generated resource data to the
renderer the performance impact for data duplication is relevant. Next, the workload
and complexity of the rendering component itself and of its Scala integration already
outweighs the integration complexity of the JNI native-side library header. JNA in
this context seems more ideal for the integration of one-shot system calls than for the
development of an entire system glue layer. Finally, once in place, further changes
to the wrapping layer only are required on rare occasions. Thus the more dynamic
binding allowed by JNA is of no use for the raytracer integration.

8.1.2 JNI realization

After the choice of JNI has been elaborated, the JNI binding layer between the Java
language and the native raytracer application can now be discussed.

In general, each of the language-independent interfaces defined in chapter 6 is
represented in the Java wrapper as well. For instance, there are Java classes
RenderContext, RenderCommandBuffer, RenderObject, and StaticModelPuppet.

Internally, each of the Java classes only houses a reference to a corresponding native
C++ class instance.

Any Java method signatures closely match those of the C++ interfaces given in
chapter 7. To continue the preceding example, the Java RenderContext has a public
render method which accepts a Java RenderCommandBuffer instance as parameter.
There are but two relevant exceptions within method parameters: Strings go by the
Java String class, and C++ shared pointers are replaced by Java object references.

Page 137 / 184

Integration of a Raytracing-Based Visualization Component

Most Java methods within the Java-side interfaces are tagged with the JNI native
keyword. Consequentially, these call native code implementations. The native imple-
mentation for Java classes first converts certain parameters — e.g. Strings or Java
object references — from their Java representation to a representation compatible
with the C++ interfaces. In turn, the instance-internal native object reference is
retrieved. Finally, the actual C++ implementation from chapter 7 is invoked on the
native C++ object.

While this process seems intuitive at first, the attachment of C++ instances to Java
objects requires some further elaboration.

On native code side, object lifetime management is performed by shared pointers.
These cannot be included directly into a Java object due to binary incompatibilities.
Instead, a more intricate scheme is required. On binding a C++ SharedPointer to a
Java object, a new copy of the input SharedPointer instance must be created on the
heap. The respective native address (i.e. a pointer to the SharedPointer copy) can
be converted into a Java jlong typed intrinsic variable on all current 32 and 64 bit
architectures by bit-based casting. Finally, the resulting integer can be stored inside
a Java member field.

Access to the stored pointer in turn is performed intuitively by reading out the
pointer’s address from the respective Java object field again.

Destruction of the encapsulated native pointer — corresponding to an object release
— is more problematic, though. Two different strategies have been applied within
this thesis: mandatory manual release, and automated destruction on finalization.

The former case defines a separate release method within each Java object instance.
Releasing any Java wrapper destroys the internal shared pointer, and thus releases a
single native reference. The Java object remains in an unusable but safe state. Any
further invocations on the object throw a runtime error. The client application must
call the release method on any Java-side object before it becomes inaccessible.

Within the latter case, the release functionality is automatically triggered by the
finalize method of the Java object. This ensures that native bindings are deleted
even for unreachable Java objects. Thus, any memory leaks are avoided. However,
Java finalizers incur both order-of-destruction and stability issues. Therefore, a cor-
responding error message about leaked resources is still printed into the application
log.

Albeit the above lifetime management strategy was the best of but few possible
implementations, it still exhibits certain problems. These are discussed in 8.3.

8.1.3 JNI examples

For illustrative purposes, the following three code excerpts present certain aspects of
the JNI wrapper realization. As with previous sections on pure implementation work,
a complete code coverage is outside the scope of this thesis. Further details can be
found within the code documentation and the program sources on the accompanying
delivery medium.

As a trivial case, loading a new material from within the Java Material class

Page 138 / 184

Integration of a Raytracing-Based Visualization Component

pub l i c c l a s s Mater ia l extends RenderResource
{

/∗∗ Load mate r i a l from i n d i c a t e d path . ∗/
pub l i c nat ive void load (St r ing path) ;

/∗∗ Destroy i n t e r n a l mate r i a l r e p r e s e n t a t i o n . ∗/
pub l i c nat ive void des t roy () ;

/∗∗ Address o f SharedPointer<Mater ia l> ∗/
p r i v a t e long I n t e r n a l P o i n t e r ;

}

wraps to the below native implementation:

JNIEXPORT void JNICALL Java de ubt opt ixwrap Mate r i a l l oad
(JNIEnv ∗env , j o b j e c t obj , j s t r i n g path)

{
/∗∗ Get C++ ob j e c t po in t e r with in Java ob j e c t . ∗/
j c l a s s c l s = env−>GetObjectClass (obj) ;
j f i e l d I D f i d = env−>GetFieldID (c l s , ” I n t e r n a l P o i n t e r ” , ”J”) ;
j l o n g intp = env−>GetLongField (obj , f i d) ;

VoidApi : : SharedPointer<Mater ia l> ∗mat =
r e i n t e r p r e t c a s t <VoidApi : : SharedPointer<Mater ia l >∗>(intp) ;

/∗∗ Get C s t r i n g f o r path , and load on C++ ob j e c t . ∗/
const char ∗ c s t r =

env−>GetStringUTFChars (path , 0) ;
mat−>load (c s t r) ;
env−>ReleaseStringUTFChars (path , c s t r) ;

}

Any error handling has been omitted for brevity. The rather large native function
name has been auto-generated by the JNI wrapping mechanism, and considers pack-
age, type, and method name of any natively bound method.

Material creation within a RenderContext and native-code destruction use similar
access schemes, but instead set or reset the internal pointer address. Consequentially,
these are not presented here.

Unlike the rather simple Model, the mapping of RenderPuppets — such as
StaticModelPuppet — requires a more sophisticated Java integration. Namely,
the Java class must hold two different pointer addresses, InternalPointer and
InternalPuppetPointer:

Page 139 / 184

Integration of a Raytracing-Based Visualization Component

pub l i c c l a s s ModelPuppet extends RenderPuppet
{

/∗∗ ∗/

/∗∗ Address o f SharedPointer<ModelPuppet> ∗/
p r i v a t e long I n t e r n a l P o i n t e r ;

/∗∗ Address o f SharedPointer<RenderPuppet> ∗/
p r i v a t e long Interna lPuppetPo inter ;

}

Within the implementation, these are required for insertion of puppets into a Ren-
derScene — an unapparent imperative that is discussed in the following.

Peculiarly, a C++-side RenderScene expects a shared pointer to RenderPuppet.
Usually, this pointer is created by copy-construction from the original, type-specific
pointer. In this context, note that shared pointers for parent and derived classes do
not have any inheriting relationship — for instance, SharedPointer<RenderPuppet>
is not the parent class of SharedPointer<ViewerPuppet>.

Yet, only the base RenderPuppet type is known for any incoming puppet on scene
insertion. The actual, most-derived type is not available. Consequentially, it is not
possible to retrieve a correctly-typed, shared pointer to the incoming puppet from the
internal pointer address. Because pointers do not remodel derivation relationships,
it neither is sufficient to simply cast the type-specific InternalPointer address of any
RenderPuppet to a SharedPointer<RenderPuppet> instance. Instead, the second
RenderPuppet-typed pointer must be used.

8.2 Scala integration

The preceding section detailed the realization of the fundamental Java wrapper
around the C++ rendering core. This wrapper intuitively is included into the Scala-
written Simulator X: As Scala is binary compatible to the Java language, the wrapper
JAR archive can directly be imported into any Simulator X component.

This leaves but two tasks for this section: For one, a Simulator X actor and a new
rendering component are designed around the JAR wrapper of the OptiX raytracer.
This concludes the actual development process within this thesis. At last, the new
Simulator X rendering component is integrated into the logics of a select existing
application alongside the current jVR rasterizer to allow for later performance eval-
uations.

8.2.1 Raytracing actor

The development of a new actor component for use within the Simulator X framework
is a rather intuitive task. To be specific, Scala itself already offers actor types and
general message passing facilities by means of an actor library. Simulator X extends

Page 140 / 184

Integration of a Raytracing-Based Visualization Component

on Scala internal features by the integration of another, higher-level convenience layer.
Hence it suffices for a component developer to derive from a standard base class and
to implement but few event handlers.

In terms of this thesis, a new raytracing actor OptixRenderActor has been developed.
In its current implementation, the raytracing actor implements five different handler
types, two direct and three indirect ones.

The direct handlers concern renderer configuration and frame rendering. Renderer
configuration creates the main OptixContext, initializes its bound WindowContext,
and sets a provided display resolution. Once an OptixContext has been created and
configured, the main application actor must trigger the frame-rendering handler by
sending a single RenderNextFrame message to the OptixRenderActor. This message
type is defined universally within the Simulator X platform, and is not specific to
the jVR rendering actor. Thereafter, rendering on the Optix raytracing actor runs
continuously by self-triggering via an appropriate message. This is demonstrated in
the below Scala excerpt:

addHandler [RenderNextFrame]
{

case RenderNextFrame (sender) =>
va l command = new RenderCommand(scene , v iewer)
in t e rna lContext . render (Array (command))
Actor . s e l f ! RenderNextFrame (Actor . s e l f)

}

Certain of the above instructions seem unusual, but are Scala language features. For
instance, the ! operator allows for sending object instances to running actors by the
default messaging mechanism.

The implemented concept of automated, self-triggered rendering is best suited for
later performance testing. Yet a later enhancement might integrate a waiting instruc-
tion to avoid the system load of imperceptible, excess frame rates. In this context,
one must again note it is imperative that the render call does not even block within
the Java interfaces. Otherwise, the message processing loop of the raytracing actor
could stall.

Scene and viewer variables in the above code excerpt are initialized within the remain-
ing two handlers. These handlers are customized indirectly by means of overloading,
and notify the rendering actor about new entities and state variables of a certain
raytracer-specific aspect. The choice of a separate aspect for raytracer state variables
is discussed in detail but in the next section.

On notification about a new Simulator X entity, the raytracing actor updates its
internal OptiX scene accordingly. In particular, a new OptiX wrapper puppet is
created — which in turn corresponds to a JNI-bound C++ instance that holds all
OptiX API data. The puppet is initialized with any parameters that accompany the
entity creation message. Thereafter, the puppet is placed into an internal lookup map

Page 141 / 184

Integration of a Raytracing-Based Visualization Component

alongside its bound entity. Finally, scene and viewer variables are set appropriately
once an object of either type is created.

The below code example demonstrates the insertion of a light-typed puppet within
the handler for new entities:

de f c r ea t eEnt i ty (e : Entity , c : TypedCreateParamSet)
{

c . aspectType match
{

case SemanticSymbols . a spec t s . opt ixL ight =>

va l spot = c . valueFor (Optix . l i gh tSpotF lag)
va l pos = c . valueFor (Optix . l i g h t P o s i t i o n)
va l d i r = c . valueFor (Optix . l i g h t D i r e c t i o n)
va l c o l a = c . valueFor (Optix . l ightColorAmbient)
va l c o l d = c . valueFor (Optix . l i g h t C o l o r D i f f u s e)
va l c o l s = c . valueFor (Optix . l i g h t C o l o r S p e c u l a r)
va l shadow = c . valueFor (Optix . l ightShadowFlag)

va l p = new OptixLightPuppet
(spot , pos , d i r , co l a , co l d , c o l s , shadow)

scene . add (p)

entityToPuppetMap = entityToPuppetMap + (e −> p)

/∗ . . . ∗/
} }

State variables of entities are created but after the respective entity has already
been reported to the raytracing actor. Therefore, there already is a correspond-
ing, construction-initialized puppet instance inside the entity-to-puppet lookup map.
Consequentially, the raytracing actor retrieves the puppet for the owner entity of
the state variables from its lookup map. Finally, all state variable are bound to the
puppet, each by means of two functions: one function updates a puppet parameter
from a state variable, the other updates a variable from puppet data. Both functions
are later on called in terms of general application glue logics.

The next code excerpt illustrates state variable handling for few light parameters:

de f processSVar (e : Entity , s : Symbol , c : TypedCreateParamSet)
{

c . aspectType match
{

case SemanticSymbols . a spec t s . opt ixL ight =>

va l p = entityToPuppetMap (e)

Page 142 / 184

Integration of a Raytracing-Based Visualization Component

va l pos = e . get (Optix . l i g h t P o s i t i o n) . get
addSVarUpdateFunctions

(pos , p . s e t P o s i t i o n (: Vector3 f) ,
p . g e t P o s i t i o n)

va l d i r = e . get (Optix . l i g h t D i r e c t i o n) . get
addSVarUpdateFunctions

(d i r , p . s e t D i r e c t i o n (: Vector3 f) ,
p . g e t D i r e c t i o n)

/∗ . . . ∗/
} }

The last of the handlers within the OptixRenderActor is invoked once an entity is
to be removed from the raytracing actor’s local representation. In this case, the
actor clears the entity from its internal map, and explicitly destroys any associated
instances of OptiX wrapper puppet.

8.2.2 Application integration

In contrast to the effortless creation of the final raytracing actor, the integration of
the raytracing component into existing applications required more work.

As already mentioned in chapter 4, most of the current applications already bind
hard-coded jVR-specific state representations onto their entities. Consequentially, it
is not sufficient to just replace a single class within a constructor call to translate
all applications to the new raytracer. Instead, three alternative routes have been
identified: Integration of a new, general aspect type, integration of a new, raytracing-
specific aspect type, or conversion of aspects from the current jVR rasterizer.

The integration of a general aspect type for use both with the jVR renderer and the
OptiX raytracer promises most benefits: Rendering is decoupled from the back-end
implementation, and any further rendering components are intuitively integrated.
However, this approach requires at least a partial incision into overall system design.
Hence, it was not realized in terms of this thesis, but deferred as a suggestion for
later enhancement.

Choice between a raytracer-specific aspect type and conversion of the existing jVR
aspects has been tough. The former gives a more clean design and acts as further
proof for the intuitive use of the Simulator X environment. The latter allows for
instant application of raytracing to all existing applications, and does not risk the
discarding of even more code once a general rendering aspect is devised.

In the end, the integration of a raytracer-specific aspect type was decided, mainly
under the argument of glitches introduced by the conversion of jVR-specific struc-
tures. Consequently, a new aspect had to be integrated alongside the other aspects
of the chosen example application. The new aspect type already has been included
in the development of the core raytracing actor. Thus, the remaining task was to

Page 143 / 184

Integration of a Raytracing-Based Visualization Component

step through all entity interactions within the example application while inserting
raytracer counterparts to all rasterizer state variables.

For example, the below world description entity, as instantiated within the main
application loop, has been outfitted both with a jVR and an OptiX representation:

new Ent i tyDesc r ip t i on (
EntityAspect (

Symbols . graphics ,
new TypedCreateParamSet

(SemanticSymbols . a spec t s . shapeFromFile ,
JVR. geometryFi le <= l e v e l f i l e ,
JVR. i n i t i a l P o s i t i o n <= ConstMat4 (Mat3x4 . I d e n t i t y) ,
JVR. manipu latorL i s t <= shader ,
JVR. s c a l e /∗∗/<= ConstMat4 (Mat3x4 . s c a l e (100))) ,

Ontology . trans form i sProv ided) ,
EntityAspect (

Symbols . rayt race r ,
new TypedCreateParamSet

(SemanticSymbols . a spec t s . optixModel ,
Optix . modelPath <= l e v e l f i l e ,
Optix . i n i t i a l T r a n s f o r m <= ConstMat4 (Mat3x4 . I d e n t i t y)) ,

Ontology . trans form i sProv ided) ,
/∗ . . . ∗/
NameIt (” world ”)

) . r e a l i z e

In this case study, the OptiX model implementation is not compatible with an explicit
jVR shader (or manipulator in the above excerpt). Instead, material information is
directly extracted from the input Collada level file.

Similar operations had to be performed on each graphics-based entity description.
Thereafter, raytracing support had fully been integrated. Figure 8.1 shows a still
image from the final, raytraced application.

The connection of existing Simulator X applications with the raytracing component
concludes all implementation and integration tasks. The raytracer attained a state
suited for evaluation — as performed in the next chapter.

8.3 Caveats

As a counterpoint to the above successful integration, the following section names
certain problematic integration aspects that have not completely been solved during
the wrapping process.

8.3.1 Shared pointer wrapping

The most problematic point was the translation of the shared pointer semantic for
automated object management. As mentioned before, even the current implementa-

Page 144 / 184

Integration of a Raytracing-Based Visualization Component

Figure 8.1: The example application, as raytraced by the OptiX kernel. Note
that scene lighting has been modified for better visibility.

tion is not free from issues. In the following, the respective problems are elaborated
in greater detail.

The actual difficulties are caused by differing life-time management strategies in C++
and Java:

C++ shared pointers define a rather stringent, reference-counted strategy, where de-
struction of objects is ensured once the last reference is dropped. On object destruc-
tion, certain OS- or library-level operations must be performed to release unmanaged
resources — such as OptiX API objects. For this purpose, there are user-definable
object destructors that are automatically invoked on object deletion.

In contrast, Java has a rather relaxed garbage cleanup system that releases unrefer-
enced objects at some unspecified later time. Even worse, Java provides no reliable
notifier once any object actually is deleted. There is an overridable finalize method,
but its use generally is disadvised due to stability reasons.

This leaves but two choices: Either force manual destruction of resources — which
contradicts the general Java language concept of automated resource management —
or specify error prone finalization handlers.

Consequentially, both options have been implemented in this thesis. As stated before,
the client application must manually destroy each Java object before destruction.
In this case, the later finalizer recognizes a zero value inside the internal pointer
representation, and takes no further action. Therefore, stability issues on normal
shutdown are avoided. Yet, if the finalizer detects an alive pointer, the corresponding
native object still is deleted. In turn, any leaked resources are freed.

The above tradeoff has long been deliberated. The final decision was made under
consideration of accepted resource management strategies within the Java language.
Java was not originally designed for low-level resource management. Corresponding

Page 145 / 184

Integration of a Raytracing-Based Visualization Component

patterns — most notably exception safety under general runtime exceptions — are
not common knowledge amongst Java programmers. Therefore, the dual strategy of
manual release and automatic finalization offered good prospects.

Yet, even with the in-place resource management strategy one problem remains for
leaked Java objects: The Java VM makes no guarantees on the destruction order of
objects during garbage collection. This conflicts with the suggested order of destruc-
tion for resources and the owning RenderContext in the native raytracer kernel. Thus,
the detach functionality — already integrated in the preceding interface discussion
— had to be implemented.

8.3.2 Large data transfers

Unlike shared pointer wrapping, large data transfers did not cause a stability, but a
performance problem. In particular, the transfer of runtime-generated resource data
to the rendering system already requires at least a single copy into the client-side
state buffer. However, even when transferred through the more efficient Java JNI
interface, at least another copy is involved. Depending on the implementation of
the underlying Java virtual machine, this copy may even run through unoptimized
Java bytecode instead of an optimized CPU copy operation. While this is a basic
language problem, there is an intuitive workaround: Any code working with resource
data should be implemented in C++ and exposed via another Java wrapper. This
is a reasonable suggestion considering that CPU resource modification code anyways
means more number crunching than the higher-level Java language was designed for.

8.3.3 Exception wrapping

Exception wrapping turned out to be a problem as well. While it is possible to wrap
C++-style exceptions into Java exceptions, this also means that each C++ exception
explicitly has to be wrapped into a Java class. Thus, any additional exception in turn
requires an appropriate modification to the Java wrapping code. Within the current
design, this has been solved by catch-all blocks within native code. These map any
incoming C++ exception into the Java OptixException type, and the original cause
of the exception is lost. The most problematic aspect of this approach is that certain
non-critical error conditions — such as a non-existent resource file — are signaled by
exceptions as well. A better solution of this wrapping mechanism is left for future
work.

Page 146 / 184

Integration of a Raytracing-Based Visualization Component

9 Evaluation

In the preceding chapter, the OptiX-based raytracing component has been integrated
into the Simulator X environment next to the existing jVR rasterization component.
Furthermore, a major example application of the Simulator X platform has been
connected to both components for later evaluation.

Said evaluation is performed within the following chapter. At first, the example
application is introduced in more detail. Thereafter, the actual evaluation takes
place: In consequent sections, both components are analyzed in regards to their
general features, graphics quality, rendering performance, and overall stability. Each
section ends with a short conclusion on the respective advantages and disadvantages
of raytracing and rendering.

9.1 SimThief example application

The example application that forms the framework for later evaluation is a game
named SimThief. It realizes a first person ghost hunting scenario: The player and a
series of ghosts compete against each other in the courtyard of a medieval castle.

The AI-controlled ghosts pursue two different goals: On the one hand, few ghosts hunt
the player. If a ghost manages to touch the player, the player’s health is reduced. On
the other hand, the remaining ghosts collect powder barrels distributed throughout
the virtual environment to destroy a drawbridge at the castle exit. The game is lost
either if the user’s health is depleted, or if the exit has been destroyed.

The player must use magic to fend off all ghosts while avoiding ghost contact and
while protecting the bridge exit. Once all ghosts have been chased away, the player
wins, and the game starts anew.

Figure 9.1 provides some in-game screenshots for further illustration.

From a more technical point of view, SimThief acts as a proof-of-concept client ap-
plication for the Simulator X framework. It employs several, loosely coupled com-
ponents to simulate the virtual environment: An OpenAl component handles sound,
a separate physics component detects environment collisions, and an input compo-
nent allows for connection of various controlling devices from WiiMotes to traditional
computer keyboards. In terms of higher-level program flow, a general AI component
controls all ghosts, while a standalone game component encapsulates remaining log-
ics such as victory conditions. Finally, the jVR rasterization component has been
providing graphics up to now.

9.2 General features

In terms of general features, both jVR and the OptiX raytracer have their respective
benefits and disadvantages. In this section, various feature aspects will be revisited for
a conclusion: At first, language-specific differences in-between the competing modules
are reviewed and portability concerns are presented. Thereafter, the general interface
design and multithreading strategy of the components are contrasted.

Page 147 / 184

Integration of a Raytracing-Based Visualization Component

Figure 9.1: The above screenshots show various components of the SimThief
game: The castle courtyard, two ghosts and a barrel, the drawbridge exit, and a
fireball spell. Once more, scene lighting has been modified for better visibility.

9.2.1 Language-specific aspects

Most of the differences between the rasterizer and the raytracer component are mo-
tivated by the choice of implementing language:

The new OptiX raytracing kernel has been written in C++. Consequentially, it
inherits all benefits and drawbacks of a native language implementation: Offline,
thorough program optimization promises performance advantages over just-in-time
compiled or interpreted bytecode. Yet, the entire rendering kernel must explicitly be
ported and recompiled on any alternative operating system.

Further disadvantages are induced by the integration of the native C++ raytrac-
ing library with the Scala Simulator X environment. Functional shortcomings have
already been discussed in the preceding chapter. However, other aspects of devel-
opment suffer from the integration as well: For instance, application debugging is
seriously complicated. In the main development environment, two separate develop-
ment environments have been used for native and cross-platform parts of the OptiX
raytracer. Consequentially, it was not possible to monitor stack traces over language
boundaries. Instead, the native language IDE remotely had to connect to the run-
ning Java process. During integration of the raytracer within the SimThief game and
during final debugging, this error-prone strategy interacted poorly with the less than

Page 148 / 184

Integration of a Raytracing-Based Visualization Component

optimal stability of the OptiX API

In contrast, jVR is written entirely in Java. Therefore, it can conveniently be de-
veloped from within the same IDE as the core Simulator X system. Debugging over
the language barrier between Scala and Java is not a problem, since both rely on the
same virtual machine and data representation.

In terms of portability, interpreted languages are the ideal showcase — the jVR
renderer in theory works on any system that has an appropriate Java VM implemen-
tation. There are two caveats involved though: Console porting and back-end jOGL
support.

For one, a large part of the market for entertainment and virtual reality titles currently
consists of gaming consoles. These do not support a Java VM, but only feature other
interpreted and native languages. Porting for console thus means a complete rewrite
of the entire Java-side simulator, while the C++ rendering interface could be retained
with but the introduction of a new back-end.

Second, even the jVR renderer relies on back-end, native-level OpenGl binding li-
braries. These are imported by means of JNI in a similar way to the raytracer
interfaces — albeit at a much lower abstraction level. Therefore, the jVR compo-
nent requires system-level support for the jOGL add-on library, which currently is
restricted to run-of-the-mill customer computers and Solaris SPARC workstations.

9.2.2 Architecture comparison

In terms of interface and architecture, both components are reasonably intuitive.

jVR’s rendering pipelines allow for higher-level customization on the application code
layer. In contrast, the OptiX raytracer component is not open to run-time customiza-
tion of the raytracing process due to limitations within the OptiX API. Instead, a
fixed raytracing implementation is combined with user-programmable and runtime
plug-able materials to achieve at least partial visual flexibility.

In the context of the SimThief game, only a single jVR pipeline has been used through-
out the development of this thesis. Consequentially, differences in rendering flexibility
have not been obvious. Yet, these probably will become more prominent once other
jVR rendering strategies — such as anaglyph mode — are to be integrated into the
OptiX raytracer. With the base RenderTechnique class, the general C++ rendering
interface at least provides an appropriate expansion point already.

Similar to the increased flexibility of rendering pipelines, jVR’s exposed scene graph
system provides greater customizability at the expense of intuitive use. Unlike render-
ing pipelines, the SimThief application however does not even consider more advanced
scene constellations than flat object pools. Thus, the general interface of the OptiX
raytracer seemed more appropriate here.

In contrast to its less flexible scene and resource management facilities, the OptiX
raytracer provides a more elaborate multithreading scheme than the jVR rasterizer.
In particular, the per-window thread within the jVR rasterizer is opposed to arbitrary
client threads for the OptiX raytracer. Yet, SimThief again only takes advantage of
basic out-of-thread rendering to avoid a stall on the message processing loop of the

Page 149 / 184

Integration of a Raytracing-Based Visualization Component

Figure 9.2: Unsupported mipmapping induces moire effects in the left-hand
side OptiX rendering. In contrast, texture filtering within the right-hand side
jVR image creates smooth surfaces even for far-away objects. Images have been
brightened for better visualization.

rendering actor. Therefore advanced multithreading features currently can not be
evaluated in depth.

In total, general features seem balanced over both components. Within the devel-
opment process of this thesis, the jVR rendering component appeared to be slightly
more easy to handle. Still, this might contribute to the fact that the jVR component
was readily integrated into the system — while the raytracer was actually coded and
debugged.

9.3 Image quality

Image quality between both approaches is comparable, with but little benefits for
the established jVR renderer. Contrary to expectations, these are not a result of the
more flexible jVR rendering system, but a consequence of certain missing features
within the OptiX API or the raytracer implementation.

For instance, one of the most notable differences in image quality results from missing
support for state-of-art texture filtering and mipmapping techniques within the OptiX
API. This has already been mentioned in chapter 7: Unlike OpenGl (e.g. jVR) and
many other rendering platforms, OptiX only supports a single texture level and linear
filtering on this texture level. Consequentially, high-contrast textures on distant
objects or angled surfaces tend to produce aliasing artifacts or moire patterns. This
becomes particularly evident with the low altitude camera within SimThief and the
brick pattern on the floor of the castle courtyard. Figure 9.2 illustrates this problem.

Other graphical glitches are caused by duplicate and z-fighting triangles, missing
OptiX shader implementations for spell surfaces and user interface components, and
small inconsistencies in specular highlight calculations. Apart from these and few
other artifacts, the OptiX raytracer and the jVR rasterizer create comparable images.

Page 150 / 184

Integration of a Raytracing-Based Visualization Component

This is attributed to the fact that both implementations use the same Blinn-Phong
lighting model, the same surface model, and similar hard-edged shadowing strategies.

9.4 Performance

Features and image quality are relevant for any kind of rendering software. How-
ever, for interactive applications, acceptable performance is an even more important
criterion.

Two different machines have been involved in performance tests: On the one hand, a
more recent computer with a Core-i5 CPU from Intel’s current Sandy Bridge lineup
in combination with one of the latest NVIDIA 5xx consumer graphics boards repre-
sents a modern, high-end gaming system. On the other hand, a two-year-old system
corresponds to the average consumer hardware. Here, a legacy Core-i7 Lynnfield
CPU is complemented by a GPU from NVIDIA’s predecessor 4xx board line. Both
systems run on Windows 7 Ultimate, the latest Detonator graphics driver 275.33 has
been installed.

The first relevant performance test had been executed even before the first rendered
image was displayed on screen. In particular, the startup time for both components
— including the loading process of the initial scene — has been measured.

On the faster testing system, the jVR rasterizer took about 10 seconds for startup. In
contrast, the OptiX raytracer required but half the time on the same system. Similar
timings have been achieved on the legacy testing rig, with an increase of loading times
by less than a second for either rendering component.

Differences in timing between both components are attributed to two facts: For one,
general loading requires much number-crunching, which is handled better by machine-
specific optimizations in the C++ compiler. Second, the jVR renderer has to load and
compile additional shaders that currently are not available for the OptiX component.

In general, both loading times seem high under consideration of the terse SimThief
geometry with but ten-thousands of triangles. No further in-depth timing was per-
formed apart from basic startup measurements. Still, long loading times potentially
are induced by the complexities of the Collada XML geometry input: For the sepa-
ration of whitespace-separated coordinate streams within the XML, both C++ and
Java implementations repeatedly create small and inefficient String objects on the
heap. The problems of Collada import become even more evident if the C++ OptiX
raytracer is compiled in debug mode: All memory allocations then are supervised
by the C runtime, the corresponding checks increase loading times by an order of
magnitude to little less than a minute.

After startup timings, online performance testing commenced. For each performance
test, the SimThief game was played for exactly five minutes. The resulting total
number of frames was accumulated to determine the average framerate over the entire
testing run. At the same time, a running fps counter was calculated to find the
respective maximum and minimum framerate over the entire testing run.

Page 151 / 184

Integration of a Raytracing-Based Visualization Component

The results of performance testing are shown in the below tables:

Intel Core i5-2500, 8 GB RAM, NVIDIA GeForce GTX 580:

Resolution jVR fps OptiX fps
min avg max min avg max

800 × 600 64 83 85 32 55 59
1024 × 768 53 62 64 21 30 31
1280 × 1024 41 46 51 19 22 24
1680 × 1050 39 41 42 15 17 19
1920 × 1080 31 34 35 11 12 12

Intel Core i7-860, 4 GB RAM, NVIDIA GeForce GTX 460:

Resolution jVR fps OptiX fps
min avg max min avg max

800 × 600 59 76 81 27 48 52
1024 × 768 46 54 54 24 27 32
1280 × 1024 34 41 43 18 19 22
1680 × 1050 31 39 45 12 14 17
1920 × 1080 33 36 37 9 10 13

Average framerates for both the new raytracer and the traditional rasterizer are
acceptable over lower resolutions. In these cases, there is almost no human-perceivable
difference in performance between both algorithms — even though there already is
quite some absolute framerate distance. In contrast, for the largest resolutions the
higher per-pixel cost of raytracing seems to outweigh the decreased triangle setup
costs even more and framerates drastically break in on the raytracer.

Analysis of minimum and maximum framerates over the testing course indicates that
there are no special bottleneck situations either for the jVR or for the OptiX compo-
nent. Yet, this is attributed to the restricted SimThief game environment: The castle
level geometry is rather balanced, and viewing depth is restricted. Consequentially,
the weak points of both algorithms are not captured. On the one hand, there is no
highly tesselated or depth-overlapping object that challenges the rasterizer compo-
nent. On the other hand, there are no spatially varying tesselation depths that could
disturb raytracer tree generation.

In total, performance evaluation leads to the conclusion that jVR and the Optix
component are but little different in terms of rendering speed for low to medium
resolutions, with a huge benefit for rasterization on large resolutions.

9.5 Stability

The preceding evaluation has demonstrated that interactive raytracers are more and
more catching up to traditional rasterization approaches. While there still are ob-

Page 152 / 184

Integration of a Raytracing-Based Visualization Component

Figure 9.3: This OptiX-internal error message indicates that sampling from a
3-byte RGB texture currently is not supported.

Figure 9.4: The left-hand sampling from a 4-byte RGBA texture does not entirely
crash rendering, but produces visible sub-texel sized artifacts on the barrel model.
The right-hand image shows the correct rendering with an uncommon, memory
intensive floating point texture.

servable gaps in features, image quality, and performance, the current generation
of interactive raytracers already comes close to established rasterizers. Within the
foreseeable future, the continuing trend will have raytracing on par to traditional
rasterization in these aspects.

Yet, another vital argument against the general use of raytracing in productive sce-
narios has not been named yet: In terms of stability, raytracers — and in particular
the OptiX API — still have quite some deficits.

When compared to the original jVR raytracer, the OptiX API requires much more
boiler-plate code for much less functionality. This implies more potential for errors.
At the same time, stability of the OptiX-internal, GPU-based raytracing kernel lacks
in comparison to the robustness of the mature OpenGl API.

For further justification, one should reconsider the OptiX scene hierarchy. It has
already been stated in chapter 7 that particular care is required to ensure a complete
hierarchy.

Most noteworthy, if any type of expected node is missing, behavior ranges from
completely blank screens to outright system crashes. The former are caused by errors

Page 153 / 184

Integration of a Raytracing-Based Visualization Component

found during automated OptiX-internal validation and come with a rather general,
unhelpful error message alongside aborted rendering. The latter are produced by
problems that are not identified within the validation preprocess.

Yet, a virtual scene from productive software could potentially consist of thousands
of nodes. Enforcing scene consistency in this example is not trivial — even less so
under the influence of a pure C API and the presence of C++ exceptions. Further
complications are caused by the prohibition of empty nodes. In effect, once a single
OptiX scene node has been removed, all higher-level nodes must be purged, and
removed if empty. Any slight mistake in client-side code can require a complete
system reboot. This error robustness must definitely improve, otherwise no serious
software studio will consider using the OptiX API for critical programs.

In contrast, the mature OpenGl API provides a better tradeoff between input valida-
tion and stability. If any of the input GL object identifiers is invalid, the respective
object is rendered with artifacts, or not rendered at all. However, the remaining
rendering process continues without constraints, and the application remains stable.
This approach definitely benefits the final application user: Slight rendering artifacts
are recognized, and there still is enough time to safely conclude working and restart
the application. The only way to provoke OptiX-like hard freezes from OpenGl in-
volves host-side pointer errors, which are easily avoided within higher-level languages.

Apart from fragile scene management, many other stability issues within the OptiX
API have been identified in the course of this thesis as well. These range from bugs
over missing and not implemented features to misleading diagnostic messages: Not
implemented texture sampler types for popular 3-byte or 4-byte image formats lead
to visual artifacts and random crashes (figures 9.3 and 9.4). Mipmapping is exposed
by the OptiX API, but not implemented. Invalid combination of ray types yields
hard system freezes. Data buffer resize and reassignment randomly fail. . .

In total, the stability and usability concept behind the OptiX API should be the most
important focus of future development for further gains on traditional rasterization.

Other, more general future perspectives both for interactive raytracing and the ray-
tracer implementation within Simulator X are discussed in the next chapter.

Page 154 / 184

Integration of a Raytracing-Based Visualization Component

10 Conclusion

This chapter provides a review over the design of the raytracing component, its
integration into the Simulator X system, and its evaluation. Thereafter, a preview on
further research topics and open implementation tasks is given. Finally, a last, short
conclusion on interactive raytracing is presented.

10.1 Review

Within this thesis, a raytracing component for Simulator X has been developed and
integrated.

At first, the current research on interactive raytracing had been examined. While
research on that field is still ongoing, it was concluded that there are current strategies
that make interactive raytracing of dynamic scenes feasible on modern hardware.
Yet, investigation of middleware platforms revealed NVIDIAs OptiX API as the only
publicly available interactive raytracer.

On a different focus point, general rendering engines had been reviewed in terms of
their multithreading and raytracing compatibility. The review ended with the insight
that both aspects must be considered in the initial design phase.

After the state-of-art research, the existing, Scala-based framework Simulator X has
been introduced. Based on the design principles of minimal coupling with maximal
cohesion, the Simulator X system combines an event-based communication scheme
with an actor-based entity model. The existing jVR-based rendering system was
found tightly integrated into existing application logics, no general rendering interface
had been defined. Multithreading is handled by the general actor concept within the
framework — effectively granting only a single thread access to each instance of the
rendering system.

Apart from the Simulator X framework, the OptiX API for GPU-based raytracing
has been studied as well. Within OptiX, the user builds a scene hierarchy from cer-
tain predefined node types. Programmable components and device-side variables are
attached to scene nodes and control parts of the entire raytracing process. Access
to the OptiX API is performed by two separate languages: A thread-unsafe C li-
brary for host control is complemented by a CUDA-based interface for hardware-side
programmability.

The actual task of raytracer implementation began with the definition of a general
rendering interface. Focus points were intuitive extensibility, support for both ray-
tracing and rasterizing back-ends, native multithreading capabilities, and intuitive
client-side interfaces. At first, abstract render-side resources and their functional
behavior were specified. Then, a device-independent command-based control mecha-
nism for the rendering process was introduced. Finally, multithreading and blocking
rules were defined over all functional elements. In particular, behavior was chosen
as to maximize performance for frequent operations and to minimize implementation
difficulties for rare operations. Effortless thread-safety for arbitrary client threads
was maintained as well.

Page 155 / 184

Integration of a Raytracing-Based Visualization Component

Once the general rendering interface had been defined, its implementation with an
OptiX-based back-end was elaborated. As the language of choice, C++ was preferred
over Java due to its direct integration with the C-based OptiX API. Each of the pre-
viously defined, functional interfaces was replaced by an appropriate C++ interface
class. Additional, OptiX-specific implementing classes were integrated into the class
hierarchy. These internally capsule OptiX programs or scene nodes, and realize the
general interface functionality via the OptiX C API. Finally, a default raytracing
pipeline based on Blinn-Phong shading with hard-edged shadows was integrated into
the raytracer implementation.

In the following course, the finished raytracer was integrated into the Simulator X
framework. Because the main implementation had been composed in the C++ lan-
guage, all its classes had to be encapsuled in respective Java interfaces. These were
connected to their C++ correspondents by a sophisticated pointer wrapping scheme.
Particular efforts were required to unify C++ shared pointer lifetime management
with Java automatic garbage collection. The final Java classes in turn intuitively
integrated into the Scala-based framework via a separate raytracing component. As
proof of concept, this component was linked into a major demonstration application
of the Simulator X framework.

Finally, the OptiX-based rendering component had been compared to its jVR coun-
terpart in regards to various aspects. General performance and image quality were
comparable, with certain benefits to the traditional OpenGl implementation. At the
same time, various stability problems within the OptiX kernel made it obvious that
GPU-accelerated raytracing still is a rather new contender to established graphics
APIs.

10.2 Preview

Although much has already been achieved in the course of this thesis, there always
remain open points of interest, both in more formal research topics as well as im-
plementation tasks. As a guideline for future work, the most important of these are
listed in this section.

10.2.1 Research

In regards to open research areas, two separate topics come to mind: interactive
raytracer features, and general renderer design.

On the features side, a desirable request for drastically improved realism involves the
calculation of higher-level surface-to-surface light transfers. The current raytracer
only captures light transfers from a single point or directional light to a single sur-
face accurately. It supports neither light-emitting surfaces nor surface-to-surface light
transfers. Both of these, however, are a vital element of the rendering equation. In
other words, the rendering equation is to be fully solved for each point within a
dynamic scene and on each rendering frame. In this context, the term global illumi-
nation often is used. Global illumination particularly adds to the perceived realism
of partially lit, high-contrast scenes. As a further gain, any raytracer implementa-

Page 156 / 184

Integration of a Raytracing-Based Visualization Component

Figure 10.1: Unlike the basic raytraced image on the left hand side, the right hand
side Cornell Box [CU98] was calculated by a path-based raytracer [NV11d] and
considers surface-to-surface light transfers. Thus, the initially white light tints
the respective sides of the box objects after diffuse reflection from the colored
walls. Smooth shadows and ambient occlusion are intrinsically calculated within
path tracing.

tion that considers higher order light transfers automatically allows for realistic soft
shadows. A more visual impression of these benefits is given in figure 10.1.

There currently even are path-based raytracer implementations for OptiX that sam-
ple secondary light transfers [NV11d] for approximative global illumination. Unfortu-
nately, depending on the actual approach, either image quality or rendering framerate
suffer and cannot be accepted for an interactive application. Research for more prac-
ticable strategies, especially considering the peculiarities of graphics hardware, is
potentially a rewarding endeavor.

Within the environment of a conventional rasterizer, any of the global illumination
effects are even more difficult to achieve. As a workaround, there currently are sev-
eral offline pre- and post-processing techniques that at least allow for the restricted
approximation of higher-order light interactions. For instance, pre-calculated radios-
ity transfers have been used alongside lightmapping [AW00] for quite some time to
provide an exact, but static solution to the rendering equation. In more recent times,
lightmaps have been extended by wavelet-compressed depth maps [CU08] to allow for
arbitrary, but fully simulated interactions between dynamic lights and static surfaces.
Perhaps a raytracer could employ any of these techniques for improved image qual-
ity until interactive framerates becomes feasible with completely dynamic, raytraced
radiosity.

In regards to general renderer design, the final renderer interface has certain design-
induced flaws. While blocking behavior and thread safety has been designed for
optimal performance and ease of use, there could be a more intuitive solution. For
instance, the messaging approach that has been dismissed for the final design may
still be worthwhile for further investigation.

Page 157 / 184

Integration of a Raytracing-Based Visualization Component

10.2.2 Implementation

Currently, the OptiX raytracer implementation is not fully featured. While the main
raytracer kernel has completely been finished, there still is much extension and pol-
ishing work left ahead. Mainly, this refers to Scala integration, auxiliary renderer
features, and example applications.

Most importantly, the Scala integration of the current raytracer kernel has been
created for intuitive compatibility with existing example applications within the Sim-
ulator X codebase. In turn, advanced rendering capabilities not supported by the
original jVR renderer, such as skeletal animation or resource updates, are currently
not accessed from within Simulator X. The next goal here should be a unified, fully-
featured renderer interface within the Scala framework.

On side of renderer features, with only two different model types supported, clients
are severely restricted in the scenes that can be displayed intuitively. Additional
model types, such as terrains or procedural geometry, could even provide additional
insights into interactive raytracer requirements.

Consider the example of a large-scale terrain: Distant triangles require very small
screen estate, typically less than a single pixel. This leads to graphical moire effects,
where multiple differently colored triangles fight for the same on-screen position over
multiple frames. A traditional rasterizer solves this problem by adding LOD levels to
the terrain, with the additional benefit of reduced per-triangle rasterization overhead.
An offline raytracer works around depth moire by a combination of clever camera po-
sitioning, hand-pruned terrain triangles, and anti-aliasing methods. However, both
of these approaches are less than ideal for an interactive raytracer: LOD-ing intro-
duces the requirement to mess with a potentially large part of the scene hierarchy,
while anti-aliasing drastically reduces performance. Currently, there is no alternative
solution available. Perhaps a viable approach might be the translation of raytrac-
ing from triangle primitives to purely procedural representations. This allows for a
distance-adaptive shape representation at the increased cost of tests between rays
and arbitrary surfaces. While there already exist established mathematical meth-
ods [TW10] that could be applied here, their feasibility in interactive raytracing has
not been studied yet.

Another feature that potentially needs implementation once large-scale scenes become
available is a more sophisticated OptiX scene update strategy. In the current design,
any updates to the OptiX internal optimization hierarchy are triggered automatically
by the raytracing kernel once any update to the scene has been recognized. However,
for large scenes, this mechanism is less then optimal. Instead, a manual scheme could
be devised that updates objects more reasonably. For example, updates for skeleton-
animated objects far from the viewer could potentially be skipped each other frame
without any visual artifacts.

Finally, one might also re-evaluate the choice of OptiX as middleware raytracer plat-
form. Albeit OptiX is the only alternative for interactive raytracing at the time of
this writing, further APIs are bound to be developed in the future. These poten-
tially provide a different point of view on the raytracing process, and thus might
be able to work around some of the shortcomings within OptiX. For instance, re-
duced programmability that is more suited to raytraced rendering instead of general

Page 158 / 184

Integration of a Raytracing-Based Visualization Component

raytracing calculations might drastically reduce implementation clutter. Likewise, a
more restricted API might also be more stable. As any such platform switch has been
considered in the initial design, the renderer interface can be reused without efforts.
Thus, one only has to write a new context implementation and evaluate that one in
regards to the original OptiX version.

10.3 Conclusion

As seen from the results of this thesis, interactive raytracing methods are no longer
completely infeasible. Yet these still are not as evolved and widely accessible as their
rasterizer counterparts. Thus, conventional rasterizer implementations will continue
to dominate the interactive market for the foreseeable future.

In medium terms, the acceptance of interactive raytracing into general virtual reality
software could be coupled with the aggregation of GPU and CPU features on a
single, multi-architecture processor [TS09]: CPU-level general computations could be
performed at GPU-level parallelism. Thus, the way would be opened for completely
customized software rendering kernels that dispose even the last remnants of the
fixed-function pipeline on current hardware. In turn, developers are free to write
arbitrary, custom rendering kernels that are open to any combination of raytracing
or rasterization strategies.

Page 159 / 184

Integration of a Raytracing-Based Visualization Component

Appendices

A Framework Overview

The rendering kernel is based on a general application framework that has been
created during the study course of the thesis author. In this chapter, an overview
over important framework modules past the rendering core is given.

Note that an exhaustive coverage over all module functionality exceeds the scope of
this thesis. For a more in-depth functionality description, refer to the Doxygen code
documentation contained in the source code delivery.

A.1 Exception module

This module provides general exception handling support within the framework. This
includes exception classes derived from std::exception, and a description of exception
handling support.

Unlike the common practice in interactive applications, the framework must be com-
piled with mandatory exception support. In particular, the often named performance
bottleneck that is caused by reduced compiler optimizations in the presence of excep-
tions has been proven a myth on more modern C++ compilers.

Exceptions are used to signal all errors within any framework calls. Particular atten-
tion has been invested into maintaining exception safety and associated requirements.
This includes non-throwing destructors and cleanup methods, as well as exception
safety method specifications where appropriate. Further details on exceptions in
C++ and their pitfalls are provided in [HS00].

A.2 ScopeGuard module

Within this module, a C++ template facility to execute arbitrary code on scope exit
has been implemented.

In particular, a ScopeGuard may at any time be generated on the stack, and executes
a compile-time associated function or member method with stack-saved parameters
on destruction at stack unwinding. This simulates a Java-esque finally construct that
is natively not available in C++ exception handling clauses.

ScopeGuards are especially useful when interfacing with pure C code, such as the
OptiX SDK, that does not support RAII patterns. Sadly, ScopeGuards are often
overlooked and have not even been considered for the coming C++0x standard.

The framework implementation closely follows the original ScopeGuard suggestion
[AA00], with certain adaptions inspired by [AA01].

A similar pattern is available from the Boost libraries [BS11]: The BOOST ON EXIT
macro provides lamda-like expressions at the cost of an additional preprocessor step.
The next C++ standard even provides native lamda expressions for small inline code,
yet these are not widely supported yet, and cause code bloat when used for scope
exit functions. Thus both of these alternatives have not been adopted.

Page 160 / 184

Integration of a Raytracing-Based Visualization Component

A.3 Container module

The container module provides a full set of C++ container classes and associated
helpers, such as iterators or smart pointers.

Most of the provided functionality overlaps with the STL. Usually, the STL should
be the primary choice for cross-platform development. However, there are certain
design flaws within the STL for which the Container module points out alternative
implementation ideas.

For instance, the STL does not provide a basic data buffer for storage of BLOB (bi-
nary large object) data — such as the point datastream within a mesh geometry, or
the colour array of an image. While std::vector may be used, its implementation per-
formance is often poor, and it is not suited for interfacing with standard C functions
(such as the Optix SDK) without code hacks.

See [YK09] for further critical STL coverage.

A.4 Log module

The Log module provides helper functionality for printing debug and progress output
to a client-specified HTML log file.

In comparison to existing C++ and Java logging solutions, it comes with three focus
advantages: For one, logging satisfies NOTHROW requirements to allow for output
from within destructors and cleanup methods. Next, the logging module can be
compiled out completely for improved performance in release builds. Finally, it solves
the static initialization and shutdown dilemma that holds for C++ static instances,
while at the same time it allows for logging actions at any time — even during static
initialization.

A.5 Geometry and image modules

The geometry and image modules provide helper functionality for dealing with gen-
eral in-memory triangle meshes and images. This includes image rescaling, image
operations, mesh collision detection and on-CPU skeletal animation. Also included
in the geometry module is a mathematics framework for general 2D and 3D primitives,
such as rectangles, boxes, vectors, matrices, and quaternions.

A.6 File module

The File module abstracts actual client-side resource operations from the operat-
ing system and target environment. In particular, clients just specify relative POSIX
pathes — dubbed virtual pathes — when interfacing with the framework. The frame-
work then resolves these pathes to appropriate file instances.

For example, an internet-distributed module implementation may map a virtual path
to a file on a remote server, while another implementation might look for the file in a
resource JAR archive within the current working directory or the user’s LINUX home
folder. As the client-side virtual path is the same in both cases, the implementations
can be exchanged without effort.

Page 161 / 184

Integration of a Raytracing-Based Visualization Component

A.7 Thread module

The Thread module provides OS-independent support for multithreading, mutexing,
and signalling. Particular design goal was to provide a slim, but exception safe layer
atop the existing low-level OS solutions such as pthreads or Windows threads. The
interface of the Thread module has been based on the threading proposal for the new
standard, and may be replaced once the C++ standard threading becomes available.

Page 162 / 184

Integration of a Raytracing-Based Visualization Component

B Bibliography

The following sources have been considered in the creation of this master thesis:

[AA00] ”Generic: Change the Way You Write Exception-Safe Code — Forever”
Andrei Alexandrescu, Petru Marginean
Web release, http://drdobbs.com/184403758, December 2000

[AA01] ”Modern C++ Design: Generic Programming and Design Patterns
Applied”

Andrei Alexandrescu
17th Printing, Addison-Wesley, Pearson Education, 2009

[AA68] ”Some techniques for machine rendering of solids”
Arthur Appel
AFIPS Conference Proceedings 32, pages 37–45, 1968

[AM03] ”Dense matrix algebra on the GPU”
Adam Moravanszky
Direct3D ShaderX2, Wordware Publishing, 2003

[AS06] ”Massive Model Rendering with Super Computers”
Abe Stephens
Presentation sheets, SIGGRAPH course on interactive raytracing,

SIGGRAPH 2006

[AW00] ”3D Computer Graphics”
Alan Watt
Third Edition, Addison-Wesley, 2000

[BM11] ”iRT: An Interactive Ray Tracer for the CELL Processor”
Barry Minor, Mark Nutter, Joaquin Madruga
Web release, http://www.alphaworks.ibm.com/tech/irt, 2007

[BL11a] ”Blender”
Blender Foundation
Web release, http://www.blender.org, 2011

[BL11b] ”Blender rendering pipeline recode”
Blender Developer Wiki
Web release,

http://wiki.blender.org/index.php/Dev:Source/Render/Pipeline,
2011

[BS06a] ”Raytracing und Szenengraphen”
Björn Schmidt
Diplomarbeit, Johann Wolfgang Goethe-Universitaet Frankfurt am Main,

Fachbereich Informatik und Mathematik, Professur Grafische
Datenverarbeitung

[BS06b] ”The Hacks of Life — VBOs, PBOs, and FBOs”
Benjamin Supnik
Web release, http:

//hacksoflife.blogspot.com/2006/10/vbos-pbos-and-fbos.html,
2006

Page 163 / 184

http://drdobbs.com/184403758
http://www.alphaworks.ibm.com/tech/irt
http://www.blender.org
http://wiki.blender.org/index.php/Dev:Source/Render/Pipeline
http://hacksoflife.blogspot.com/2006/10/vbos-pbos-and-fbos.html
http://hacksoflife.blogspot.com/2006/10/vbos-pbos-and-fbos.html

Integration of a Raytracing-Based Visualization Component

[BR10] ”Brook and BrookGPU”
Stanford University
Web release, http://graphics.stanford.edu/projects/brookgpu, 2010

[BS11] ”Boost C++ libraries”
Boost.org
Web release, www.boost.org, 2011

[CA99] ”Advanced Programming for the Java 2 Platform — Chapter 5: JNI
Technology”

Calvin Austin, Monica Palwan
Web release, http://java.sun.com/developer/onlineTraining/

Programming/JDCBook/index.html, November 1999

[CB09] ”Eficient Ray Traced Soft Shadows using Multi-Frusta Tracing”
Carsten Bentin, Ingo Wald
Proceedings of High-Performance Graphics 2009

[CL09] ”Fast BVH Construction on GPUs”
Christian Lauterbach
Eurographics, volume 28, number 2, pages 375–384, 2009

[CS08] ”COLLADA — Digital Asset Schema Release — Version 1.5.0”
Mark Barnes, Ellen Levy Finch
Web release, www.collada.org, April 2008

[CU98] ”The Cornell Box”
Cornell University Program of Computer Graphics
Web release, http://www.graphics.cornell.edu/online/box, February

1998

[CU08] ”Smooth and non-smooth wavelet basis for capturing and representing light”
Cameron Upright, Dana Cobzas and Martin Jagersand
Proceedings of the 3DPVT 08, Fourth International Symposium on 3D Data

Processing, Visualization, and Transmission, 2008

[CW67] ”Halftone Perspective Drawings by Computer”
Chris Wylie et al.
AFIPS Conference Proceedings, volume 31, Fall Joint Computer

Conference, AFIPS Press, Montvale, pages 49–58, 1967

[DH07] ”Interactive k-D Tree GPU Raytracing”
Daniel Reiter Horn, Jeremy Sugerman, Mike Houston, Pat Hanrahan
Proceedings of the 2007 symposium on Interactive 3D graphics and games,

2007

[DL76] ”Theories of Vision from Al-Kindi to Kepler”
David C. Lindberg
Book, Chicago, 1976

[DM06a] ”Interactive Ray Tracing: Higher Memory Coherence”
Dinesh Manocha, Sung-Eui Yoon
Presentation sheets, SIGGRAPH course on interactive raytracing,

SIGGRAPH 2006

Page 164 / 184

http://graphics.stanford.edu/projects/brookgpu
www.boost.org
http://java.sun.com/developer/onlineTraining/Programming/JDCBook/index.html
http://java.sun.com/developer/onlineTraining/Programming/JDCBook/index.html
www.collada.org
http://www.graphics.cornell.edu/online/box

Integration of a Raytracing-Based Visualization Component

[DM06b] ”Ray Tracing Dynamic Scenes Using BVHs”
Dinesh Manocha, Sung-Eui Yoon
Presentation sheets, SIGGRAPH course on interactive raytracing,

SIGGRAPH 2006

[DP09] ”Quake Wars: Ray Traced”
Daniel Pohl, Intel Corporation
Web release, http://www.qwrt.de, 2009

[DP10] ”Wolfenstein: Ray Traced”
Daniel Pohl, Intel Corporation
Web release, http://www.wolfrt.de, 2010

[DW10] ”Ein Konfigurierbares World-Interface zur Kopplung von KI-Methoden an
Interaktive Echtzeitsysteme”

Dennis Wiebusch, Marc Erich Latoschik, Henrik Tramberend
Virtuelle und Erweiterte Realität, 7. Workshop of the GI special interest

group VR/AR, pages 47-–58, 2010

[EC74] ”A Subdivision Algorithm for Computer Display of Curved Surfaces”
Edwin Catmull
Dissertation, Report UTEC-CSc-74-133, Computer Science Department,

University of Utah, Salt Lake City, 1974

[EG04] ”Design Patterns. Elements of Reusable Object-Oriented Software.”
Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides
First edition, Addison-Wesley, Reprint, 1994

[FA09] ”When Will Ray Tracing Replace Rasterization?”
Fedy Abi-Chahla
Web release, http://www.tomshardware.com/reviews/

ray-tracing-rasterization,2351.html, 22. July 2009

[GS06a] ”Scattering Secondary Rays”
Gordon Stoll
Presentation sheets, SIGGRAPH course on interactive raytracing,

SIGGRAPH 2006

[GS06b] ”Ray Tracing Performance — Zero to Millions in 45 Minutes”
Gordon Stoll
Presentation sheets, SIGGRAPH course on interactive raytracing,

SIGGRAPH 2006

[HS00] ”Exceptional C++, 47 Engineering Puzzles, Programming Problems, and
Solutions”

Herb Sutter
17th Printing, Addison-Wesley, Pearson Education, 2009

[IK07] ”Ancient Theories of Vision and Al-Kindi’s Critique of Euclid’s Theory of
Vision”

Ika Putri
Composition, Proseminar: History of Computational Science, Vision, and

Medical Science, Technische Universität München, 2007

[IW06a] ”Ray Tracing Animated Scenes”

Page 165 / 184

http://www.qwrt.de
http://www.wolfrt.de
http://www.tomshardware.com/reviews/ray-tracing-rasterization,2351.html
http://www.tomshardware.com/reviews/ray-tracing-rasterization,2351.html

Integration of a Raytracing-Based Visualization Component

Ingo Wald
Presentation sheets, SIGGRAPH Course, SIGGRAPH 2006

[IW06b] ”Ray Tracing Deformable Scenes using Dynamic Bounding Volume
Hierarchies”

Ingo Wald
ACM Transactions on Graphics, 2006

[IW07a] ”On fast Construction of SAH-based Bounding Volume Hierarchies”
Ingo Wald
IEEE Symposium on Interactive Ray Tracing, pages 33-40, 2007

[IW07b] ”State of the Art in Ray Tracing Animated Scenes”
Ingo Wald, William R. Mark, Johannes Guenther, Solomon Boulos, Thiago

Ize, Warren Hunt, Steven G. Parker, Peter Shirley
Eurographics 2007

[IW08] ”Fast, Parallel, and Asynchronous Construction of BVHs for Ray Tracing
Animated Scenes”

Ingo Wald, Thiago Ize, Steven G. Parker
Computers and Graphics 32, pages 3–13, 2008

[JB70] ”A procedure for generation of three-dimensional half-toned computer
graphics presentations”

Jack Bouknight
Communications of the ACM 13, 9, pages 527–536, September 1970

[JF98] ”Open source Java projects: Java Native Access”
Jeff Friesen
Web release, http://www.javaworld.com/javaworld/jw-02-2008/

jw-02-opensourcejava-jna.html, May 1998

[JK68] ”The rendering equation”
James Kajiya
Siggraph, 1986

[JP10] ”Hierarchical LBVH Construction for Real-Time Ray Tracing”
Jacopo Pantaleoni, David Luebke
High Performance Graphics, June 2010

[IW10] ”Fast Construction of SAH BVHs on the Intel Many Integrated Core (MIC)
Architecture”

Ingo Wald
IEEE Transactions on Visualization and Computer Graphics, 2010

[LL10] ”Fast Construction of SAH BVHs on the Intel Many Integrated Core (MIC)
Architecture”

Ingo Wald
7. Workshop of the GI special interest group VR/AR, Shaker Verlag,

Virtuelle und Erweiterte Realität, pages 145–156, 2010

[MC10] ”C++ FAQ Lite — Frequently Asked Questions”
Marshall Cline
Web release, http://www.parashift.com/c++-faq-lite, 2010

Page 166 / 184

http://www.javaworld.com/javaworld/jw-02-2008/jw-02-opensourcejava-jna.html
http://www.javaworld.com/javaworld/jw-02-2008/jw-02-opensourcejava-jna.html
http://www.parashift.com/c++-faq-lite

Integration of a Raytracing-Based Visualization Component

[ML10] ”Engineering Realtime Interactive Systems: Coupling and Cohesion of
Architecture Mechanisms”

Marc Erich Latoschik, Henrik Tramberend
Proceedings of the Joint Virtual Reality Conference of Euro VR — EGVE

— VEC, EG Symposium Proceedings, pages 25–28, 2010

[ML11] ”Simulator X: A Scalable and Concurrent Architecture for Intelligent
Realtime Interactive Systems”

Marc Erich Latoschik, Henrik Tramberend
In proceedings of the IEEE Virtual Reality 2011 Conference, 2011

[MO10] ”Programming in Scala — A comprehensive step-by-step guide”
Martin Odersky, Lex Spoon, Bill Venners
Second edition, artima, 2010

[MR10] ”Entwicklung einer shaderbasierten Grafik-Engine für den Einsatz in der
Lehre”

Marc Rossbach
Master thesis, Beuth Hochschule fuer Technik Berlin, FB VI – Informatik

und Medien, Fachgebiet Medieninformatik, October 2010

[MR11] ”RaytracerCLGL — An OpenCl raytracer implementation”
Maximilian Reischl
Presentation on term project, Angewandte Informatik 5, Intelligent

Graphics Group, Term 2010/2011

[MS09] ”Spatial Splits in Bounding Volume Hierarchies”
Martin Stich, Heiko Friedrich, Andreas Dietrich
Proceedings of High-Performance Graphics, 2009

[MS11] ”A Scala Tutorial for Java programmers”
Michel Schinz, Philipp Haller
Web release, Version 1.3, www.scala-lang.org, 2011

[NV10] ”OptiX Raytracing Engine — Quickstart Guide”
NVIDIA corporation
Web release, http://developer.nvidia.com, Version 2.1, December 2010

[NV11a] ”OptiX Raytracing Engine — Programming Guide”
NVIDIA corporation
Web release, http://developer.nvidia.com, Version 2.1, February 2011

[NV11b] ”OptiX Raytracing Engine — API Reference”
NVIDIA corporation
Web release, http://developer.nvidia.com, Version 2.1, February 2011

[NV11c] ”CUDA C Programming Guide”
NVIDIA corporation
Web release, http://developer.nvidia.com, Version 4.0, March 2011

[NV11d] ”OptiX SDK sample application: Cornell Box Scene”
NVIDIA corporation
Web release, http://developer.nvidia.com, March 2011

[OE11] ”OGRE — Open Source 3D Graphics Engine”
Various contributors

Page 167 / 184

www.scala-lang.org
http://developer.nvidia.com
http://developer.nvidia.com
http://developer.nvidia.com
http://developer.nvidia.com
http://developer.nvidia.com

Integration of a Raytracing-Based Visualization Component

Web release, http://www.ogre3d.org, 2011

[OS11] ”OpenSceneGraph”
Various contributors
Web release, http://www.openscenegraph.org/projects/osg, 2011

[RG71] ”3-D Visual Simulation”
Robert Goldstein, Roger Nagel
Simulation — Transactions of The Society for Modeling and Simulation

International, Thousand Oaks, California, pages 25-–31, January 1971

[PS06] ”State of the Art in Interactive Ray Tracing”
Philipp Slusallek
Presentation sheets, SIGGRAPH course on interactive raytracing,

SIGGRAPH 2006

[SB06] ”Interactive Distribution Ray Tracing”
Solomon Boulos
Presentation sheets, SIGGRAPH interactive raytracing course introduction,

2006

[SG06] ”State of the Art in Interactive Ray Tracing”
Various authors
Presentation sheets, SIGGRAPH interactive raytracing course introduction,

2006

[SG07] ”Broad-Phase Collision Detection with CUDA”
Scott Le Grand, NVIDIA Corporation
GPU Gems 3, Second Edition, Pearson Education, 2007

[TI08] ”Ray tracing with the BSP tree”
Thiago Ize, Ingo Wald, Steven G. Parker
Proceedings of the IEEE Symposium on Interactive Ray Tracing, 2008

[TS09] ”The End of the GPU Roadmap”
Tim Sweeney
Presentation sheets, SIGGRAPH 2009

[TF05] ”KD-Tree Acceleration Structures for a GPU Raytracer”
Tim Foley, Jeremy Sugarman
Graphics Hardware, 2005

[TF10] ”Scene Graphs - just say no”
Tom Forsyth
Web Release, http://home.comcast.net/~tom_forsyth/blog.wiki.html,

2010

[TW79] ”An improved illumination model for shaded display”
Turner Whitted
Proceedings of the 6th annual conference on Computer graphics and

interactive techniques, 1979

[TW08] ”Implementation of Data Parallel Algorithms on Graphics Accelerators”
Tobias Werner
Composition, Lehrstuhl Angewandte Informatik III, Universität Bayreuth,

Winter Term 2008 / 2009

Page 168 / 184

http://www.ogre3d.org
http://www.openscenegraph.org/projects/osg
http://home.comcast.net/~tom_forsyth/blog.wiki.html

Integration of a Raytracing-Based Visualization Component

[TW10] ”Interior Point Methods with Second Derivatives for Solving Large Scale
Nonlinear Programming Problems”

Tobias Werner
Diploma Thesis, Lehrstuhl Angewandte Informatik VII, Universität

Bayreuth, Summer Term 2010

[TW11a] ”Survey of Rendering Systems”
Tobias Werner
Composition, Lehrstuhl Angewandte Informatik III, Universität Bayreuth,

Summer Term 2011

[TW11b] ”Design and implementation of a multithreaded OpenGL 3.0 rendering
kernel”

Tobias Werner
Master project, Lehrstuhl Angewandte Informatik III, Universität Bayreuth,

Summer Term 2011

[UE11] ”Unreal Technology”
Epic Games, Inc.
Web release, http://www.unrealengine.com, 2011

[VH00] ”Heuristic Ray Shooting Algorithms”
Vlastimil Havran
Dissertation Thesis, Faculty of Electrical Engineering, Czech Technical

University, Prague, 2000

[WPa] ”Rendering (computer graphics)”
Wikipedia, the free encyclopedia
Web release,

http://en.wikipedia.org/wiki/Rendering_(computer_graphics),
2011

[WPb] ”Ray casting”
Wikipedia, the free encyclopedia
Web release, http://en.wikipedia.org/wiki/Ray_casting, 2011

[WPc] ”Ray tracing”
Wikipedia, the free encyclopedia
Web release, http://en.wikipedia.org/wiki/Ray_tracing_(graphics),

2011

[WPd] ”The rendering equation”
Wikipedia, the free encyclopedia
Web release, http://en.wikipedia.org/wiki/Rendering_equation, 2011

[WPe] ”OpenRT Real Time Ray Tracing Project”
Wikipedia, the free encyclopedia
Web release, http://en.wikipedia.org/wiki/OpenRT, 2011

[WPf] ”Blinn–Phong shading model”
Wikipedia, the free encyclopedia
Web release,

http://en.wikipedia.org/wiki/Blinn-Phong_shading_model, 2011

[YF11] ”Yo Frankie!”

Page 169 / 184

http://www.unrealengine.com
http://en.wikipedia.org/wiki/Rendering_(computer_graphics)
http://en.wikipedia.org/wiki/Ray_casting
http://en.wikipedia.org/wiki/Ray_tracing_(graphics)
http://en.wikipedia.org/wiki/Rendering_equation
http://en.wikipedia.org/wiki/OpenRT
http://en.wikipedia.org/wiki/Blinn-Phong_shading_model

Integration of a Raytracing-Based Visualization Component

Apricot Open Game Project
Web release, http://www.yofrankie.org, 2011

[YK09] ”C++ FQA Lite — Frequently Questioned Answers”
Yossef Kreinin
Web release, http://yosefk.com/c++fqa, 2009

Page 170 / 184

http://www.yofrankie.org
http://yosefk.com/c++fqa

Integration of a Raytracing-Based Visualization Component

C Compact Disc Contents

This section details the contents of the delivery medium which accompanies the thesis:

• Thesis

A folder containing the latex files and jpeg images that compose this thesis
paper. Also provided is a TeXnicCenter project Thesis.tcp, and a
Windows-only building helper script FetchResult.bat.

• Bibliography

Any available electronical versions of the literature sources that have been
used in the creation of this thesis.

• Software

All software source code written to accompany the thesis is stored within this
directory. Note that required third party software components have not
completely been included for licensing and size reasons.

• Software/OptixExa

The OptiX example application from chapter 5.

• Software/OptixWrap

The native C++ code of the general renderer interface, the OptiX raytracer
implementation, and the JNI-based Java wrapper. The actual source code is
distributed over various modules, and in general resides within the Code
directories. Included are a Visual Studio 2010 workspace for building within
each VisualStudio subfolder, and complete Doxygen code documentation
within the CodeDoc subfolders.

• Software/siris ray

A snapshot of Simulator X from the siris project repository, with integrated
functionality for the Optix wrapper module.

Attention: The compact disc is only provided for convenience, and has not been
approved for public release.

Page 171 / 184

Integration of a Raytracing-Based Visualization Component

D Deutschsprachige Zusammenfassung

Nach Prüfungsordnung ist Masterarbeiten in einer anderen als der deutschen Spra-
che eine deutschsprachige Zusammenfassung beizulegen. In diesem Abschnitt werden
daher die Ergebnisse meiner Arbeit kurz auf Deutsch erläutert.

D.1 Übersicht

Ziel der Arbeit war die Implementierung eines echtzeitfähigen Raytracing-Kerns und
die Integration in die bestehende, Scala-basierte VR-Simulationsumgebung Simulator
X.

Als wissenschaftliche Basis wurden zuerst der allgemeine wissenschaftliche Stand
interaktiven Raytracings sowie das bestehende Design ausgewählter Open-Source-
Komponenten untersucht.

Im Rahmen der Arbeit mussten anschliessend die bestehende Architektur von Simu-
lator X sowie die existierende Java-Rendering-Komponente analysiert werden.

Erst dann konnte ein allgemeines Rendering-Interface auf Basis minimaler Kopplung
und maximaler Kohäsion erstellt werden. Weitere Anforderungen an dieses Inter-
face ergaben sich aus allgemeinen Entwurfsregeln, aus der Multithread-Nutzung auf
modernen Mehrkernsystemen, und aus den Vorraussetzungen für den Betrieb eines
Raytracing-Moduls. Zusätzlich sollte zur späteren Erweiterbarkeit ein klassischer Ras-
terisierer unterstützt werden.

Für die Implementierung der Schnittstelle musste eine geeignete Programmier- Plat-
form ausgewählt werden. Dazu wurde nach Kandidaten für echtzeit-fähiges Raytra-
cing gesucht. Schliesslich wurde eine Implementierung auf Basis der OptiX-API von
NVIDIA beschlossen.

Nach Abschluss der Implementierungsarbeiten musste die Rendering-Schnittstelle in
Simulator X über einen Satz an Java-Wrappern eingebunden werden. Auch hier stan-
den mit JNA und JNI zwei verschiedene Lösungen zur Wahl, die Entschiedung fiel
aufgrund besserer Performance für JNI.

Zum Abschluss der Arbeit wurde die neue Rendering-Schnittstelle in Bezug auf Bild-
qualität und Performance mit ihrem jVR-Vorgänger verglichen.

Im Folgenden werden die bereits umrissenen Schritte näher erläutert.

D.2 Stand der Forschung

Die wissenschaftliche Recherche für diese Arbeit stützte sich auf zwei verschiedene
Themen: Zuerst wurden allgemeine wissenschaftliche Arbeiten über interaktives Ray-
tracing studiert, um einen Einblick in die Materie und die Realisierbarkeit von Ray-
tracing auf moderner Konsumenten-Hardware zu gewinnen. Anschliessend wurden
verschiedene bestehende Rendering- und Raytracing- Engines auf ihre grundlegende
Architektur sowie Multithreading- Fähigkeiten untersucht.

Im Rahmen wissenschaftlicher Veröffentlichungen fanden sich zahlreiche neue Ver-
fahren zum Umgang mit interaktivem Raytracing. Insbesondere erwähnenswert ist

Page 172 / 184

Integration of a Raytracing-Based Visualization Component

die Entwicklung neuer Algorithmen, die von den traditionellen Methoden für Offline-
Raytracing abweichen. Im herkömmlichen Raytracing wird zwar eine optimale Baum-
struktur (zumeist ein kd-Baum) zur Optimierung der Dreieck-Strahlen-Verschneidung
herangezogen – diese is jedoch bei dynamischen Änderungen in der virtuellen Szene
nur schwer anzupassen.

Spezielle Verfahren für interaktives Raytracing in dynamischen Szenen setzen daher
auf andere Ansätze mit weniger optimalen, dafür schneller zu aktualisierenden Op-
timierungsstrukturen. Der vielversprechendste Vertreter ist hierbei der sogenannte
BVH-Ansatz, kurz für Bounding Volume Hierarchy oder übersetzt Umspannende-
Volumen-Hierarchie. In diesem Ansatz wird jedes Primitivum der Szene in ein Volu-
men eingeschlossen – zumeist wird in praktischen Realisierungen ein Dreieck in einen
achsen-orientierten Quader eingespannt. Aus den entsprechenden Volumina wird eine
Baumstruktur aufgebaut. Im Vergleich zu einem kd-Baum enthält ein Knoten die-
ser Struktur nur Abhängigkeiten zu allen untergeordneten Knoten. Dementsprechend
bedingt die Aktualisierung eines Primitivums nur Anpassungen an den Volumina
einiger übergeordneter Knoten. Eine grundlegende Änderung an der Struktur des
Baumes ist nicht notwendig. Über verschiedene Ausprägungen der BVH-Verfahren
lassen sich insgesamt interaktive Bildwiederholraten für das Raytracing dynamische
Szenen selbst auf aktueller Konsumenten-Hardware erzeugen.

Im Gegensatz zu den wissenschaftlichen Erkenntnissen findet sich bislang keine
vollständige 3D-Engine, die auf interaktives Raytracing gründet. Allerdings erga-
ben sich bei der Analyse bestehender Engines dennoch einige Einblicke in die ent-
sprechenden Anforderungen an einen Renderkern. Insbesondere bei wurde bei Ent-
wicklung der frei verfügbaren Ogre3D-Engine darauf Wert gelegt, eine möglichst ge-
nerelle Rendering-Schnittstelle zu schaffen. In diesem Sinne werden innere Details
des Renderers – etwa Optimierungsstrukturen, Szenen-Traversierung oder Lichtbe-
rechnung – nicht auf der Anwenderseite offengelegt. Dies ermöglicht folglich ein
problemloses Austauschen der eigentlichen Renderer-Umsetzung. Dementsprechend
existiert für die Ogre3D-Engine auch ein nicht-öffentlicher Prototyp einer Raytracer-
Implementierung.

Im Gegensatz zu allgemeinen Architekturkriterien finden sich zur Unterstützung von
paralleler Abarbeitung oder Benutzung in bestehenden 3D-Engines kaum Informatio-
nen. Bei frei verfügbaren Systemen wird die Unterstützung von Multithreading in Hin-
blick auf die damit einhergehenden Umsetzungsprobleme nicht integriert. Im Gegen-
satz dazu bieten viele kommerzielle 3D-Platformen bereits explizite Multithreading-
Fähigkeiten, beispielsweise über Rendering- und Ressourcen-Lader-Threads. Aller-
dings veröffentlichen die entsprechenden Entwickler abgesehen von grundlegenden
Merkmals-Listen keine detailierten Informationen zur Architektur oder Implementie-
rung.

Die Recherche ergab folglich zwei Erkenntnisse: Zum einen ist interaktives Raytracing
selbst dynamischer Szenen auf aktueller Konsumenten-Hardware prinzipiell möglich.
Zum anderen muss die Implementierung von Multithreading- und Raytracing-
Fähigkeiten von Anfang an in der Integration eines allgemeinen Rendering-Kerns
berücksichtigt werden – eine spätere Nachrüstung ist in der Regel nicht problemlos
möglich.

Page 173 / 184

Integration of a Raytracing-Based Visualization Component

D.3 Architektur des VR-Rahmenwerks Simulator X

Ehe die Integration eines Raytracers ins VR-Rahmenwerk Simulator X beschrieben
werden kann, ist zuerst ein grober Überblick über den Entwurf des bestehenden Rah-
menwerks nötig. Das bestehende VR-Rahmenwerk ist dabei vollständig in der Hoch-
sprache Scala gehalten. Scala ist eine funktionale Programmiersprache, die auf der
Java-VM aufsetzt, und mit dieser binär-kompatibel ist.

Simulator X wurde nach zwei grundlegenden Architekturkriterien aufgebaut: Maxi-
male Kohäsion bei minimaler Kopplung. Das heisst, das System zerfällt in maximal-
grosse funktionale Einheiten, die untereinander nur die nötigsten Verbindungen un-
terhalten. Solche Systeme eignen sich sehr gut für die Parallelisierung.

In diesem Sinne setzt Simulator X auf ein sogenanntes Entity-Modell auf. Bei ei-
nem Entity-Modell wird innerhalb eines logischen Objekts keine funktionsspezifische
Objektrepräsentation – Audiodaten, Geometrie, AI, ... – vorgehalten. Stattdessen
werden diese Informationen in jeweils dem zugehörigen Funktionsmodul – Renderer,
Audio-System, AI-Steuerung – in einer modulabhängigen Darstellung verwaltet und
lediglich aus den logischen Objekten referenziert.

In der Realisierung von Simulator X wird das Entity-Modell durch zwei weitere Pa-
radigmen vervollständigt: Ein Actor-Modell und ein Event-Modell.

Ein Actor-Modell zerlegt ein bestehendes System zur Parallelisierung in unabhängige,
funktionale Einheiten, auch Aktoren genannt. Jeweils ein Aktor entspricht in der
Regel einer eigenständigen, parallelen Ausführungseinheit. Dadurch wird funktionale
Kohäsion gefördert.

Die harte Kopplung einzelner Aktoren lässt sich durch das Event-Modell vermeiden.
Hierbei wird statt direkten Methodenaufrufen ein allgemeines Nachrichtenschema ver-
wendet, um die Schnittstelle zwischen Aktoren schmal und kontrollierbar zu halten.

Die Integration von Entity-, Actor- und Event-Modell in Simulator X wird auf ver-
schiedenen Abstraktionsebenen vorgenommen.

Das zugrundeliegende Implementierungskonzept verlangt zuerst eine Kapselung je-
des aktor-internen Zustands in sogenannte Zustandsvariablen. Jede Zustandsvariable
gehört dabei einem eindeutig bestimmten Aktor. Anderen Aktoren ist der direkte
Zugriff auf fremde Zustandsvariablen nicht gestattet. Jedoch können Aktoren inner-
halb ihres eigenen, lokalen Zustands Referenzen auf die Variablen anderer Aktoren
anlegen. Bei Änderungen am Wert einer Variablen werden über das Event-Modell alle
Referenzen aktualisiert. Insgesamt werden durch dieses Schema ein globaler, geteilter
Weltzustand und damit einhergehende Parallelisierungsprobleme vermieden.

Die eigentlichen Entitäten des Entity-Modells entstehen schliesslich durch die Kom-
bination von Zustandsvariablen. Dabei ist die Zugehörigkeit einzelner Variablen in-
nerhalb einer Entität zu einem einzelnen Aktor nicht zwingend vorgeschrieben. Im
Gegenteil werden sogar einzelne Zustandsvariablen innerhalb einer Entität nach Funk-
tionalität und somit oft dem zugeordneten Aktor zu sogenannten Aspekten zusam-
mengefasst. Beispielsweise gibt es Aspekte für das Rendering, die Soundausgabe, oder
für AI-Berechnungen.

Page 174 / 184

Integration of a Raytracing-Based Visualization Component

Auf einer höheren Abstraktionsstufe steht das World Interface von Simulator X –
die Schnittstelle zwischen einzelnen funktionalen Komponenten sowie der späteren
Anwendung. Das World Interface nimmt dabei verschiedene Aufgaben war. Darun-
ter fallen das Verarbeiten und Verschicken von Nachrichten über Änderungen an
Zustandsvariablen, das Verbinden von funktionalen Komponenten über allgemeine
Nachrichtentypen, sowie die Konfiguration des gesamten Nachrichtensystems.

Einen speziellen Platz im Konzept von Simulator X nehmen die funktionalen Kom-
ponenten ein: Eine Komponente ist dabei eine Sammlung von zusammengehörigen
Aktoren mit streng festgelegten funktionellen Umfang. Beispielsweise gibt es eine
Komponente, die nur die graphische Darstellung einer Anwendung übernimmt.

Aktuell ist die Komponente zur graphischen Darstellung in Simulator X auf Basis
des Java-Rasterisierers jVR implementiert. Der bestehende Renderer setzt dabei auf
zwei verschiedene Konzepte: Zum einen wird von jVR ein Szenengraph verwaltet,
in dem die virtuellen Objekte zusammengestellt werden müssen. Zum anderen wird
das Konzept einer benutzerdefinierten Rasterisierungs-Pipeline zur Ansteuerung und
Kontrolle des Rendering-Prozesses genutzt.

Auch ein Konzept zur parallelen Abarbeitung mehrerer Rendering- Prozesse sowie
eines einzelnen Hauptthreads wird von jVR vorgeschrieben. Insbesondere nutzt jVR
intern mehrere selbständige Threads zur Abarbeitung eingehender Pipeline-Objekte:
Es wird ein Arbeiter-Thread pro Ausgabefenster erstellt. Auf Anwendungsseite wird
jedoch nur ein einzelner Thread unterstützt, der den Szenengraphen aktualisiert und
die Pipeline-Eingaben für die Render-Threads erzeugt.

In Simulator X wird der eigentlich Java-basierte jVR-Renderer hauptsächlich über
zwei kooperierende Aktoren eingebunden: Der eine Aktor kapselt eine einzelne jVR-
Instanz inklusive Szenenverwaltung und Pipeline-Erzeugung, während der andere Ak-
tor eine ganze Arbeitsgruppe von jVR-Renderern synchronisiert.

Die Zusammenarbeit dieser beiden Aktoren mit dem restlichen System wird über
Entities und Zustandsvariablen realisiert. Insbesondere existiert ein eigener Aspekt
für render-spezifische Parameter. Allerdings fällt auf, das Teile der Benutzerlogik nicht
vollständig auf Anwenderseite integriert sind – so findet sich in einem jVR-Aktor
etwa Code zur Verwaltung des Bildschirmmenüs einer Beispielanwendung. Ebenso ist
der Renderer selbst nicht komplett von der eigentlichen Anwendung getrennt. Zwar
wird durch die Architekturkonzepte von Simulator X eine Trennung auf Datenebene
erreicht, dennoch wird über den jVR-spezifischen Render-Aspekt eine semantische
Kopplung zwischen Anwendung und Renderer-Implementierung hergestellt.

D.4 Die allgemeine Render-Schnittstelle

Im Gegensatz zur festen Schnittstelle des jVR-Moduls richtete sich die Architektur der
Raytracer-Komponente innerhalb dieser Arbeit auf ein universelles Renderer-Front-
End mit austauschbarer Implementierung aus. Im Folgenden wird das entwickelte
Font-End vorgestellt, ehe eine entsprechende Raytracer-Realisierung präsentiert wird.

Die allgemeine Schnittstelle zum Renderer zerfällt in eine Reihe von untergeordneten
Funktionsmodulen: Zum einen gibt es ein Szenenmodul, zum anderen ein Ressour-
cenmodul, und schliesslich ein Steuerungsmodul. Dabei gehen all diese Untermodule

Page 175 / 184

Integration of a Raytracing-Based Visualization Component

im Funktionsumfang über den Umfang der bestehenden Scala-Anbindung hinaus,
um später eine leichte Erweiterbarkeit zu garantieren. Im Folgenden werden alle drei
Module beschrieben, ehe das Kern-Interface dargestellt wird.

Im Szenenmodul werden die eigentlichen Objektinstanzen verwaltet. Im Gegensatz
zu einem normalen Rasterisierer kann ein Raytracer nicht über ein Traverser-Pattern
auf dem Logik-Szenegraphen implementiert werden, da für gute Performance unbe-
dingt eine implementierungsspezifische, zeitkoherente Optimierungsstruktur verwen-
det werden muss. Dementsprechend werden durch das Szenenmodul die clientseitige
Arbeit mit Objektinstanzen von der implementierungsseitigen Optimierung getrennt.

Der Client arbeitet in diesem Zusammenhang nur mit allgemeinen Objekten, Ren-
derPuppets (zu deutsch: Render-Marionetten) genannt. Diese Objekte können nach
Belieben über das Kompositions- Muster in den clientseitigen Logikgraphen eingebun-
den werden. Zudem werden RenderPuppets vom Client zu logischen Render-Szenen
zusammengefasst. Eine Szene ist die kleinste Einheit, die in einem Durchgang auf dem
Bildschirm dargestellt werden kann. Die Implementierung der Szene und der einzelnen
Render-Puppets wird dabei über das Entwurfsmuster Interface vor dem Anwender
verborgen. Vom Client veranlasste Änderungen an den Marionetten werden so un-
sichtbar an die implementierungsspezifische Representation – etwa die hierarchische
Optimierungsstruktur eines Raytracers oder den Portalgraphen eines traditionellen
Renderingsystems – übertragen.

In typischen Anwendungen gibt es statische, grosse Datensätze, die von zahlreichen
Marionetten innerhalb einer Szene verwendet werden. Dabei handelt es sich zumeist
um Geometrie-, Textur- und Shader-Daten. Um Speicherplatz einzusparen, müssen
diese Daten zwischen allen beteiligten Objekten geteilt werden. Typischerweise ist für
einen Performancegewinn zudem eine Speicherung in einem implementierungsspezi-
fischen Format nötig – beispielsweise unter Verwendung von schnellem Speicher auf
der Grafikkarte. Dieses Konzept wird über das Funktionalitätsmodul für renderseiti-
ge Ressourcen abgedeckt. Insbesondere gibt es verschiedene Ressourcentypen, die alle
eine bestimmte Mindestfunktionalität unterstützen. Beispielsweise speichert die Res-
source Texture eine 2D-Grafik zur Verwendung als Oberflächentextur, während die
Ressource Model ein skelettanimiertes Modell inklusive Texturzuordnung verwaltet.
Um das clientseitige Interface möglichst einfach und implementierungsfrei zu halten,
ist bei fast jeder Ressource ein direktes Laden aus einer vorgegebenen Datei möglich.

Nachdem der Anwender nun eine Szene aus Marionetten zusammengestellt und mit
Ressourcen verknüpft hat, muss dem Rendermodul nur noch mitgeteilt werden, dass
diese Szene auch im aktuellen Bild dargestellt werden soll. Um zusätzliche Flexibi-
lität zu erlauben, wird im zugehörigen Steuerungsmodul hierfür das Konzept einer
Befehlsschlange implementiert. Der Anwender kann dabei eine Reihe von Kommandos
zusammenstellen, die jeweils eine einzelne Szene von einem bestimmten Sichtpunkt
aus in einem bestimmten Teil des Fensters darstellen.

Auf Basis der drei Funktionsmodule fällt die Schnittstelle des eigentlichen Ren-
derkerns nun sehr schmal aus. Zum Erzeugen implementierungsspezifischer Szenen,
Marionetten und Ressourcen werden abstrakte Funktionsaufrufe nach dem Factory-
Entwurfsmusters geboten. Ein einzelner weiterer Funktionsaufruf nimmt eine Schlan-
ge an Render-Befehlen an, und löst so den Render-Vorgang aus.

Page 176 / 184

Integration of a Raytracing-Based Visualization Component

D.5 Anforderungen in Multithreading-Umgebung

Bislang wurde bei der Vorstellung der Rendering-Schnittstelle noch nicht auf
die Multithreading-Fähigkeiten eingegangen, da der Entwurf von Multithreading-
Verhalten immer ein Gesamtbild über alle betroffenen Programmteile erfordert.

Im Folgenden wird daher nun abschliessend der Multithreading-Entwurf vorgestellt,
ehe zur eigentlichen Implementierung übergegangen wird.

Grundsätzlich ist bei den zusätzlichen Risiken und dem erhöhten Aufwand eines
Multithreading-Ansatzes immer die Frage nach dem Gewinn gegeben. Im Zusam-
menhang mit einem Rendering-Kern ergeben sich durch Multithreading jedoch zwei
entschiedende Vorteile.

Zum einen ist in modernen Mehrkern-Systemen Multithreading der einzige Weg, die
maximale Systemleistung zu nutzen. Entsprechend verspricht Multithreading bei ei-
nem CPU-zeitaufwendigen Rendervorgang einen Performance-Gewinn. Dieser Punkt
ist bei modernen Hardware-Rasterisierern weniger bedeutend, da der Hauptaufwand
für die Bildberechnung an die GPU abgegeben wird. Bei einem Raytracer fällt je-
doch durch die Verwaltung der nötigen Optimierungsstruktur auch ein höherer CPU-
Aufwand an, der durch Multithreading besser bewältigt werden kann.

Zum anderen lässt sich durch geschicktes Multithreading eine flüssigere Simulation er-
reichen, selbst auf alten Einkern-Prozessoren. Dieser Punkt ist nicht sofort ersichtlich,
ergibt sich aber bei Betrachtung der für Echtzeitanwendungen typischen Hauptschlei-
fe. In der Regel findet dabei eine Folge von Simulationsschritten und Darstellungs-
schritten statt. Wird kein Multithreading genutzt, so muss der Aufruf der Darstellung
zwangsweise blockieren, bis das Rendering abgeschlossen ist. Je nach Zeitaufwand der
Darstellung werden die Simulationsschritte unregelmässig über die Zeit verteilt. Folge
sind Mikroruckler in der Bildwiederholung, Stabilitätsprobleme in der Simulationsnu-
merik, eine pulsierende Netzwerkbandbreite, oder andere störende Faktoren. Durch
Multithreading jedoch lässt sich der unkontrollierbare Zeitbedarf der Darstellung aus
der Anwendungslogik herauslösen. Somit wird die Simulationsabfolge regelmässiger
und berechenbarer, die Anwendung läuft flüssiger.

Aus dem letzten Punkt ergibt sich auch das entschiedende Kriterium für das
Multithreading-Verhalten der Renderer-Schnittstelle: Je nach Operation muss un-
terschieden werden, ob die Operation an die Bildwiederholrate (also potentiell bis
zum Abschluss eines Bildes) blockiert, oder nicht. Wird kein Blockieren erwünscht,
muss ein alternatives Vorgehen zur Vermeidung von Gegenläufigkeits- Problemen und
Inkonsistenzen zwischen Anwendungslogik und dem Renderer gefunden werden.

D.6 Multithreading-Verhalten

Zuerst wird das Multithread-Verhalten von Szeneobjekten und Render-Marionetten
festgelegt. Sowohl auf Marionetten wie auf Szenen erfolgen häufige konkurrente
Lese- und Schreibzugriffe – potentiell auch von mehreren Client-Threads aus. Die-
se Aufrufe sind auf Clientseite schwer ohne übermässigen Aufwand zu kontrollieren.
Verständlicherweise muss nämlich nach jeder dynamischen Objektsimulation – Be-
wegung, Drehung, Skelettposen-Änderung – auf eine Marionette zugegriffen werden.
Entsprechend darf auch kein Blockieren an die Wiederholrate stattfinden.

Page 177 / 184

Integration of a Raytracing-Based Visualization Component

Die Lösung ist intuitiv gefunden: Jede Marionette und Szene hält zwei getrennte
Zustände. Zugriffe durch den Anwender ändern oder lesen einen clientseitigen Zu-
stand, der durch einen clientseitigen Semaphor gegen konkurrenten Zugriff geschützt
ist. Gleichzeitig existiert ein renderseitiger Zustand, der zur Darstellung in einem
separaten Rendering-Thread genutzt wird. Über einen speziellen client- sowie einen
renderseitigen Aufruf können ferner die beiden internen Zustande durch Kopieren des
clientseitigen Zustands abgeglichen werden. Dadurch wird ein Blockieren an die Bild-
wiederholrate bei Änderungs- oder Lesezugriffen verhindert. Ein Blockieren findet
lediglich bei Konflikt zwischen Synchronisations- und Leseoperationen statt, beides
verhältnismässig schnelle Operationen, so dass keine unnötige Wartezeit eingeführt
wird.

Auch das Erzeugen sowie das Löschen von Marionetten oder Szenen blockiert nicht
an die Bildwiederholrate. Beide Operationen werden intern ohne Blockierung im Ren-
derer gepuffert, und erst dann durchgeführt, wenn der Renderingthread seine Arbeit
verrichtet.

Im Gegensatz zu Rendermarionetten zeigen Ressourcen eine andere Zugriffsstatis-
tik. Insbesondere werden Ressourcen nur in seltenen Fällen ausgelesen oder durch
client-seitigen Code verändert. Stattdessen wird in typischen Anwendungsfällen die
Ressource einmalig nach Initialisierung eingelesen, und dann immer weiter verwen-
det. Ferner bedingt eine Puffer-Strategie bei Ressourcenänderungen eine teuerer Al-
lokation eines grossen, dynamischen Zwischen-Puffers, was bei vielen Aktualisierun-
gen sogar zu einem Speicherüberlauf führen kann. Im Hinblick auf einen potentiel-
len Hintergrund-Ladethread wurde dennoch für die Zuweisung oder das Laden von
Ressourcen ein nicht-blockierendes, gepuffertes Verhalten festgelegt. Der Speicher-
verbrauch wird durch das Freigeben des Puffers nach verzögerter Anwendung auf die
renderseitigen Ressourcendaten minimiert. Lediglich die – äusserst seltenen – Ope-
rationen zum Auslesen einer Ressource können potentiell an die Bildwiederholrate
blockieren.

Im Gegensatz zur Arbeit mit Ressourcendaten sind jedoch Ressourcenanfragen beim
Renderer sowie das Freigeben einzelner Ressourcenreferenzen häufige Operationen,
da beides an die Arbeit mit Rendermarionetten gekoppelt ist. Entsprechend muss
in diesen beiden Fällen wieder nichtblockierendes Verhalten durch Puffern realisiert
werden.

Schliesslich ist noch das Multithread-Verhalten bei Abarbeitung eines Kommando-
puffers zu definieren. Obwohl es möglich ist, den Rendering-Thread direkt in den
Renderer zu integrieren, so dass die Übergabe der Kommandos nicht blockiert, wur-
de aus Flexibilitätsgründen ein anderer Ansatz gewählt. Insbesondere wurde für die
Kommandoübergabe an den Renderer selbst blockierendes Verhalten zwingend ge-
fordert. Stattdessen wird zur Entkopplung ein separates Modul zur Steuerung eines
eigenen Rendering-Threads mitgeliefert. Über eine Anfrage an dieses Modul lässt sich
erfahren, ob der Rendering-Thread gerade bereits mit einem neuen Bild beschäftigt
ist. Falls nein setzt die Anwendung ihre Simulationsarbeit fort, ansonsten wird nicht-
blockierend ein neuer Kommandopuffer an den Rendering-Thread übergeben. Dieser
gibt den Puffer wiederum intern und blockierend an den normalen Renderer-Aufruf
weiter. Schliesslich lassen sich mit diesem Verfahren auch die verbleibenden blockie-
renden Ressourcen-Leseoperationen durch Einfügen zwischen Anfrage und Komman-

Page 178 / 184

Integration of a Raytracing-Based Visualization Component

doübergabe an den Rendering-Thread entkoppeln.

D.7 Auswahl einer Raytracer-Implementierung

Zur Implementierung des beschriebenen Interfaces wurde nach einer geeigneten
Raytracing-Platform gesucht. Allerdings ergab sich dabei schnell ein Problem: Mit
Ausnahmen von NVIDIAs OptiX-API sind keine Alternativen für interaktives Ray-
tracing öffentlich verfügbar. Ein entsprechendes Hardware-Projekt der Uni Saarland
wurde 2007 abgeschlossen, die zugehörige Forschungsgruppe arbeitet derzeit an einem
geschlossenen CUDA-basierten Raytracing-System. Ein System fürs interaktive Ray-
tracing von IBM steht zur freien Verfügung, allerdings ist dieses System nur mit Cell-
Prozessoren (Playstation 3, Blade-Server) kompatibel. Der Quellcode ist ebenfalls
nicht frei verfügbar, daher kann dieser Raytracer in Simulator X nicht zur Anwendung
kommen. Schliesslich gibt es von Intel verschiedene Videos zur Demonstration von in-
teraktivem Raytracing eines Computerspiels auf Server-CPUs oder Cloud-Rechnern.
Jedoch wird auch hier keine zugehörige Implementierung zur freien Verfügung gestellt.

Daher wurde in dieser Arbeit eine Implementierung auf Basis von NVIDIAs OptiX-
API beschlossen. Dennoch wurde zuerst eine allgemeine Renderer-Schnittstelle entwi-
ckelt, so dass ein späterer Tausch des Renderkerns gegen einen anderen Raytracer oder
Rasterisierer problemlos ohne Anpassungen an clientseitigem Framework ermöglicht
wird.

D.8 Implementierung der Schnittstelle auf Optix-Basis

Die Implementierung der Raytracer-Schnittstelle auf Basis von NVIDIAs OptiX-API
ging intuitiv von statten. OptiX verwendet bereits intern eine szenengraphen-ähnliche
Struktur zur Beschreibung der virtuellen Szene. In der Implementierung wurden zu
jeder render-seitigen Ressource und zu jeder render-seitigen Marionette entsprechende
Knoten aus der OptiX-Struktur hinzugefügt. Sofern eingehende Änderungen an den
client-seitigen Objekten anstehen, werden diese bei Synchronisation an die OptiX-
internen Objekte weitergeleitet. Somit wird die Szene aktualisiert. Ebenso werden
Beziehungen zwischen client-seitigen Objekten – beispielsweise die Verwendung ei-
ner Modell-Ressource innerhalb einer Modell-Marionette – in Beziehungen zwischen
OptiX-Objekten übersetzt. Im Sinne des Beispiels wird etwa ein OptiX-interner Geo-
metrieknoten mit Modelldaten innerhalb der Modell-Ressource an einen Transform-
knoten innerhalb der Modell-Marionette angefügt.

Bei der Übersetzung in die OptiX-Schnittstelle traten dabei verschiedene Besonder-
heiten auf:

Hauptsächlich ist ein grosser Teil der Abarbeitung innerhalb des OptiX-Raytracing-
Vorganges programmierbar. Dadurch lassen sich auch nicht-bildgebende Verfahren –
Kollisionserkennung oder AI-Berechnungen etwa – mit OptiX realisieren. Auf Imple-
mentierungsebene steht hier das Konzept sogenannter ”programmierbarer Kompo-
nenten”, also einzelne benutzerdefinierte Schritte im Raytracing-Prozess. Beispiels-
weise wird zu Beginn der Bilderzeugung ein vom Benutzer zu schreibendes Strahlen-
Erzeugungs-Programm gestartet. Dieses bestimmt, welche Strahlen durch die virtuelle
Umgebung geschickt werden, sammelt zurückgegebene Daten (z.B. Farbinformatio-

Page 179 / 184

Integration of a Raytracing-Based Visualization Component

nen) auf, und speichert die Ergebnisse in einem Ausgabepuffer ab. Analog können
auch die Kollisionsberechnung mit Primitiven (zur Unterstützung von prozedurel-
len Oberflächen neben traditionellen Dreiecken) sowie die Reaktion auf Strahlen-
Oberflächen-Berührung nach individuellen Anforderungen programmiert werden. Im
Sinne der Raytracer-Komponente werden einige der programmierbaren Komponenten
hart vorgegeben, andere können durch client-seitige Ressourcen neu zugewiesen wer-
den. Beispielsweise ist das Programm zur Strahlenerzeugung in der Implementierung
fest kodiert, während alle Schnitt-Reaktionen zur Unterstützung von prozedurellen
Oberflächen austauschbar gestaltet sind.

Neben individueller Programmierbarkeit verdient auch das Kommunikations-Schema
zwischen der Ausführung von OptiX auf der Grafikkarte und der CPU-seitigen An-
wendung besondere Aufmerksamkeit. Insbesondere existieren zwei getrennte Sche-
men zur Datenübertragung: Geräte-seitige Variablen und geräte-seitige Datenpuffer.
Geräte-seitige Variablen werden für kleine Datenmengen genutzt, und werden pro Ob-
jekt in der OptiX-Szene zugewiesen. Innerhalb jeder programmierbaren Komponente
wird dabei auf den Variablensatz des aktuellen Objektes zugegriffen. In der Raytracer-
Implementierung wird beispielsweise über solche Variablen auf jedem Modell-Objekt
die zugehörige Textur des Modells referenziert. Im Gegensatz zu geräte-seitigen Varia-
blen dienen geräte-seitige Datenpuffer zum Speichern grosser, statischer Datenmen-
gen. Die Implementierung nutzt Datenbuffer unter anderem für Texturdaten oder für
Modellpunkte und zugehörige Dreiecks-Indizes.

Nach Realisierung aller voreingestellten programmierbaren Komponenten und al-
ler render-seitigen Objekte fällt die Implementierung des eigentlichen Raytracing-
Verfahrens innerhalb des Raytracers leicht: Der eingehende Kommandopuffer wird
Element für Element abgearbeitet, zugehörige Startknoten innerhalb der OptiX-
Strukturhierarchie für jedes Kommando werden extrahiert. Schliesslich wird der
Raytracing-Vorgang für jede Szene einzeln gestartet. Die Ergebnisse werden in einem
weiteren Datenpuffer aufgesammelt, und schliesslich mit OpenGL in einem Fenster
dargestellt.

D.9 Einbettung des Renderkerns in Simulator X

Aufgrund der C-Schnittstelle der OptiX-API wurden alle vorangegangenen Entwick-
lungsschritte in der Sprache C++ ausgeführt. Dadurch wurden zahlreiche Proble-
me bei der Kollaboration zwischen einer systemnahen Sprache mit einer abstrakten
Hochsprache – Ressourcenmanagement und Wrapping – auf die wesentlich schmäleren
Schnittstellenklassen des Renderers reduziert.

Nach Abschluss aller Arbeiten am Raytracing-Kern mussten dennoch alle Schnittstel-
lenklassen für die Verwendung in der Scala-basierten Simulator X-Umgebung in einer
Java-Version zur Verfügung gestellt werden. Die Verwendung der JNI-Schnittstelle zur
Verbindung zwischen C++ und Java ergab sich aus den Geschwindigkeits-Vorteilen,
und dem im Vergleich zur JNA-Implementierung wesentlich vielseitigeren Anbin-
dungsverfahren.

In der Portierung wurde dabei für jede Schnittstelle in C++ ein entsprechendes Java-
Interface definiert. Intern hält jedes Java-Objekt einen gekapselten Zeiger auf eine ent-
sprechende native Objektinstanz. Alle Funktionsaufrufe auf ein Java-Objekt werden

Page 180 / 184

Integration of a Raytracing-Based Visualization Component

unvermittelt und mit den selben Verhaltensregeln an die gekapselte Instanz weiter-
gereicht. Entsprechend werden Rückgabewerte über die JNI-Schnittstelle wieder in
Java-Klassen portiert und an den Aufruf in der eigentlichen Anwendung weitergelei-
tet.

Grundsätzliche Probleme bei der Implementierung ergaben sich auf zwei verschiede-
nen Feldern: Lebenszeit-Management und Ausnahmebehandlung.

Das Problemfeld Lebenszeit-Management wird durch unterschiedliche, inkompatible
Speicher- und Ressourcenverwaltung in Java und C verursacht. Während C++ Stra-
tegien für manuelles Ressourcenmanagement selbst unter Ausnahmebedingungen be-
reitstellt, benutzt Java komplett automatisierte Ressourcenfreigaben. Entsprechend
ergeben sich zwei Alternativen für die Bindung der Lebenszeiten von nativen Instan-
zen an die Lebenszeiten der zugehörigen Java-Objekte. Zum einen wird ein manuel-
les Zerstören aller Objekte über explizite Java-Funktionsaufrufe von jeder späteren
Client-Anwendung erwartet. Zum anderen werden aus Sicherheitsgründen speziel-
le Java-Finalisierer implementiert, die bei vergessener Ressourcenfreigabe versuchen,
das native Objekt dennoch zu löschen.

Das Problemfeld Ausnahmebehandlung bedingt eine Übernahme aller Ausnahmen
aus dem C++-Programm in die Java-seitige Schnittstelle. Daraus wiederum folgt auf-
grund der zwingenden Ausnahmespezifizierer in Java ein Anpassungsaufwand auch
für potentielle Endanwender. Um solche Schwierigkeiten zu begrenzen, ist aktuell nur
einen einzelne Java-seitige Ausnahme definiert, alle auftretenden C++ Ausnahmen
werden entsprechend konvertiert. Dadurch gehen jedoch leider weitergehende Aus-
nahmeinformationen verloren. So ist beispielsweise in Java-Code nicht mehr zwischen
einer fehlenden Ressourcen-Datei, einer korrupten Datenübertragung, oder einem Zu-
griffsfehler zu unterscheiden.

Mit den genannten Lösungen für Lebenszeit-Management und Ausnahmebehandlung
war die Konvertierung der nativen Schnittstellen nach Java abgeschlossen.

Die folgende Implementierung der Raytracing-Komponente innerhalb von Scala und
dem Simulator X-Umfeld war schliesslich intuitiv zu bewältigen. Eine einzelne Aktor-
Komponente wurde erstellt, eine spezielle Nachricht zur Konfiguration der Kompo-
nente wurde definiert. Das Verarbeiten eingehender Eintities und Zustandsvariablen
wurde analog zur bestehenden Integration des jVR-Renderers durchgeführt. Schliess-
lich wurde die Raytracing-Komponente zu Demonstrations- und Testzwecken mit
einer bedeutenden Beispielanwendung des Simulator X-Projekts verknüpft.

D.10 Bewertung des Raytracing-Kernels

Nach Abschluss der Integrationsarbeiten wurde das Raytracing-Kernel in der genann-
ten Beispielanwendung dem jVR-Rasterisierer gegenübergestellt. Dabei wurden unter
anderem Bildqualität, Leistung und Stabilität verglichen.

Bei Bildqualität und Leistung ergaben sich nur wenige Unterschiede zwischen beiden
Implementierungen mit einem leichten Vorsprung für den klassischen Rasterisierer.
Wie erwartet fiel der Raytracing-Ansatz dabei in hohen Auflösungen aufgrund eines
höheren Aufwands pro Bildpunkt deutlich hinter der jVR-Darstellung zurück. Weitere

Page 181 / 184

Integration of a Raytracing-Based Visualization Component

kleine Abzüge gab es für fehlende Unterstützung von nativer Texturen-Filterung oder
Bild-Filterung in der OptiX-API.

Im Gegensatz zum Beinahe-Gleichstand bei Bildgüte und Geschwindigkeit zeigten
sich in der OptiX-API insbesondere im Rahmen einer weitläufigeren Szene deutli-
che Stabilitätsprobleme. Beispielsweise führten leere Gruppenknoten innerhalb der
OptiX-internen Szenenhierarchie bereits zu einem Abbruch des kompletten Ren-
derverfahrens oder einem Anwendungsabsturz. Ebenso drastische Folgen hatten
nicht-definierte, geräte-seitige Variablen, oder die Verwendung einiger Standard-
Bildformate. Sofern überhaupt Fehlermeldungen ausgegeben wurden, waren diese zu-
meist schwer zu verstehen und deuteten auf interne Programmier-Fehler in der OptiX-
oder CUDA-Schnittstelle hin. Wünschenswert wäre hier ein Verhalten ähnlich zu be-
stehenden Rendering-APIs wie OpenGl oder DirectX, die bei einem Fehler lediglich
kurzfristige Bildfehler erzeugen.

D.11 Ausblick

In diesem Sinne fällt auch der Ausblick auf die Zukunft interaktiven Raytracings
aus. Insbesondere erreichen aktuelle Implementierungen auf Grafikkarten bereits in-
teraktive Geschwindigkeit und akzeptable Bildqualität. Allerdings steht für interak-
tives Raytracing noch ein wichtiger Meilenstein aus: Akzeptanz in veröffentlichten
Software-Titeln.

Diese Akzeptanz setzt einen fortgesetzten Reifungsprozess auf dem Gebiet der Pro-
grammierschnittstellen voraus. Ein Schritt in richtige Richtung könnte beispielsweise
eine standardisierte, hersteller-unabhängige API-Spezifikation für interaktives Ray-
tracing darstellen. Daraus würden sich potentiell Alternativen zur OptiX-API er-
geben. Mit zunehmendem öffentlichen Interesse könnten schliesslich Qualität und
Stabilität der gerätenahen Implementierungen ansteigen.

Auch im Rahmen der Raytracing-Komponente von Simulator X bestehen offene Punk-
te. Zum einen ist im Moment nur ein grundlegendes Lichtberechnungs-Verfahren auf
Basis von Blinn-Phong-Shading mit harten Schatten implementiert. Zukünftige Er-
weiterungen könnten beispielsweise pfad-basierte globale Beleuchtungssimulationen
oder fortschrittliche Schattenberechnung integrieren. Zum anderen müssen auch die
grundlegende Schnittstelle sowie die Integration in Simulator X erweitert werden.
So werden fortgeschrittene Animationsverfahren – etwa Skelettanimation – bereits
grundlegend im Raytracer-Backend unterstützt, allerdings noch nicht nach aussen
hin zur Verfügung gestellt.

Eine abschliessende, langfristige Perspektive für interaktives Rendering wird von Tim
Sweeney – Entwickler der kommerziellen Unreal Engine – vertreten: Dieser hofft in der
kommenden Dekade auf eine Integration von GPU- und CPU-spezifischen Fähigkeiten
in einem einzelnen, frei programmierbaren Kernprozessor. Dementsprechend könnten
sowohl Rasterisierungs- wie Raytracing-Kernel in einer Hochsprache geschrieben und
je nach Anforderungen einer Anwendung miteinander verwoben werden.

Page 182 / 184

Integration of a Raytracing-Based Visualization Component

E Software Tools

The following software tools have been used in the creation of this thesis document
and the accompanying programs and media documents:

• Blender 2.5 Test Build

http://www.blender.org

• Doxygen 1.7.4

http://www.doxygen.org

• GIMP 2.6

http://www.gimp.org

• JetBRAINS IntelliJ IDEA 10 Community Edition

www.jetbrains.com/idea

• LaTeX 2ε

http://www.latex-project.org

• MiKTeX 2.9

http://miktex.org

• NVIDIA Cuda and Optix SDKs

http://developer.nvidia.com

• OpenOffice 3

http://www.openoffice.org

• TeXnicCenter

http://www.texniccenter.org

• Visual Studio 2010 Express

http://www.microsoft.com/germany/visualstudio

• Visual Assist

http://www.wholetomato.com

Thanks go out to all involved parties for their great work !

Page 183 / 184

http://www.blender.org
http://www.doxygen.org
http://www.gimp.org
www.jetbrains.com/idea
http://www.latex-project.org
http://miktex.org
http://developer.nvidia.com
http://www.openoffice.org
http://www.texniccenter.org
http://www.microsoft.com/germany/visualstudio
http://www.wholetomato.com

Integration of a Raytracing-Based Visualization Component

F Erklärung zur Authentizität

Hiermit bestätige ich, Tobias Werner, dass ich diese Masterarbeit inklusive zu-
gehöriger Programmquellen selbständig angefertigt habe. Lediglich die unter Anhang
B genannten Quellen und die unter Anhang E genannten Hilfsmittel wurden bei Er-
stellung der Arbeit einbezogen. Entsprechende Verwendungsstellen im laufenden Text
sind ausdrücklich mit einer Referenz versehen. Ebenso habe ich diese Arbeit nicht be-
reits an einer anderen Universität zur Erreichung eines Mastergrades abgegeben.

Unterschrift:
(Tobias Werner)

Page 184 / 184

	Introduction
	Abstract
	Overview

	Rasterization and raytracing
	Basic concepts
	Rasterization
	Raytracing
	Comparison
	Performance
	Design elegance
	Conclusion

	Historical development
	Early years
	The rendering equation
	Consumer adaption
	Specialized graphics hardware
	General programming on graphics hardware
	Use in modern applications

	State of the Art
	Interactive raytracing
	General review
	KD-trees
	Bounding volume hierarchies
	GPU-based bounding volume rebuilds
	Memory coherence algorithms
	BSP-based optimization structure
	Multi-frustum approach for soft shadows
	Conclusion

	Middleware alternatives
	Renderer architecture
	Blender
	Ogre3D
	Unreal Engine
	Conclusion

	Simulation kernel
	Fundamental concepts
	Coupling and cohesion
	Scene graphs
	Event systems
	Entity models

	Architecture overview
	Actors, entities, and state variables
	World interface, events and components

	Existing rasterization module
	Java-side architecture
	Simulator integration

	OptiX platform
	CUDA overview
	Parallelism on graphics hardware
	Language and API
	Compilation

	OptiX overview
	High-level code flow
	Programmable components
	Building programmable components
	Scene hierarchy
	Acceleration structures
	Data buffers
	Device variables
	Programming interface
	Multithreading capabilities
	CUDA extensions

	Sample application
	Device-side variables
	Global programmable components
	Geometry-based programs
	Main application
	Scene management
	Raytracing
	Conclusion

	Renderer interface
	Requirements
	Rendering process overview
	Render-side objects
	Object life-cycle
	RenderObject interface
	RenderObject varieties

	Resource management
	RenderResource interface
	Resource types
	Resource management requirements
	Resource management strategy

	Scene and puppet management
	RenderPuppet interface
	Puppet types

	Process control
	Commands and command buffers
	Rendering techniques
	RenderContext interface

	Window management
	Blocking and threading behavior
	Timing
	Blocking behavior
	Blocking on RenderContext
	Decoupling via rendering thread
	Blocking on puppets
	Blocking on resources

	Interpolation
	Multithreaded client applications
	Extendability
	Design alternatives
	Interface summary

	Raytracer implementation
	Native and Java approaches
	Interface implementation
	C++ specifics in the RenderContext interface
	Interface classes

	OptixContext implementation
	Mirror hierarchy
	Resource implementation
	Puppet implementation
	Programmable component interface
	General OptixContext functionality
	Lighting algorithm
	Device-side light buffer
	Default programs
	Rendering process
	Renderer destruction

	Example client application
	Testing suite

	System Integration
	Java wrapper
	JNI and JNA solutions
	JNI realization
	JNI examples

	Scala integration
	Raytracing actor
	Application integration

	Caveats
	Shared pointer wrapping
	Large data transfers
	Exception wrapping

	Evaluation
	SimThief example application
	General features
	Language-specific aspects
	Architecture comparison

	Image quality
	Performance
	Stability

	Conclusion
	Review
	Preview
	Research
	Implementation

	Conclusion

	Appendices
	Framework Overview
	Exception module
	ScopeGuard module
	Container module
	Log module
	Geometry and image modules
	File module
	Thread module

	Bibliography
	Compact Disc Contents
	Deutschsprachige Zusammenfassung
	Übersicht
	Stand der Forschung
	Architektur des VR-Rahmenwerks Simulator X
	Die allgemeine Render-Schnittstelle
	Anforderungen in Multithreading-Umgebung
	Multithreading-Verhalten
	Auswahl einer Raytracer-Implementierung
	Implementierung der Schnittstelle auf Optix-Basis
	Einbettung des Renderkerns in Simulator X
	Bewertung des Raytracing-Kernels
	Ausblick

	Software Tools
	Erklärung zur Authentizität

