
29

Smoothing of Piecewise Linear Paths
Michel Waringo and Dominik Henrich

Lehrstuhl Angewandte Informatik III (Robotik und Eingebettete Systeme),
Universität Bayreuth

Germany

1. Introduction
The pointwise traversal of a given path is a popular task in the area of robotics, e.g. in
mobile, industrial or surgical robotics. The easiest method to describe paths is by a sequence
of linear segments, and for many tasks the precision of a path approximated by linear
segments is sufficient. The movements to be accomplished by a mobile robot or the robot’s
end-effector are described by a sequence of points in space, that have to be traversed by the
robot. However, in practice, a pre-computed path unfortunately often consists of more path
points than are necessary for sufficiently accurate execution. An excessive number of path
points renders the movement jerky if the path points are dispersed around the optimal path,
leading to unnecessary mechanical stress of both robot and tool. A second problem is that
many path points lying close to one another can lead to high computational cost when
traversing the path and can reduce traversal speed.
Paths described by teach-in methods are one example where the path can consist of too
many path points. In these methods, the desired movement is recorded while the operator
moves the robot’s arm, either directly, through a master device or by giving instructions
through a control panel. Because of the rather intuitive input of the human operator, the
path suffers from deficiencies and frequent unnecessary changes of direction.
The taught-in path can be traversed better after smoothing the path. Another example is
voxel-based path planning. Here, only space points with discrete coordinates can be
traversed, which may lead to a stair shaped approximation of diagonal paths. Just as with
smoothed taught-in paths, smoothed voxel-based paths can be traversed more efficiently,
because there are fewer changes of speed and direction, and the total path length is reduced.
The remainder of the text first provides a problem description (Section 2), after which the
state of the art is presented (Section 3). Then, the proposed procedure is described in detail
(Section 4), and different specializations of the proposed method are shown for points with
fixed orientation (Section 5) as well as with variable orientation (Section 6). Finally,
experiments are described (Section 7), and open issues and further enhancements are
discussed (Section 8).

2. Problem description
The problem of path smoothing can be described as follows. A path P := < p1, p2, ... , pn > of
n points is given, represented by an ordered list of m-dimensional Cartesian path points

Mobile Robots Motion Planning, New Challenges, Xing-Jian Jing

Mobile Robots Motion Planning, New Challenges

564

pi := (pi1, pi2, … pim)T. All path points pi have the same dimensionality m := mp + mo,
depending on the degrees of freedom of the robot or the requirements of the task to be
performed. The list is sorted in the natural point order, assigning the index 1 to the path’s
start point and index n to its end point. The parameters mp, mo ∈ N, mp, mo ≥ 0 designate the

dimension of the two coordinate types position and orientation of a path point.
The neighbourhood of a path point pi is defined as the sequence of points in P between and
including the nearest neighbours of that point in the path P to the left and and right of pi.
The deviation di between a smoothed path P' and the original path P in the neighbourhood of
the path point pi can be computed according to various error functions, such as the standard
deviation or the area spanning both paths. The deviation must be computed differently
depending on which coordinate type, position or orientation, is considered.
The error function K represents the criterion used to compute di. Its input are the two paths P
and P' as well as the index i, and its output is the deviation di between them. Finally, we
need a threshold value dlim indicating the maximum allowed di.
If the path points consist of both coordinate types, either position or orientation may, but
need not, be used as a constraint in addition to the optimization criterion which is
mandatory. If not only an optimization criterion but also a constraint is being used, a second
threshold value clim is needed. In that case, we compute a second deviation ci for each path
point which may not exceed clim.
Thus, we search for a path P' whose deviation di from P does not exceed dlim at each
individual path point according to K. The number of path points of the path P' is minimized
under the given optimization criteria and optionally a constraint (Figure 1).

Figure 1. Example of the complete smoothing of a two-dimensional path P with nine path
points. In each step i, the path point whose removal leads to the smallest possible deviation
between Pi and the original path P is removed, using as criterion the maximum Euclidean
distance (see Section 5). A reasonable smoothed path could be e.g. P5

3. State of the Art
We can distinguish two main categories of problems where a reduced number of path
points is required: path planning and path shortening.
In collision-free motion planning, e.g. for mobile robots, the start and the end points are
given, and a path connecting them is sought. There may be obstacles and narrow passages
like doors or corridors. A good path avoids all obstacles and is short. In a first step, e.g.
using a stochastic approach, in a path planning procedure (Subsection 3.1), a path of possibly
poor quality is created, containing many superfluous segments and being much longer than
necessary. It is improved in a second step by a path shortening procedure. There is no need

Smoothing of Piecewise Linear Paths

565

for any similarity between the original and the collision-free shortened path apart from
having the same start and end point.
In other approaches, the improved path must remain similar to the original path. Not only
the start and end point, but also the path between them is given. However, the quality of
this path may be unsatisfying, the path being jerky or consisting of too many segments. In
this path smoothing procedure (Subsection 3.2), small deviations from the original path are
allowed as long as the number of path segments can be reduced noticably and both paths
stay close enough. Figure 2 shows the difference between path shortening and path
smoothing.

Figure 2. Left: path shortening procedure where obstacles must be avoided, right: path
smoothing procedure where a path must stay within a given vicinity of the original path

3.1. Path planning procedures
In collision-free motion planning, planning is usually performed in the configuration space.
The problem of finding a path between a start and an end point is PSPACE-hard in the
degrees of freedom and in the number of obstacle surface patches. Therefore, most
algorithms in this category are stochastic. Two main classes can be distinguished.
Probabilistic roadmap (PRM) approaches (Amato, N.M. & Wu, Y., 1996), (Geraerts, R. &
Overmars, M. H., 2002) proceed in two steps. First, a collision-free path is constructed as a
graph in robot configuration space. In a second step, pairs of promising vertices are chosen
and a simple local planner is used to find a better collision-free connection between them.
Approaches based on Rapidly-exploring Random Trees (RRTs) (Kuffner, J. J.; LaValle S. M.,
2001), (LaValle, S. M., 1998) use a collision-free path tree that is grown incrementally. In each
iteration, a random configuration is chosen, and an attempt is made to find a path to it from
the nearest RRT vertex.
Other path planning algorithms exist which do not belong to one of these two categories.
One example are potential field based methods which can be used for path planning if there
are only few obstacles. Another example is the Randomized Path Planner (RPP)
(Barraquand, J. & Latombe, J.-C., 1991) where the path is planned according to potential
fields and random walks are used to escape from local minima. Another group of path
planning algorithms is based on the elastic-band method (Quinlan, S.; Khatib, Q., 1993),
where contractive and repulsive forces emanating from obstacles determine the deformation
of an original path.

Mobile Robots Motion Planning, New Challenges

566

If path segments are to remain piecewise linear, other strategies can be used. Path
modifications may be performed by shifting or splitting path segments. Furthermore, path
segments can be merged by removing their point of connection (Baginski, B., 1998). A
similar procedure is used in (Berchtold, S. & Glavina, B., 1994), where path points are
removed based on a heuristic to locally reduce the path length. Another example of
collision-free paths for robots can be found in (Urbanczik, C., 2003). Here, path points can be
shifted or removed, and segments can be split. After each step the list is re-sorted by pairs of
neighbouring segments. Path shortening can be performed using a divide-and-conquer
algorithm which removes all path points between the first and the last point in one
recursion step if the direct path between them is allowed, and otherwise bisects the path
points list (Carpin, S.; Pillonetto G., 2006). However, these approaches are not valid for the
application we envisage because they do not guarantee a similarity between the original and
the smoothed path.

3.2. Path smoothing procedures
In applications where the shortened path must remain similar to the original path, similar
strategies can be used, but optimization criteria are different. The simplest form of path
smoothing is the removal of superfluous collinear path points, i.e. path points lying on a
straight line between their two immediate neighbours. Here, no deviation from the original
path arises, but only a few path points can be removed in general. A reduction in the
number of path points can also be achieved by approximating the path by curves of a higher
degree consisting of nonlinear path segments (e.g., defined by quadratic or cubic functions)
(Hein, B., 2003) or non-uniform rational B-Splines (NURBS) (Aleotti, J.; Caselli, S., 2005).
In (Engel, D., 2003) a smoothing procedure for piecewise linear paths is described that
removes path points pj not exceeding a given deviation from a path segment <pi, pk> with
i < j < k. A disadvantage is that the path point list is treated only once and thus some
smoothing steps are not executed which are only possible when the path was already
smoothed in a previous step.
A well-known point reduction method is linear regression (Bronstein, I. N.; Semendjajew, K.
A; Musiol, G.; Mühlig, H., 2001), but it does not guarantee an upper limit for the deviation.
Here, a path defined by scattered points is replaced by a path consisting of one straight-line
segment placed as close as possible to the scattered points.

3.3. Conclusions
Although a smoothed path slightly deviates from the original path, it can be better suited for
a specific application as long as the deviations are not too big.
A downside of the discussed methods is that they are not able to handle paths with both
positions and orientations. They are either restricted to one coordinate type (usually
positions) or they work in the configuration space. In that space, there is no differentiation
into two coordinate types either. Although algorithms working in the configuration space
can smooth paths having position and orientation coordinate components, they need a robot
model and a forward kinematics.
The path smoothing method we propose offers some advantages which make it particularly
suited for time-critical applications working either in configuration space or work space.
Due to the order in which the path points are removed, our method has anytime ability, i.e.
it can be aborted prematurely and still returns a valid smoothed path, with the result quality

Smoothing of Piecewise Linear Paths

567

increasing monotonically over time. The optimization criterion can be easily exchanged
(depending on the application), and an upper bound for the deviation between the original
path and the smoothed one can be guaranteed. Furthermore, the algorithm is efficient, as
both the computation time and storage space are linear in the number of path points. The
algorithm is very versatile due to its capability to handle points with both coordinate types.

4. Path smoothing procedure
The path points pi are stored in a list ordered by index. Their description (i.e., the Cartesian
coordinates) is extended by three components:
• The flag ri ∈ {true, false} indicates whether the path point has been removed while

smoothing.
• The variable di ∈R indicates the deviation of the path in the neighbourhood of the path

point, which will be explained in detail in Section 5. This variable holds the
optimization value used to decide which point has to be removed next so that the path
deviation stays as small as possible.

• The variable ci ∈ R stores the deviation of the path in the neighbourhood of the path

point according to a second coordinate type. This variable holds the constraint value.
The use of ci is detailed in Section 6. If the path has only one coordinate type, ci is not
used 1.

The path points removed during path smoothing are not deleted from the list, but are
instead only marked as removed, since the procedure must be able to access the original
path at any time. When smoothing is complete, all path points not marked as removed are
copied into a target path point list containing only the path points of the smoothed path.
The algorithm for removing path points works as follows:
(1) For all path points pi, set ri = false and ci = 0.
(2) For all path points pk not yet removed (rk = false), compute the arising deviation dk

between the smoothed path P' and the original path P, assuming that pk is removed
from the path (in addition to the path points removed so far). If a constraint is being
used, compute ck.

(3) Select among all path points with ck < clim the path point pk with the smallest dk.
(3a) If the deviation dk is smaller than the specified value dlim, then mark pk as removed

(rk = true) and go to (2).
(3b) Otherwise, no further path points can be removed from the path, and the path

P' := < pi | ri = false, i = 1, …, n > is returned.
If no constraints are being used, no computations of ci are performed and ci stays zero, being
without any effect.
The path point whose elimination leads to the smallest deviation from the original path
while not violating the constraints is removed during each iteration. In this way, it is
ensured that a (locally) maximum number of path points can be removed before the
deviation locally exceeds the threshold dlim and the algorithm terminates.

1 This is realised by initially setting ci = 0 and not modifying it any more and setting clim to
an arbitrary value >0.

Mobile Robots Motion Planning, New Challenges

568

In order to prevent gradual drifting of the path in each iteration, the current path must not
be compared with the path from the previous iteration step, but with the original path.
A certain computational speed improvement can be obtained by using an efficient
implementation. Given a path with n path points, the maximum smoothing of the path
would require n − 2 iterations, as the first and last path point are not removed. For a given
iteration step j, the number of local deviation computations is n − 2 − j. This belongs to the
complexity class O (n2), since the total number of computation steps is

()
2 2 2 2

1 1 1 1
22

n n n n

i i i i
n in i

− − − −

= = = =
= − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∑ ∑ ∑ ∑

 22 1 5
(2) 2 (2) (1) 3

2 2 2

n
n n n n n n

−
= ⋅ − − ⋅ − − − = − + (1)

The procedure can be accelerated by considering that the path deviation only changes in the
proximity of a path point that is removed. Thus only in the first iteration step, the deviation
needs to be computed for all path points, and in the further steps only for the path points in
the neighbourhood of the last removed path point.
For this purpose, the component di of all path points pi is required for buffering the
corresponding deviation. After a path point has been removed, the deviation can change
only for the two neighbouring path points without considering all path points already
removed. Therefore, only two instead of n − 2 − i deviations need to be determined per
iteration step. This results in a complexity of

 ()
2

2

2 2 3 3 6
n

j

n n n n
−

=

+ = + − = −∑ (2)

computation steps, with complexity dropping from O (n2) to O (n). The same holds true for
the computation of the constraint ci, which, if used, is computed whenever di is computed.
In the following, we describe how the interval of path points needed for the computation of
the deviation di is determined. We are looking for two path points pmin and pmax that border
on the interval in question: I := [pmin ; pmax] = < pmin, ... , pi, ... , pmax >.
In the first iteration no path points have been removed yet. Trivially, only three path points
need to be regarded: the path point pi as well as its neighbours pi-1 and pi+1, and the path
segment < pi-1, pi, pi+1 > must be compared with < pi-1, pi+1 > in order to compute di. The
manner in which this comparison is performed depends on the error function used and is
described in Section 5.
In the subsequent iterations we must consider which path points are removed and must
extend the path interval of interest beyond the previously removed path points so that its
borders again consist of the next two non-removed path points pmin and pmax. Thus pmin and
pmax are the direct neighbours of pi that have not yet been removed. The deviation di is
computed by comparing a path segment of the original path Pi,o = [pmin, pmax] =
< pmin, ... , pi , ... , pmax > and the corresponding path segment on the smoothed path
Pi,s = < pmin, pmax >.
The following table shows exemplarily the deviation computations necessary for smoothing
a path with six path points P = < p1, p2, p3, p4, p5, p6 > in the order p4, p3, p2 and p5.

Smoothing of Piecewise Linear Paths

569

 p1 p2 p3 p4 p5 p6
compute d1 d 2 d 3 d 4 d 5 d 6

remove point r4=true
recompute d 3 d 5

remove point r 3=true
recompute d 2 d 5

remove point r 2=true
recompute d 1 d 5

remove point r 5=true
recompute d 1 d 6

Table 1. Steps performed during the smoothing of a path. In each iteration other than the
first one only two deviations need to be determined

Prior to each iteration step, the deviation di is known for all remaining path points pi not yet
removed (thus all path points with ri = false). Based on this information, the path point
whose removal leads to the least deviation from the original path can reliably be removed.
Fig. 3 and Fig. 4 illustrate the two steps marked in gray from Table 1 based on a two-
dimensional geometry. For example, the area between a path segment of the smoothed path
and the appropriate original path is defined as the error function K. Using this K, the
deviations di are areas, which are shown in gray.
The path point p4 is already marked as removed (represented by a white dot in Figure 3 (a)).
p3 is now removed additionally, resulting in the modification of the smoothed path that can
be seen in Figure 3 (b) and (c).

Figure 3. Example for the removal of a path point. Black dots represent still existing path
points and white dots represent removed path points. (a) shows the entire path and (b) and
(c) the smoothed path before and after removal of p3, respectively

With the removal of p3, the deviations d2 and d5 occurring upon removal of p2 and p5 also
change and d2 and d5 must therefore be updated. Figure 4 (a) and (b) clarify why the
deviation must be recomputed for the path point p2. Before the removal of p3, the removal of
p2 only affected the path segment < p1, p3 >. Now, it affects the path segment < p1, p5 >. In
the smoothed path, p2 now has p1 and p5 as direct neighbors rather than p1 and p3, thus its
deviation has changed.
Similarly, in Figure 4 (c) und (d), the deviation for the path point p5 determined in an earlier
iteration is now invalid and must be recomputed. No new calculations need to be performed

Mobile Robots Motion Planning, New Challenges

570

for the other path points, since with linear interpolation the removal of p3 only affects the
segments that were direct neighbors of that path point before it was removed.

Figure 4. Example of the computational cost reduction. Black dots represent still existing
path points and white dots represent removed path points. The deviations are shown as
gray areas. In the upper two figures, the deviation d2 occurring if p2 is removed is shown,
both before removal of p3 (a) and after its elimination (b). (c) and (e) similarly show the
deviation d5 before and after removal of p3

In the following we describe how the interval of path points is determined that is needed for
the computation of the deviation di. We are looking for two path points pmin and pmax that
border the interval in question: I = [pmin ; pmax] = <pmin, ... , pi, ... , pmax>.
In the first iteration no path points have been removed yet. Trivially, only three path points
need to be regarded: the path point pi as well as its neighbors pi-1 and pi+1, and the path
segment <pi-1, pi, pi+1> must be compared with <pi-1 pi+1 >. The manner in which this
comparison is performed depends on the error function used and is described in Section 5.
In the subsequent iterations we must consider which path points are removed and we must,
as shown in Figure 4, extend the path interval of interest beyond the previously removed
path points so that its borders again consist of two non-removed path points. Let i be the
index of the path point for which the deviation of the deletion is to be computed and pi be
the corresponding path point. Let n be the number of path points in the original path
<p1, … , pi, … , pn>.
We obtain the following algorithm:

min := i − 1
while min > 1 and rmin = true
 min := min − 1

max := i + 1
while max < n and rmax = true
 max := max + 1

Thus pmin und pmax are the direct neighbors of pi that have not yet been removed. The
deviation di is computed by comparing a path segment of the original path Pi,o = [pmin, pmax]
= < pmin, ... , pi , ... , pmax > and the corresponding path segment on the smoothed path Pi,s =
<pmin, pmax >.

Smoothing of Piecewise Linear Paths

571

5. Path deviation functions for a fixed orientation
In this section, we consider only paths with positional coordinates and no orientation and
we do not use any constraints (Waringo, M.; Henrich D., 2006). Depending on the
application, different error functions K can be used. We investigated three error functions:
• K1: di is the maximum of the Euclidean distances of all path points of the interval Pi,o

from the corresponding interval Pi,s in the smoothed path. This criterion can be used in
applications where motion is constrained to a safety corridor, e.g. in a master-slave
robotic guidance system, car manufacturing, or robotic endoscope holding systems.

• K2: di is the root-mean-square deviation of the distances (i.e. the square root of the mean
of the squares of the shortest distances) of all path points of the interval Pi,o from the
corresponding interval Pi,s in the smoothed path. This criterion is useful mainly for
theoretical analysis.

• K3: di is the area between the smoothed paths segment Pi,s and the corresponding
segment Pi,o on the original path. K3 is the best choice for sweeping applications, e.g.
bones milling or cleaning robots.

The first two error functions can be determined quickly and work for path points with any
dimensionality. Error function K3 is useful and intuitively plausible for paths defined in a
plane, i.e. two-dimensional paths. However, K3 can also be used for more dimensions.
The error function K1 guarantees that the smoothed path never deviates by more than the
distance dlim from the original path. One disadvantage involves the computation of each
deviation di: Only one path point pi ∈ [pmin ; pmax] is used and the distance from the other
path points in that interval is neglected. Path points far away from Pi,s are rated strongly,
whereas a constant slight deviation of the path across all path segments under consideration
leads to a smaller deviation.
This drawback can be avoided by using the error function K2 as this function uses all path
points pi ∈ [pmin ; pmax] for the computation. Additionally, path points far away from Pi,s are
considered because the distance to the smoothed path Pi,s is squared. The computation of K2
is also quite fast.
The computation of K3 is more costly, however unlike K1 and K2 it also considers the
distance between path points pi ∈ [pmin ; pmax] on the original path, not just the distances
between paths points from the original path and the smoothed path Pi,s.
Figure 5 illustrates the three error functions.
The algorithm uses the heuristic of always removing the point yielding the smallest
deviation. Although this provides good results in practice, the path obtained is not
necessarily globally optimal. Because the algorithm does not look ahead to try to remove
more than one path point at a time and does not allow the deviation to exceed the limit dlim
in any iteration step, opportunities to shorten the path can be missed. Consider for example
Figure 6 (a). When using criterion K1 and a maximum allowed deviation dlim = 0.6 ⋅ || p2 p3 ||
the optimal path (b) cannot be obtained. The removal of either p2 or p3 temporarily leads to
a deviation that is close to 1 ⋅ || p2 p3 ||, whereas by removing p2 and p3 at the same time, dlim
would not be exceeded. The smoothing procedure aborts without being able to remove p2 or
p3.
Nevertheless, the paths created are valid because the deviation does not exceed the
maximum allowed. An advantage of the proposed method is that the algorithm is anytime
capable, i.e. it can be aborted prematurely and still delivers a valid result. The quality of the

Mobile Robots Motion Planning, New Challenges

572

path increases monotonically until termination. This is an important feature for time-critical
applications, such as sensor-based motion planning.

Figure 5. Sketch describing the determination of path deviation di. The linear path segments
to be compared are the original path (a) and the smoothed path (b). The error functions K1,
K2, and K3 are illustrated in (c), (d), and (e)

Figure 6. Example for the non-optimality of the proposed algorithm. (a) A path consisting of
five points, (b) the optimal path with a maximum allowed deviation of 0.6 ⋅ ||p2 p3 ||

Smoothing of Piecewise Linear Paths

573

6. Path deviation functions for variable orientations
In Section 5 paths with arbitrary dimensionality, but just one coordinate type have been
treated. However, Cartesian paths whose points contain information on both coordinate
types (position as well as orientation) cannot be handled reasonably with this approach, as
positions and orientations can not be treated in the same way. For example, a positional
value is unique, whereas an orientation is unique in a range of 360°.
Therefore, we choose to compute position and orientation separately and combine
positional and orientational deviation in an optimization procedure as optimization
criterion and/or constraint, respectively. At that point, both are real numbers which are
comparable again.
We use quaternions for representing the orientation of a path point, following the
representation in (Maillot, P., 1990). This representation overcomes severe disadvantages of
a vector angle representation like e.g. Euler angles.
Eq. (3) shows the representation of an orientation oi = ϕi as a quaternion.

 ϕi = ai + bi ⋅ j + ci ⋅ k + di ⋅ l with ai, bi, ci, di ∈ R. (3)

Just like the distance between two positions p1, p2 can be computed, we can easily obtain the
distance between two orientations o1, o2. It corresponds to the angle between the
orientations (Eq. 5):

 () () () ()22 2
1 2 2, 1, 2, 1, 2, 1,,p x x y y z zd p p p p p p= − + − + −p p (4)

 do(o1, o2) = acos (a1 · a2 + b1 · b2 + c1 · c2 + d1 · d2) (5)

From Eq. (5), it is obvious that the distance between two orientations can not exceed the
range [–180°, +180°] whereas the distance between two points is unrestricted, Eq. (4).
The criteria K1 and K2 are directly applicable for orientations if we replace Eq. (4) by Eq. (5)
in the computation. For criterion K3, we need to obtain the cumulated orientational
deviation. We solve that problem by numerically integrating the orientational deviation
along the path between two path points. We need to interpolate orientations. Quaternion
interpolation can be performed using either LERP or SLERP interpolation (Maillot, P., 1990).
Although SLERP interpolation is slightly more computationally expensive, we chose to use
SLERP, as LERP interpolation yields only an approximated result. Not interpolating at all
but only computing the angle difference between path points pk ∈ Pi,o and the
corresponding path points of the smoothed path Pi,s would also only give an approximation.
SLERP interpolation works as follows. Let p = 0, … 1 be a control parameter, q1 and q2 two
orientations given as quaternions and the angle θ between q1and q2, as computed in Eq. (6),
(7) and (8).
We obtain the control variables

 r1= sin ((1 – p) · θ) / sin (θ) (6)

 r2= sin (p · θ) / sin (θ) (7)

and the SLERP-interpolated orientation

 q’ = r1 · q1 + r2 · q2. (8)

Mobile Robots Motion Planning, New Challenges

574

By summing the orientational deviations of a smoothed path segment from the
corresponding unsmoothed segment, we obtain the orientational deviation using criterion
K3. For this, we do not directly use the unsmoothed path, but the segmentwise projection of
the unsmoothed path onto the smoothed path. To illustrate this idea, we show the
interpolation of the orientation for the orientational dimensionality mo = 1 and the obtained
deviations as well as the sum of the deviation (Figure 7).
For mo = 2 or mo = 3, the procedure works in exactly the same way, as Eq. (5) and Eq. (8) are
handling 3D orientations. Orientations of higher dimensionality, although untypical in
practical applications, can also be easily used if the path deviation functions are adapted
accordingly, just like positions of higher dimensionality are usable.

Figure 7. Sketch visualizing the computation of the angle sum Δϕ. For simplification, the
angle is represented only in 1D. Top: Curve progression of the orientation of a smoothed
path [pmin, pmax] (blue) and the original path [pmin, ... , pi-1, pi, pi+1, ... , pmax] (red). Bottom:
Curve progression of the angle deviation ϕ between the two paths

In a simple optimization procedure, the computed positional and orientational deviations pi
and oi are assigned to the optimization and constraint value ci and di. If not both coordinate
types are used, all ci stay zero and the algorithm works without any constraint. On the other
hand, the optimization value di is indispensable. We obtain five different cases, as shown in
Table 2.

 Case

 (a) (b) (c) (d) (e)

Optimization value di pi oi pi oi
max max

i ip o
p o

+

Max. optimization deviation dlim plim olim plim olim 2

Constraint value ci / / oi pi /

Max. constraint deviation clim / / olim plim /

Table 2. Enumeration of the five possible cases when combining both coordinate types. The
table entries indicate the assignments of the path points positional and orientational
deviation pi and oi to the algorithm’s values ci and di, as well as the assignments of the
indicated positional and orientational deviation limit values plim and olim to the algorithm’s
values clim and dlim

Smoothing of Piecewise Linear Paths

575

Case (a) is the case seen in Section 5. No orientational information is evaluated, and there is
no constraint. The computed positional deviation pi is used as di in the path smoothing
procedure. Similarly, in Case (b), we are smoothing orientations without using constraints.
The criterion function used to compute di is the version adapted to orientations (Eq. (5)), and
the deviation di used in the optimization procedure is the orientational deviation oi.
In Case (c), the positional deviation is used as in (a) as optimization value, but in addition
we use the orientation as constraint. As long as the limit is not exceeded (ci < clim) in any
point with the lowest positional deviation, the path is smoothed as in Case (a). Points whose
orientational deviation oi exceeds olim are not removed, no matter how low pi is. Case (d) is
analogue to Case (c), the roles of position and orientation being exchanged.
In Case (e), we have to optimize the position and orientation simultaneously. Because they
are incompatible, we normalize pi and oi to plim resp. olim, giving an indication on how close
both deviations are to the limit and bringing them into the same domain. Now, we can
simply sum up both values to obtain di. The ratio between plim and olim correlates linearly
with the relation of the influences of position and orientation. As both pi / pmax and oi / omax
are positive numbers and their sum may not exceed 2, both positional and orientational
deviations are restricted to twice the maximum indicated.

7. Experiments and Results
In this section, we present and analyze a practical surgical application of our algorithm.
First, we compare the results yielded when applying the three error functions described
previously. Then, we briefly describe the original paths used in the surgical application and
their drawbacks. Finally, we describe the improvement achieved by applying the smoothing
algorithm.
In the first rather theoretic experiment, a perturbed linear path consisting of 1000 points,
positioned equidistantly on the x axis in the interval [0; 1000] with increasing x coordinate
and distributed uniformly on the y axis with y values between –10 and +10, is smoothed
using criterion K1 (maximum deviation). The y coordinate of the first and the last point is 0
(Figure 8).

Figure 8. Experimental perturbed path. The units on both axes are millimetres

The experimental results in Figure 9 demonstrate the anytime property of the algorithm. It
can be aborted at any time. With a maximum deviation of only 1 mm, reached after 20 ms,
already one third of the path points could be removed. The correlation of computation time
and number of path points removed is nearly linear. After less than half of the time needed
for complete smoothing, half of the path points have been removed.
However, this experiment also shows the sub-optimality of the algorithm. Because the first
and the last point have a y coordinate of 0 and the y coordinate of all other points lies in the
interval [-10; 10], the path could be reduced to its start and end point with a maximum
deviation dlim =10 mm. Yet, in general the algorithm finds that solution only at dlim =20 mm.

Mobile Robots Motion Planning, New Challenges

576

Figure 9. Remaining path points, path length and maximum deviation against computation
time T [ms] for the perturbed linear path segment of Figure 8

When milling cavities in workpieces, problems with overly fragmented and angulated
milling paths arise, cf. the RONAF project (Robot-based Navigation for Milling at the
Lateral Skull Base (Federspil, P. A.; Geisthoff, U. W.; Henrich, D. & Plinkert, P. K., 2003))
(Figure 10). The goal of the RONAF project is the development and examination of a system
for navigation on the lateral skull base with the purpose of an interactive supervision of a
surgical robot during interventions. Modular navigation and control procedures are being
used. The operation is planned on a preoperatively acquired 3D dataset, e.g. computed
tomography (CT) or magnetic resonance tomography (MRT). The robot and its attached tool
are moved relative to this dataset.
Milling in the skull bone demands high precision (with tolerances below one millimeter) in
spite of the high force required to remove larger quantities of bone, a combination that is
very straining for a surgeon and poses little problem to a robot. Therefore an important
increase of processing quality is expected.
In the RONAF system, three-dimensional path planning (Waringo, M.; Henrich D., 2004) is
used in order to mill a given implant volume with a robot-controlled miller. The paths
planned in a voxel space are angled and are often represented by an excessive number of
path points. The robot follows the path points by interpolating linearly between two
successive path points. By reducing the number of path points, we can significantly reduce
the milling duration.
Path smoothing was applied to milling paths planned in a voxel space for milling a hearing
aid implant volume (Figure 11). The milling time for the non-smoothed path is
unsatisfactory long. The traversal speed is strongly reduced in regions where the path
points are close to each other or where the directional change between two consecutive path
segments is high. This drawback is due to robot dynamics restrictions such as the maximum

Smoothing of Piecewise Linear Paths

577

acceleration in the robot joints and restrictions involving computing time (i.e. the maximum
number of path segments that can be processed per second).

Figure 10. Experimental setup from the RONAF project

Part of the robot motions occurs above the workpiece (the long straight segments in Figure
11), where the tool moves above the bone without touching it. These segments serve to
change the currently processed region. They segments can not be removed, since otherwise
the miller would mill bone at forbidden locations. Therefore, even with a maximum allowed
deviation of infinite in the path smoothing process, such a milling path can not be reduced
to its start and end point. The path smoothing only applies to the horizontal path segments
located in the bone. The smoothing algorithm was applied to the entire path, with all
vertical and horizontal path segments needed for changing a region marked as non-
removable.

Mobile Robots Motion Planning, New Challenges

578

Figure 11. Milling paths for the hearing aid implant Vibrant Soundbridge
(Siemens/Symphonix). The circular paths lie in the horizontal plane, and path segments
perpendicular to that plane are vertical segments which connect these circular paths. Upper
left: original path planned in a voxel space; Upper right: close-up of the original path (4403
path points); Bottom left: path with maximum deviation of 0.18 mm (2788 path points);
Lower right: path with maximum deviation of 0.35 mm (1405 path points)

While keeping the modification to the path at a non-critical level so that no noticeable
changes occur in the milled geometry 2, the number of path points can be reduced by more
than 50%, as shown in Table 3. With an acceptable tolerance of 0.35 mm, it is possible to
eliminate about 46% of the milling duration, 69% of the path points and 65% of all changes
normally arising in the non-smoothed path. The computation time for path smoothing was
measured on an AMD Athlon XP 2600+ PC with 512 MB of RAM. The computation time is
nearly exactly linear with the number of points removed, in this example about 0.6 ms per
point.
Table 4 shows a comparison of paths smoothed using the three error functions and
evaluated according to the three error functions. As expected, path planned with error
function Ki, i ∈ {1,2,3} ranked best when the evaluation was performed according to the
same error function Ki. No clear advantage can be determined and no error function is made
redundant by the other two.

2 As the miller’s diameter is 4.5 mm and the robot’s repeatability accuracy is 0.35 mm, a
maximum deviation in the path of 0.35 mm is acceptable.

Smoothing of Piecewise Linear Paths

579

maximum
deviation
dlim [mm]

path
points

time required for
path traversal
[min:sec]

computation
time [sec]

path length
[mm]

angular
integral [°]

0 4403 12:35 0.00 5545 239,417

0.10 4355 12:24 0.05 5527 234,048

0.13 2788 09:22 0.94 5460 150,501

0.18 2107 08:06 1.32 5427 118,268

0.25 1629 07:12 1.58 5403 96,645

0.35 1405 06:44 1.77 5367 82,650

0.60 1207 06:19 1.80 5334 74,520

1.00 1098 06:05 1.88 5306 72,273

2.00 997 05:49 1.90 5232 69,016

Infinite 832 04:21 2.04 4171 58,320

Table 3. Number of path points remaining, necessary time requirement for traversal and for
path smoothing, path length and angular integral in the function of the maximum allowed
deviation. In order to avoid damage to the patient, areas of the path are not allowed to be
modified, as described previously. Therefore, the path can not be reduced to its start and
end point with an infinite maximum deviation. Without this restriction, the effects of the
path shortening would be even more noticeable

 Error function for path evaluation

 K1 [mm] K2 [mm2] K3 [mm2]

 max avg. max. avg. max. avg.

K1 0.281 0.171 0.078 0.015 2.125 0.257

K2 0.478 0.216 0.046 0.019 1.531 0.358
Error function

 for path
computation

K3 0.884 0.197 0.297 0.020 0.393 0.213

Table 4. Comparison of the three error functions K1, K2 and K3 when reducing the milling
path of the implant Vibrant Soundbridge from 4403 to 1500 path points. K1: maximum
deviation, K2: root-mean-square deviation, K3: spanned area. The error function used for
path planning is noted in the rows and the error function used for evaluation is noted in the
columns. In the cells, the deviations are noted, with both the maximum and the average
value per path segment

Mobile Robots Motion Planning, New Challenges

580

Another example of path smoothing in the RONAF project is shown in Figure 12. In order to
record an ultrasound image of the patient’s skull, the skull is sampled manually with the tip
of an infrared marker whose spatial position is sampled at equidistant times. This path is
then traversed by the robot, an ultrasound head being mounted on the effector. Between
recording and traversing of the path, smoothing is performed. This way, in addition to
rendering the path less jerky, there are also agglomerations of path points being removed
which appear when the surgeon interrupts the movement of the marker.

Figure 12. Scanline path for ultrasound recording of the human skull. Left: original path (307
path points), right: smoothed path using K1 and dlim = 1 mm (90 path points)

8. Conclusions
We have presented a method that smooths paths of any dimensionality consisting of linear
segments until the deviation between the smoothed path and the original path locally
exceeds a given threshold. The error function for deviation determination can easily be
exchanged and adapted for diverse applications. The computational requirement has been
reduced from quadratic to linear in the number of path points used. Our method is anytime-
capable, i.e. it can be aborted at any time and returns a valid path for which the maximum
deviation increases monotonically and the number of path points decreases monotonically
in the allowed computation time.
Possible extensions of the algorithm include the consideration of forbidden regions that may
not be crossed by the path and a distance computation that varies depending upon the
position on the path. Additionally, if applied to motion planning in a cluttered environment,
the algorithm does not handle collisions with obstacles close to the unsmoothed path. In this
case, further conditions are required which are evaluated in addition to the error functions
and which avoid the smoothed path getting too close to the obstacles. In this scenario, the
geometry of the actuator must be considered too.
For a path smoothing with using both positions and orientations as optimization criterion
(Case (e) in Section 7), one could in addition use one of them as constraint, giving even more
control over the maximum allowed deviation.
If a globally optimal path has to be found, the presented method is not suitable, as it is a
local method and can get stuck in local optima, as shown in the first experiment. In order to
overcome this disadvantage, a global method has to be used.

Smoothing of Piecewise Linear Paths

581

9. Acknowledgments
This work has been supported by the German Research Foundation (DFG) under the project
name “Robotergestützte Navigation zum Fräsen an der lateralen Schädelbasis” (RONAF)
with the identifier 227100. Further information can be found at http://ai3.inf.uni-
bayreuth.de/projects/ronaf.

10. References
Aleotti, J.; Caselli, S. (2005). Trajectory clustering and stochastic approximation for robot

programming by demonstration, IEEE/RSJ Int. Conf. On Intelligent Robots and
Systems, pp. 2581-2586

Amato, N.M. & Wu, Y. (1996). A randomized roadmap method for path and manipulation
planning, Proceedings of the IEEE Int. Conf. Robot. & Autom., pp. 113-120.

Baginski, B. (1998). Motion planning for Manipulators with Many Degrees of Freedom – The
BB Method, Doktorarbeit, TU München

Barraquand, J. & Latombe, J.-C. (1991). Robot motion planning: a distributed representation
approach, Int. Journal of Robotics Research, 10 (6), pp. 628-649, 1991

Berchtold, S. & Glavina, B. (1994). Kosten-Nutzen-optimale Verbesserung kollisionsfreier
Roboterbewegungen mittels Polygon-Manipulation, in: 10. Fachgespräch Autonome
mobile Systeme

Bronstein, I. N.; Semendjajew, K. A; Musiol, G.; Mühlig, H. (2001). Taschenbuch der
Mathematik, Verlag Harri Deutsch, ISBN 3-8171-2005-2

Carpin, S.; Pillonetto G. (2006). Motion planning using adaptive random walks, IEEE
Transactions on Robotics and Automation, 21 (1)

Engel, D. (2003). Sensorgestützte Robotersteuerung für den Einsatz in der Chirurgie,
Dissertation, Fakultät für Informatik der Universität Fridericiana zu Karlsruhe (TH)

Federspil, P. A.; Geisthoff, U. W.; Henrich, D. & Plinkert, P. K. (2003). Development of the
First Force-Controlled Robot for Otoneurosurgery, Laryngoscope 113

Geraerts, R. & Overmars, M. H. (2002). A comparative study of probabilistic roadmap
planners. In Proc. Int. Workshop on Algorithmic Foundations of Robotics (WAFR)

Hein, B. (2003). Automatische offline Programmierung von Industrierobotern in der
virtuellen Welt, Dissertation, Fakultät für Informatik der Universität Fridericiana zu
Karlsruhe (TH), 2003.

Kuffner, J. J.; LaValle S. M. (2001). RRT-Connect: An efficient approach to single-query path
planning, in Proceedings of the IEEE Conference on Robotics and Automation, San
Francisco, pp. 995–1001.

Maillot, P. (1990). Using quaternions for coding 3d transformations, in Graphics Gems I,
Academic Press Inc., Boston pp. 498-515

Quinlan, S.; Khatib, Q. (1993). Elastic bands: Connecting Path Planning and Control, in
Proceedings of the IEEE Conference on Robotics and Automation, Atlanta, pp. 802-807.

LaValle, S. M. (1998). Rapidly-exploring random trees: A new tool for path planning, TR 98-
11, Computer Science Dept., Iowa State University

Urbanczik, C. (2003). SIMERO: Bildbasierte Kollisionserkennung und Bahnglättung im
Konfigurationsraum, Diploma Thesis, Fakultät für Informatik, Universität
Kaiserslautern, D-67653 Kaiserslautern

Mobile Robots Motion Planning, New Challenges

582

Waringo, M.; Henrich D. (2004). 3-Dimensionale schichtweise Bahnplanung für Any-Time-
Fräsanwendungen, Robotik, München/Germany

Waringo, M.; Henrich D. (2006). Efficient smoothing of piecewise linear paths with minimal
deviation, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems, Beijing/China, pp. 3867-3872

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

