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1. Introduction 
The pointwise traversal of a given path is a popular task in the area of robotics, e.g. in 
mobile, industrial or surgical robotics. The easiest method to describe paths is by a sequence 
of linear segments, and for many tasks the precision of a path approximated by linear 
segments is sufficient. The movements to be accomplished by a mobile robot or the robot’s 
end-effector are described by a sequence of points in space, that have to be traversed by the 
robot. However, in practice, a pre-computed path unfortunately often consists of more path 
points than are necessary for sufficiently accurate execution. An excessive number of path 
points renders the movement jerky if the path points are dispersed around the optimal path, 
leading to unnecessary mechanical stress of both robot and tool. A second problem is that 
many path points lying close to one another can lead to high computational cost when 
traversing the path and can reduce traversal speed. 
Paths described by teach-in methods are one example where the path can consist of too 
many path points. In these methods, the desired movement is recorded while the operator 
moves the robot’s arm, either directly, through a master device or by giving instructions 
through a control panel. Because of the rather intuitive input of the human operator, the 
path suffers from deficiencies and frequent unnecessary changes of direction.  
The taught-in path can be traversed better after smoothing the path. Another example is 
voxel-based path planning. Here, only space points with discrete coordinates can be 
traversed, which may lead to a stair shaped approximation of diagonal paths. Just as with 
smoothed taught-in paths, smoothed voxel-based paths can be traversed more efficiently, 
because there are fewer changes of speed and direction, and the total path length is reduced. 
The remainder of the text first provides a problem description (Section 2), after which the 
state of the art is presented (Section 3). Then, the proposed procedure is described in detail 
(Section 4), and different specializations of the proposed method are shown for points with 
fixed orientation (Section 5) as well as with variable orientation (Section 6). Finally, 
experiments are described (Section 7), and open issues and further enhancements are 
discussed ( Section 8). 

2. Problem description 
The problem of path smoothing can be described as follows. A path P := < p1, p2, ... , pn > of 
n points is given, represented by an ordered list of m-dimensional Cartesian path points 

Mobile Robots Motion Planning, New Challenges, Xing-Jian Jing



Mobile Robots Motion Planning, New Challenges 

 

564 

pi := ( pi1, pi2, … pim)T. All path points pi have the same dimensionality m := mp + mo, 
depending on the degrees of freedom of the robot or the requirements of the task to be 
performed. The list is sorted in the natural point order, assigning the index 1 to the path’s 
start point and index n to its end point. The parameters mp, mo ∈ N, mp, mo ≥ 0 designate the 

dimension of the two coordinate types position and orientation of a path point. 
The neighbourhood of a path point pi is defined as the sequence of points in P between and 
including the nearest neighbours of that point in the path P to the left and and right of pi. 
The deviation di between a smoothed path P' and the original path P in the neighbourhood of 
the path point pi can be computed according to various error functions, such as the standard 
deviation or the area spanning both paths. The deviation must be computed differently 
depending on which coordinate type, position or orientation, is considered.  
The error function K represents the criterion used to compute di. Its input are the two paths P 
and P' as well as the index i, and its output is the deviation di between them. Finally, we 
need a threshold value dlim indicating the maximum allowed di.  
If the path points consist of both coordinate types, either position or orientation may, but 
need not, be used as a constraint in addition to the optimization criterion which is 
mandatory. If not only an optimization criterion but also a constraint is being used, a second 
threshold value clim is needed. In that case, we compute a second deviation ci for each path 
point which may not exceed clim.  
Thus, we search for a path P' whose deviation di from P does not exceed dlim at each 
individual path point according to K. The number of path points of the path P' is minimized 
under the given optimization criteria and optionally a constraint (Figure 1). 

 
Figure 1. Example of the complete smoothing of a two-dimensional path P with nine path 
points. In each step i, the path point whose removal leads to the smallest possible deviation 
between Pi and the original path P is removed, using as criterion the maximum Euclidean 
distance (see Section 5). A reasonable smoothed path could be e.g. P5 

3. State of the Art 
We can distinguish two main categories of problems where a reduced number of path 
points is required: path planning and path shortening. 
In collision-free motion planning, e.g. for mobile robots, the start and the end points are 
given, and a path connecting them is sought. There may be obstacles and narrow passages 
like doors or corridors. A good path avoids all obstacles and is short. In a first step, e.g. 
using a stochastic approach, in a path planning procedure (Subsection 3.1), a path of possibly 
poor quality is created, containing many superfluous segments and being much longer than 
necessary. It is improved in a second step by a path shortening procedure. There is no need 
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for any similarity between the original and the collision-free shortened path apart from 
having the same start and end point. 
In other approaches, the improved path must remain similar to the original path. Not only 
the start and end point, but also the path between them is given. However, the quality of 
this path may be unsatisfying, the path being jerky or consisting of too many segments. In 
this path smoothing procedure (Subsection 3.2), small deviations from the original path are 
allowed as long as the number of path segments can be reduced noticably and both paths 
stay close enough. Figure 2 shows the difference between path shortening and path 
smoothing. 

 
Figure 2. Left: path shortening procedure where obstacles must be avoided, right: path 
smoothing procedure where a path must stay within a given vicinity of the original path 

3.1. Path planning procedures  
In collision-free motion planning, planning is usually performed in the configuration space. 
The problem of finding a path between a start and an end point is PSPACE-hard in the 
degrees of freedom and in the number of obstacle surface patches. Therefore, most 
algorithms in this category are stochastic. Two main classes can be distinguished. 
Probabilistic roadmap (PRM) approaches (Amato, N.M. & Wu, Y., 1996), (Geraerts, R. & 
Overmars, M. H., 2002) proceed in two steps. First, a collision-free path is constructed as a 
graph in robot configuration space. In a second step, pairs of promising vertices are chosen 
and a simple local planner is used to find a better collision-free connection between them. 
Approaches based on Rapidly-exploring Random Trees (RRTs) (Kuffner, J. J.; LaValle S. M., 
2001), (LaValle, S. M., 1998) use a collision-free path tree that is grown incrementally. In each 
iteration, a random configuration is chosen, and an attempt is made to find a path to it from 
the nearest RRT vertex. 
Other path planning algorithms exist which do not belong to one of these two categories. 
One example are potential field based methods which can be used for path planning if there 
are only few obstacles. Another example is the Randomized Path Planner (RPP) 
(Barraquand, J. & Latombe, J.-C., 1991) where the path is planned according to potential 
fields and random walks are used to escape from local minima. Another group of path 
planning algorithms is based on the elastic-band method (Quinlan, S.; Khatib, Q., 1993), 
where contractive and repulsive forces emanating from obstacles determine the deformation 
of an original path. 
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If path segments are to remain piecewise linear, other strategies can be used. Path 
modifications may be performed by shifting or splitting path segments. Furthermore, path 
segments can be merged by removing their point of connection (Baginski, B., 1998). A 
similar procedure is used in (Berchtold, S. & Glavina, B., 1994), where path points are 
removed based on a heuristic to locally reduce the path length. Another example of 
collision-free paths for robots can be found in (Urbanczik, C., 2003). Here, path points can be 
shifted or removed, and segments can be split. After each step the list is re-sorted by pairs of 
neighbouring segments. Path shortening can be performed using a divide-and-conquer 
algorithm which removes all path points between the first and the last point in one 
recursion step if the direct path between them is allowed, and otherwise bisects the path 
points list (Carpin, S.; Pillonetto G., 2006). However, these approaches are not valid for the 
application we envisage because they do not guarantee a similarity between the original and 
the smoothed path. 

3.2. Path smoothing procedures  
In applications where the shortened path must remain similar to the original path, similar 
strategies can be used, but optimization criteria are different. The simplest form of path 
smoothing is the removal of superfluous collinear path points, i.e. path points lying on a 
straight line between their two immediate neighbours. Here, no deviation from the original 
path arises, but only a few path points can be removed in general. A reduction in the 
number of path points can also be achieved by approximating the path by curves of a higher 
degree consisting of nonlinear path segments (e.g., defined by quadratic or cubic functions) 
(Hein, B., 2003) or non-uniform rational B-Splines (NURBS) (Aleotti, J.; Caselli, S., 2005). 
In (Engel, D., 2003) a smoothing procedure for piecewise linear paths is described that 
removes path points pj not exceeding a given deviation from a path segment <pi, pk> with 
i < j < k. A disadvantage is that the path point list is treated only once and thus some 
smoothing steps are not executed which are only possible when the path was already 
smoothed in a previous step. 
A well-known point reduction method is linear regression (Bronstein, I. N.; Semendjajew, K. 
A; Musiol, G.; Mühlig, H., 2001), but it does not guarantee an upper limit for the deviation. 
Here, a path defined by scattered points is replaced by a path consisting of one straight-line 
segment placed as close as possible to the scattered points. 

3.3. Conclusions 
Although a smoothed path slightly deviates from the original path, it can be better suited for 
a specific application as long as the deviations are not too big. 
A downside of the discussed methods is that they are not able to handle paths with both 
positions and orientations. They are either restricted to one coordinate type (usually 
positions) or they work in the configuration space. In that space, there is no differentiation 
into two coordinate types either. Although algorithms working in the configuration space 
can smooth paths having position and orientation coordinate components, they need a robot 
model and a forward kinematics. 
The path smoothing method we propose offers some advantages which make it particularly 
suited for time-critical applications working either in configuration space or work space. 
Due to the order in which the path points are removed, our method has anytime ability, i.e. 
it can be aborted prematurely and still returns a valid smoothed path, with the result quality 
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increasing monotonically over time. The optimization criterion can be easily exchanged 
(depending on the application), and an upper bound for the deviation between the original 
path and the smoothed one can be guaranteed. Furthermore, the algorithm is efficient, as 
both the computation time and storage space are linear in the number of path points. The 
algorithm is very versatile due to its capability to handle points with both coordinate types. 

4. Path smoothing procedure 
The path points pi are stored in a list ordered by index. Their description (i.e., the Cartesian 
coordinates) is extended by three components: 
• The flag ri ∈ {true, false} indicates whether the path point has been removed while 

smoothing. 
• The variable di ∈R indicates the deviation of the path in the neighbourhood of the path 

point, which will be explained in detail in Section 5. This variable holds the 
optimization value used to decide which point has to be removed next so that the path 
deviation stays as small as possible. 

• The variable ci ∈ R stores the deviation of the path in the neighbourhood of the path 

point according to a second coordinate type. This variable holds the constraint value. 
The use of ci is detailed in Section 6. If the path has only one coordinate type, ci is not 
used 1. 

The path points removed during path smoothing are not deleted from the list, but are 
instead only marked as removed, since the procedure must be able to access the original 
path at any time. When smoothing is complete, all path points not marked as removed are 
copied into a target path point list containing only the path points of the smoothed path. 
The algorithm for removing path points works as follows: 
(1) For all path points pi, set ri = false and ci = 0. 
(2) For all path points pk not yet removed (rk = false), compute the arising deviation dk 

between the smoothed path P' and the original path P, assuming that pk is removed 
from the path (in addition to the path points removed so far). If a constraint is being 
used, compute ck. 

(3) Select among all path points with ck < clim the path point pk with the smallest dk. 
(3a) If the deviation dk is smaller than the specified value dlim, then mark pk as removed 

(rk = true) and go to (2). 
(3b) Otherwise, no further path points can be removed from the path, and the path 

P' := < pi | ri = false, i = 1, …, n > is returned. 
If no constraints are being used, no computations of ci are performed and ci stays zero, being 
without any effect.  
The path point whose elimination leads to the smallest deviation from the original path 
while not violating the constraints is removed during each iteration. In this way, it is 
ensured that a (locally) maximum number of path points can be removed before the 
deviation locally exceeds the threshold dlim and the algorithm terminates. 

                                                                 
1 This is realised by initially setting ci = 0 and not modifying it any more and setting clim to 
an arbitrary value >0. 
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In order to prevent gradual drifting of the path in each iteration, the current path must not 
be compared with the path from the previous iteration step, but with the original path.  
A certain computational speed improvement can be obtained by using an efficient 
implementation. Given a path with n path points, the maximum smoothing of the path 
would require n − 2 iterations, as the first and last path point are not removed. For a given 
iteration step j, the number of local deviation computations is n − 2 − j. This belongs to the 
complexity class O (n2), since the total number of computation steps is 
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The procedure can be accelerated by considering that the path deviation only changes in the 
proximity of a path point that is removed. Thus only in the first iteration step, the deviation 
needs to be computed for all path points, and in the further steps only for the path points in 
the neighbourhood of the last removed path point. 
For this purpose, the component di of all path points pi is required for buffering the 
corresponding deviation. After a path point has been removed, the deviation can change 
only for the two neighbouring path points without considering all path points already 
removed. Therefore, only two instead of n − 2 − i deviations need to be determined per 
iteration step. This results in a complexity of 
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computation steps, with complexity dropping from O (n2) to O (n). The same holds true for 
the computation of the constraint ci, which, if used, is computed whenever di is computed. 
In the following, we describe how the interval of path points needed for the computation of 
the deviation di is determined. We are looking for two path points pmin and pmax that border 
on the interval in question: I := [pmin ; pmax] = < pmin, ... , pi, ... , pmax >. 
In the first iteration no path points have been removed yet. Trivially, only three path points 
need to be regarded: the path point pi as well as its neighbours pi-1 and pi+1, and the path 
segment < pi-1, pi, pi+1 > must be compared with < pi-1, pi+1 > in order to compute di. The 
manner in which this comparison is performed depends on the error function used and is 
described in Section 5. 
In the subsequent iterations we must consider which path points are removed and must 
extend the path interval of interest beyond the previously removed path points so that its 
borders again consist of the next two non-removed path points pmin and pmax. Thus pmin and 
pmax are the direct neighbours of pi that have not yet been removed. The deviation di is 
computed by comparing a path segment of the original path Pi,o = [ pmin, pmax ] = 
< pmin, ... , pi , ... , pmax > and the corresponding path segment on the smoothed path 
Pi,s = < pmin, pmax >. 
The following table shows exemplarily the deviation computations necessary for smoothing 
a path with six path points P = < p1, p2, p3, p4, p5, p6 > in the order p4, p3, p2 and p5. 
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 p1 p2 p3 p4 p5 p6 
compute d1 d 2 d 3 d 4 d 5 d 6 

remove point    r4=true   
recompute   d 3  d 5  

remove point   r 3=true    
recompute  d 2   d 5  

remove point  r 2=true     
recompute d 1    d 5  

remove point     r 5=true  
recompute d 1     d 6 

Table 1. Steps performed during the smoothing of a path. In each iteration other than the 
first one only two deviations need to be determined 

Prior to each iteration step, the deviation di is known for all remaining path points pi not yet 
removed (thus all path points with ri = false). Based on this information, the path point 
whose removal leads to the least deviation from the original path can reliably be removed.  
Fig. 3 and Fig. 4 illustrate the two steps marked in gray from Table 1 based on a two-
dimensional geometry. For example, the area between a path segment of the smoothed path 
and the appropriate original path is defined as the error function K. Using this K, the 
deviations di are areas, which are shown in gray. 
The path point p4 is already marked as removed (represented by a white dot in Figure 3 (a)). 
p3 is now removed additionally, resulting in the modification of the smoothed path that can 
be seen in Figure 3 (b) and (c).  

 
Figure 3. Example for the removal of a path point. Black dots represent still existing path 
points and white dots represent removed path points. (a) shows the entire path and (b) and 
(c) the smoothed path before and after removal of p3, respectively 

With the removal of p3, the deviations d2 and d5 occurring upon removal of p2 and p5 also 
change and d2 and d5 must therefore be updated. Figure 4 (a) and (b) clarify why the 
deviation must be recomputed for the path point p2. Before the removal of p3, the removal of 
p2 only affected the path segment < p1, p3 >. Now, it affects the path segment < p1, p5 >. In 
the smoothed path, p2 now has p1 and p5 as direct neighbors rather than p1 and p3, thus its 
deviation has changed. 
Similarly, in Figure 4 (c) und (d), the deviation for the path point p5 determined in an earlier 
iteration is now invalid and must be recomputed. No new calculations need to be performed 
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for the other path points, since with linear interpolation the removal of p3 only affects the 
segments that were direct neighbors of that path point before it was removed. 

 
Figure 4. Example of the computational cost reduction. Black dots represent still existing 
path points and white dots represent removed path points. The deviations are shown as 
gray areas. In the upper two figures, the deviation d2 occurring if p2 is removed is shown, 
both before removal of p3 (a) and after its elimination (b). (c) and (e) similarly show the 
deviation d5 before and after removal of p3 

In the following we describe how the interval of path points is determined that is needed for 
the computation of the deviation di. We are looking for two path points pmin and pmax that 
border the interval in question: I = [ pmin ; pmax ] = <pmin, ... , pi, ... , pmax>. 
In the first iteration no path points have been removed yet. Trivially, only three path points 
need to be regarded: the path point pi as well as its neighbors pi-1 and pi+1, and the path 
segment <pi-1, pi, pi+1> must be compared with <pi-1 pi+1 >. The manner in which this 
comparison is performed depends on the error function used and is described in Section 5. 
In the subsequent iterations we must consider which path points are removed and we must, 
as shown in Figure 4, extend the path interval of interest beyond the previously removed 
path points so that its borders again consist of two non-removed path points. Let i be the 
index of the path point for which the deviation of the deletion is to be computed and pi be 
the corresponding path point. Let n be the number of path points in the original path 
<p1, … , pi, … , pn>. 
We obtain the following algorithm: 

 
min := i − 1 
while min > 1 and rmin = true 
 min := min − 1 
 
max := i + 1 
while max < n and rmax = true 
 max := max + 1 

Thus pmin und pmax are the direct neighbors of pi that have not yet been removed. The 
deviation di is computed by comparing a path segment of the original path Pi,o = [ pmin, pmax ] 
= < pmin, ... , pi , ... , pmax > and the corresponding path segment on the smoothed path Pi,s = 
<pmin, pmax >. 
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5. Path deviation functions for a fixed orientation 
In this section, we consider only paths with positional coordinates and no orientation and 
we do not use any constraints (Waringo, M.; Henrich D., 2006). Depending on the 
application, different error functions K can be used. We investigated three error functions: 
• K1: di is the maximum of the Euclidean distances of all path points of the interval Pi,o 

from the corresponding interval Pi,s in the smoothed path. This criterion can be used in 
applications where motion is constrained to a safety corridor, e.g. in a master-slave 
robotic guidance system, car manufacturing, or robotic endoscope holding systems. 

• K2: di is the root-mean-square deviation of the distances (i.e. the square root of the mean 
of the squares of the shortest distances) of all path points of the interval Pi,o from the 
corresponding interval Pi,s in the smoothed path. This criterion is useful mainly for 
theoretical analysis. 

• K3: di is the area between the smoothed paths segment Pi,s and the corresponding 
segment Pi,o on the original path. K3 is the best choice for sweeping applications, e.g. 
bones milling or cleaning robots. 

The first two error functions can be determined quickly and work for path points with any 
dimensionality. Error function K3 is useful and intuitively plausible for paths defined in a 
plane, i.e. two-dimensional paths. However, K3 can also be used for more dimensions.  
The error function K1 guarantees that the smoothed path never deviates by more than the 
distance dlim from the original path. One disadvantage involves the computation of each 
deviation di: Only one path point pi ∈ [ pmin ; pmax ] is used and the distance from the other 
path points in that interval is neglected. Path points far away from Pi,s are rated strongly, 
whereas a constant slight deviation of the path across all path segments under consideration 
leads to a smaller deviation. 
This drawback can be avoided by using the error function K2 as this function uses all path 
points pi ∈ [ pmin ; pmax ] for the computation. Additionally, path points far away from Pi,s are 
considered because the distance to the smoothed path Pi,s is squared. The computation of K2 
is also quite fast. 
The computation of K3 is more costly, however unlike K1 and K2 it also considers the 
distance between path points pi ∈ [ pmin ; pmax ] on the original path, not just the distances 
between paths points from the original path and the smoothed path Pi,s. 
Figure 5  illustrates the three error functions. 
The algorithm uses the heuristic of always removing the point yielding the smallest 
deviation. Although this provides good results in practice, the path obtained is not 
necessarily globally optimal. Because the algorithm does not look ahead to try to remove 
more than one path point at a time and does not allow the deviation to exceed the limit dlim 
in any iteration step, opportunities to shorten the path can be missed. Consider for example 
Figure 6 (a). When using criterion K1 and a maximum allowed deviation dlim = 0.6 ⋅ || p2 p3 || 
the optimal path (b) cannot be obtained. The removal of either p2 or p3 temporarily leads to 
a deviation that is close to 1 ⋅ || p2 p3 ||, whereas by removing p2 and p3 at the same time, dlim  
would not be exceeded. The smoothing procedure aborts without being able to remove p2 or 
p3. 
Nevertheless, the paths created are valid because the deviation does not exceed the 
maximum allowed. An advantage of the proposed method is that the algorithm is anytime 
capable, i.e. it can be aborted prematurely and still delivers a valid result. The quality of the 
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path increases monotonically until termination. This is an important feature for time-critical 
applications, such as sensor-based motion planning. 

 
Figure 5. Sketch describing the determination of path deviation di. The linear path segments 
to be compared are the original path (a) and the smoothed path (b). The error functions K1, 
K2, and K3 are illustrated in (c), (d), and (e) 

 
Figure 6. Example for the non-optimality of the proposed algorithm. (a) A path consisting of 
five points, (b) the optimal path with a maximum allowed deviation of 0.6 ⋅ ||p2 p3 || 
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6. Path deviation functions for variable orientations 
In Section 5 paths with arbitrary dimensionality, but just one coordinate type have been 
treated. However, Cartesian paths whose points contain information on both coordinate 
types (position as well as orientation) cannot be handled reasonably with this approach, as 
positions and orientations can not be treated in the same way. For example, a positional 
value is unique, whereas an orientation is unique in a range of 360°. 
Therefore, we choose to compute position and orientation separately and combine 
positional and orientational deviation in an optimization procedure as optimization 
criterion and/or constraint, respectively. At that point, both are real numbers which are 
comparable again. 
We use quaternions for representing the orientation of a path point, following the 
representation in (Maillot, P., 1990). This representation overcomes severe disadvantages of 
a vector angle representation like e.g. Euler angles. 
Eq. (3) shows the representation of an orientation oi = ϕi as a quaternion. 

 ϕi = ai + bi ⋅ j + ci ⋅ k + di ⋅ l with ai, bi, ci, di ∈ R. (3) 

Just like the distance between two positions p1, p2 can be computed, we can easily obtain the 
distance between two orientations o1, o2. It corresponds to the angle between the 
orientations (Eq. 5): 

 ( ) ( ) ( ) ( )22 2
1 2 2, 1, 2, 1, 2, 1,,p x x y y z zd p p p p p p= − + − + −p p  (4) 

 do(o1, o2) = acos ( a1 · a2 + b1 · b2 + c1 · c2 + d1 · d2 ) (5) 

From Eq. (5), it is obvious that the distance between two orientations can not exceed the 
range [ –180°, +180° ] whereas the distance between two points is unrestricted, Eq. (4). 
The criteria K1 and K2 are directly applicable for orientations if we replace Eq. (4) by Eq. (5) 
in the computation. For criterion K3, we need to obtain the cumulated orientational 
deviation. We solve that problem by numerically integrating the orientational deviation 
along the path between two path points. We need to interpolate orientations. Quaternion 
interpolation can be performed using either LERP or SLERP interpolation (Maillot, P., 1990). 
Although SLERP interpolation is slightly more computationally expensive, we chose to use 
SLERP, as LERP interpolation yields only an approximated result. Not interpolating at all 
but only computing the angle difference between path points pk ∈ Pi,o and the 
corresponding path points of the smoothed path Pi,s would also only give an approximation. 
SLERP interpolation works as follows. Let p = 0, … 1 be a control parameter, q1 and q2 two 
orientations given as quaternions and the angle θ between q1and q2, as computed in Eq. (6), 
(7) and (8). 
We obtain the control variables  

 r1= sin ( (1 – p) · θ ) / sin (θ ) (6) 

 r2= sin ( p · θ ) / sin (θ ) (7) 

and the SLERP-interpolated orientation 

 q’ = r1 · q1 + r2 · q2. (8) 



Mobile Robots Motion Planning, New Challenges 

 

574 

By summing the orientational deviations of a smoothed path segment from the 
corresponding unsmoothed segment, we obtain the orientational deviation using criterion 
K3. For this, we do not directly use the unsmoothed path, but the segmentwise projection of 
the unsmoothed path onto the smoothed path. To illustrate this idea, we show the 
interpolation of the orientation for the orientational dimensionality mo = 1 and the obtained 
deviations as well as the sum of the deviation (Figure 7). 
For mo = 2 or mo = 3, the procedure works in exactly the same way, as Eq. (5) and Eq. (8) are 
handling 3D orientations. Orientations of higher dimensionality, although untypical in 
practical applications, can also be easily used if the path deviation functions are adapted 
accordingly, just like positions of higher dimensionality are usable. 

 
Figure 7. Sketch visualizing the computation of the angle sum Δϕ. For simplification, the 
angle is represented only in 1D. Top: Curve progression of the orientation of a smoothed 
path [pmin, pmax] (blue) and the original path [pmin, ... , pi-1, pi, pi+1, ... , pmax] (red). Bottom: 
Curve progression of the angle deviation ϕ between the two paths 

In a simple optimization procedure, the computed positional and orientational deviations pi 
and oi are assigned to the optimization and constraint value ci and di. If not both coordinate 
types are used, all ci stay zero and the algorithm works without any constraint. On the other 
hand, the optimization value di is indispensable. We obtain five different cases, as shown in 
Table 2. 

   Case   

 (a) (b) (c) (d) (e) 

Optimization value di pi oi pi oi 
max max

i ip o
p o

+  

Max. optimization deviation dlim plim olim  plim olim 2  

Constraint value ci /  /  oi pi /  

Max. constraint deviation clim /  / olim plim / 

Table 2. Enumeration of the five possible cases when combining both coordinate types. The 
table entries indicate the assignments of the path points positional and orientational 
deviation pi and oi to the algorithm’s values ci and di, as well as the assignments of the 
indicated positional and orientational deviation limit values plim and olim to the algorithm’s 
values clim and dlim 
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Case (a) is the case seen in Section 5. No orientational information is evaluated, and there is 
no constraint. The computed positional deviation pi is used as di in the path smoothing 
procedure. Similarly, in Case (b), we are smoothing orientations without using constraints. 
The criterion function used to compute di is the version adapted to orientations (Eq. (5)), and 
the deviation di used in the optimization procedure is the orientational deviation oi. 
In Case (c), the positional deviation is used as in (a) as optimization value, but in addition 
we use the orientation as constraint. As long as the limit is not exceeded (ci < clim) in any 
point with the lowest positional deviation, the path is smoothed as in Case (a). Points whose 
orientational deviation oi exceeds olim are not removed, no matter how low pi is. Case (d) is 
analogue to Case (c), the roles of position and orientation being exchanged. 
In Case (e), we have to optimize the position and orientation simultaneously. Because they 
are incompatible, we normalize pi and oi to plim resp. olim, giving an indication on how close 
both deviations are to the limit and bringing them into the same domain. Now, we can 
simply sum up both values to obtain di. The ratio between plim and olim correlates linearly 
with the relation of the influences of position and orientation. As both pi / pmax and oi / omax 
are positive numbers and their sum may not exceed 2, both positional and orientational 
deviations are restricted to twice the maximum indicated. 

7. Experiments and Results 
In this section, we present and analyze a practical surgical application of our algorithm. 
First, we compare the results yielded when applying the three error functions described 
previously. Then, we briefly describe the original paths used in the surgical application and 
their drawbacks. Finally, we describe the improvement achieved by applying the smoothing 
algorithm.  
In the first rather theoretic experiment, a perturbed linear path consisting of 1000 points, 
positioned equidistantly on the x axis in the interval [0; 1000] with increasing x coordinate 
and distributed uniformly on the y axis with y values between –10 and +10, is smoothed 
using criterion K1 (maximum deviation). The y coordinate of the first and the last point is 0 
(Figure 8). 

 
Figure 8. Experimental perturbed path. The units on both axes are millimetres 

The experimental results in Figure 9 demonstrate the anytime property of the algorithm. It 
can be aborted at any time. With a maximum deviation of only 1 mm, reached after 20 ms, 
already one third of the path points could be removed. The correlation of computation time 
and number of path points removed is nearly linear. After less than half of the time needed 
for complete smoothing, half of the path points have been removed.  
However, this experiment also shows the sub-optimality of the algorithm. Because the first 
and the last point have a y coordinate of 0 and the y coordinate of all other points lies in the 
interval [-10; 10], the path could be reduced to its start and end point with a maximum 
deviation dlim =10 mm. Yet, in general the algorithm finds that solution only at dlim =20 mm. 



Mobile Robots Motion Planning, New Challenges 

 

576 

 
Figure 9. Remaining path points, path length and maximum deviation against computation 
time T [ms] for the perturbed linear path segment of Figure 8 

When milling cavities in workpieces, problems with overly fragmented and angulated 
milling paths arise, cf. the RONAF project (Robot-based Navigation for Milling at the 
Lateral Skull Base (Federspil, P. A.; Geisthoff, U. W.; Henrich, D. & Plinkert, P. K., 2003)) 
(Figure 10). The goal of the RONAF project is the development and examination of a system 
for navigation on the lateral skull base with the purpose of an interactive supervision of a 
surgical robot during interventions. Modular navigation and control procedures are being 
used. The operation is planned on a preoperatively acquired 3D dataset, e.g. computed 
tomography (CT) or magnetic resonance tomography (MRT). The robot and its attached tool 
are moved relative to this dataset.  
Milling in the skull bone demands high precision (with tolerances below one millimeter) in 
spite of the high force required to remove larger quantities of bone, a combination that is 
very straining for a surgeon and poses little problem to a robot. Therefore an important 
increase of processing quality is expected. 
In the RONAF system, three-dimensional path planning (Waringo, M.; Henrich D., 2004) is 
used in order to mill a given implant volume with a robot-controlled miller. The paths 
planned in a voxel space are angled and are often represented by an excessive number of 
path points. The robot follows the path points by interpolating linearly between two 
successive path points. By reducing the number of path points, we can significantly reduce 
the milling duration. 
Path smoothing was applied to milling paths planned in a voxel space for milling a hearing 
aid implant volume (Figure 11). The milling time for the non-smoothed path is 
unsatisfactory long. The traversal speed is strongly reduced in regions where the path 
points are close to each other or where the directional change between two consecutive path 
segments is high. This drawback is due to robot dynamics restrictions such as the maximum 
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acceleration in the robot joints and restrictions involving computing time (i.e. the maximum 
number of path segments that can be processed per second). 

 
Figure 10. Experimental setup from the RONAF project 

Part of the robot motions occurs above the workpiece (the long straight segments in Figure 
11), where the tool moves above the bone without touching it. These segments serve to 
change the currently processed region. They segments can not be removed, since otherwise 
the miller would mill bone at forbidden locations. Therefore, even with a maximum allowed 
deviation of infinite in the path smoothing process, such a milling path can not be reduced 
to its start and end point. The path smoothing only applies to the horizontal path segments 
located in the bone. The smoothing algorithm was applied to the entire path, with all 
vertical and horizontal path segments needed for changing a region marked as non-
removable. 
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Figure 11. Milling paths for the hearing aid implant Vibrant Soundbridge 
(Siemens/Symphonix). The circular paths lie in the horizontal plane, and path segments 
perpendicular to that plane are vertical segments which connect these circular paths. Upper 
left: original path planned in a voxel space; Upper right: close-up of the original path (4403 
path points); Bottom left: path with maximum deviation of 0.18 mm (2788 path points); 
Lower right: path with maximum deviation of 0.35 mm (1405 path points) 

While keeping the modification to the path at a non-critical level so that no noticeable 
changes occur in the milled geometry 2, the number of path points can be reduced by more 
than 50%, as shown in Table 3. With an acceptable tolerance of 0.35 mm, it is possible to 
eliminate about 46% of the milling duration, 69% of the path points and 65% of all changes 
normally arising in the non-smoothed path. The computation time for path smoothing was 
measured on an AMD Athlon XP 2600+ PC with 512 MB of RAM. The computation time is 
nearly exactly linear with the number of points removed, in this example about 0.6 ms per 
point.  
Table 4 shows a comparison of paths smoothed using the three error functions and 
evaluated according to the three error functions. As expected, path planned with error 
function Ki, i ∈ {1,2,3} ranked best when the evaluation was performed according to the 
same error function Ki. No clear advantage can be determined and no error function is made 
redundant by the other two. 

                                                                 
2 As the miller’s diameter is 4.5 mm and the robot’s repeatability accuracy is 0.35 mm, a 
maximum deviation in the path of 0.35 mm is acceptable. 
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maximum 
deviation  
dlim [mm] 

# path 
points 

time required for 
path traversal 
[min:sec] 

computation 
time [sec] 

path length 
[mm] 

angular 
integral [°] 

0 4403 12:35 0.00 5545  239,417 

0.10 4355 12:24 0.05 5527 234,048 

0.13 2788 09:22  0.94 5460 150,501 

0.18 2107 08:06 1.32 5427 118,268 

0.25 1629 07:12 1.58 5403 96,645 

0.35 1405 06:44 1.77 5367 82,650 

0.60 1207 06:19 1.80 5334 74,520 

1.00 1098 06:05 1.88 5306 72,273 

2.00 997 05:49 1.90 5232 69,016 

Infinite 832 04:21 2.04 4171 58,320 

Table 3. Number of path points remaining, necessary time requirement for traversal and for 
path smoothing, path length and angular integral in the function of the maximum allowed 
deviation. In order to avoid damage to the patient, areas of the path are not allowed to be 
modified, as described previously. Therefore, the path can not be reduced to its start and 
end point with an infinite maximum deviation. Without this restriction, the effects of the 
path shortening would be even more noticeable 

 

  Error function for path evaluation 

  K1 [mm] K2 [mm2] K3 [mm2] 

  max avg. max. avg. max. avg. 

K1 0.281 0.171 0.078 0.015 2.125 0.257 

K2 0.478 0.216 0.046 0.019 1.531 0.358 
Error function 

 for path  
computation 

K3 0.884 0.197 0.297 0.020 0.393 0.213 

Table 4. Comparison of the three error functions K1, K2 and K3 when reducing the milling 
path of the implant Vibrant Soundbridge from 4403 to 1500 path points. K1: maximum 
deviation, K2: root-mean-square deviation, K3: spanned area. The error function used for 
path planning is noted in the rows and the error function used for evaluation is noted in the 
columns. In the cells, the deviations are noted, with both the maximum and the average 
value per path segment 
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Another example of path smoothing in the RONAF project is shown in Figure 12. In order to 
record an ultrasound image of the patient’s skull, the skull is sampled manually with the tip 
of an infrared marker whose spatial position is sampled at equidistant times. This path is 
then traversed by the robot, an ultrasound head being mounted on the effector. Between 
recording and traversing of the path, smoothing is performed. This way, in addition to 
rendering the path less jerky, there are also agglomerations of path points being removed 
which appear when the surgeon interrupts the movement of the marker. 

  
Figure 12. Scanline path for ultrasound recording of the human skull. Left: original path (307 
path points), right: smoothed path using K1 and dlim = 1 mm (90 path points) 

8. Conclusions 
We have presented a method that smooths paths of any dimensionality consisting of linear 
segments until the deviation between the smoothed path and the original path locally 
exceeds a given threshold. The error function for deviation determination can easily be 
exchanged and adapted for diverse applications. The computational requirement has been 
reduced from quadratic to linear in the number of path points used. Our method is anytime-
capable, i.e. it can be aborted at any time and returns a valid path for which the maximum 
deviation increases monotonically and the number of path points decreases monotonically 
in the allowed computation time. 
Possible extensions of the algorithm include the consideration of forbidden regions that may 
not be crossed by the path and a distance computation that varies depending upon the 
position on the path. Additionally, if applied to motion planning in a cluttered environment, 
the algorithm does not handle collisions with obstacles close to the unsmoothed path. In this 
case, further conditions are required which are evaluated in addition to the error functions 
and which avoid the smoothed path getting too close to the obstacles. In this scenario, the 
geometry of the actuator must be considered too. 
For a path smoothing with using both positions and orientations as optimization criterion 
(Case (e) in Section 7), one could in addition use one of them as constraint, giving even more 
control over the maximum allowed deviation. 
If a globally optimal path has to be found, the presented method is not suitable, as it is a 
local method and can get stuck in local optima, as shown in the first experiment. In order to 
overcome this disadvantage, a global method has to be used. 
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