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Abstract. In this paper we analyze different models of deformable linear objects (DLOs) in
terms of  efficient computation and preciseness.  Our approach is  to minimize the potential
energy (computed as the sum of gravitational and bending energy) of the DLO. To model our
DLOs,  we approximate  the  bending of  the DLO using a weighted sum of  approximation
functions. Our objective is to identify the optimal type of approximation functions out of a
given set  of different  types of functions  like Fourier,  Chebyshev, Haar and other function
types.
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1. INTRODUCTION

DLOs such as ropes, wires or steel springs are used in a
wide range of products. Unfortunately, inherent uncer-
tainties such as bending and compliance make it diffi-
cult to handle these objects in a generalized and auto-
mated manner. With a fast  and reliable simulation of
the static (and perhaps dynamic) behavior of a DLO in
place, these difficulties can be overcome by using an
abstract task model based on contact states [1] to de-
scribe a given assembly task. This allows one to avoid
the use of exact coordinates and movement instructions
in  the  assembly  process.  Our research  group has  de-
veloped  a  library  of  such  sensor-based  manipulation
skills [7]. The next step is to automatically generate a
sequence of contact states (needed for our library) by
demonstrating the desired assembly task in virtual real-
ity [3]. Thus, we need a DLO simulation which is real-
time capable. Fortunately, the simulation only requires
a loose approximation of the DLOs geometry and not
the exact shape.

Several  researchers  have  published  on  the  topic  of
DLO simulation. In the following overview, we give a
short summary of prior work: A two-dimensional en-
ergy-based model is presented in [2], and an enhance-
ment  for  a  three-dimensional  model can be found in
[8]. Both approaches utilize the fact that the potential
energy of the DLO is minimized in its stable configura-
tion and [9] includes consideration of dynamic energy.
While  the above  mentioned approaches  are  not  real-
time capable, [6] presents more efficient approximation
methods. All of the above researchers use a linear com-
bination of basic functions to approximate bending or
the tangent of the DLO. Fourier functions are used in

[2],  the  so-called  “enhanced”  Fourier  functions  (dis-
cussed below) are implemented in [8] and [9]. In [6]
we find a comparison  between Fourier  functions  and
type-1 Chebyshev polynomials. In this paper we re-ex-
amine  the  above-mentioned  functions  and  compare
them with additional functions.

All  calculations  are  performed  in  two-dimensional
space.  We  have  only  considered  the  static,  uncon-
strained  case,  e.g.  dynamics  and  obstacles  are  neg-
lected. Our model is based on the minimization of the
potential energy. The potential energy used is the sum
of gravitation and bending. To minimize the energy, we
use the established Downhill Simplex Method (DSM).
The  bending  is  described  by  linear  superposition  of
well-known  approximation  functions.  Another  ap-
proach would be to calculate the tangent using these
functions [2].

Our objective is to determine which type of approxima-
tion functions, best simulates the bending of a DLO in
the static  case.  In the following, the term “set  of ap-
proximation functions” names all functions of a fixed
type, e.g. all Fourier functions of order 1 to N. An “ap-
proximation function” is one member of this set e.g. the
“Fourier function of 2nd order”, while the term “set of
approximation function types” names all the different
types of functions like Fourier, Chebyshev,  Legendre
etc.  An  “approximation  function  type”  is  one  such
function family.

Our benchmarks are the average time needed to com-
pute a stable shape for our DLO and the geometrical er-
ror of the calculated shape compared to the real DLO.
We call a shape “stable” if it does not change to much
between  two  approximation  steps.  Furthermore,  we
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want to determine whether the DSM can be used with a
specific  set  of  approximation  functions  in  real-time.
The DSM is  classified  as  real-time enabled (with re-
spect to a given function-set) if the calculation could be
interrupted at any point in time and the approximation
computed up until that point is a realistic representation
of a DLO. A methodological problem here is the exact
definition of what constitutes a “realistic” representa-
tion of a DLO. Note that we test each set of approxima-
tion functions against various DLO parameters and ini-
tial conditions.

Section 2 describes  our  approach  in detail  and intro-
duces the set of approximation functions. Section 3 de-
scribes  our  experimental  setup  and  in  Section  4  we
present a discussion of our results. 

2. MODEL DESCRIPTION

To calculate the shape of our DLO, we use the well-
known  approach  of  minimized  potential  energy.  We
calculate the internal energy of our DLO as a function
of its bending.

2.1.Model
Assuming that one of the DLO's endpoints is fixed, the
shape can be computed in parametric representation by

x s=∫
0

s

sin 0t dtx0 (1)

z  s=∫
0

s

cos0t dtz0 (2)

with (x(s),  z(s)) Cartesian coordinates of a point with
distance s (along the DLOs curve), (x0, z0) the fixed en-
dpoint  and  θ0 the  two-dimensional  orientation of  the
fixed endpoint. The angle θ(t) is measured between the
DLO tangent at point (x(s) , z(s)) and the z-axis of the
coordinate system (see Fig 1).

By definition, the bending k  is equal to the first deriv-
ative of the angle between the DLOs tangent and the z-
axis of the coordinate system:  k =  θ´. Thus it is pos-
sible to use the stem function  k instead of  θ to model
the DLO. We model our DLO here using k:

t =∫
0

t

k udu (3)

According to [4] the energy of a deformed DLO can be
calculated as 

W G= A g∫
0

L

z sds (4)

W B=
1
2

A E∫
0

L

{ R2 k s2/4
R k  s−F F

k  s≤2F /R
otherwise

ds (5)

with the gravitational energy  WG,  the bending energy
WB, cross-sectional area A, diameter R, specific mass ρ
and bending coefficient  E of the DLO. We assume an
idealized  DLO  with  εF equivalent  to  σF/E, whereby
σF/E is the edge in the force-bending diagram. The sum
of WB and WG is the total energy W to be minimized in
respect to k.

Successful  minimization  results  in  the  function  k(s),
which produces the shape (expressed in the coordinates
of  points)  of the DLO. Unfortunately,  it  appears  im-
possible  to  solve  the  problem  analytically.  To  over-
come this drawback, we approximate  k as a linear su-
perposition  of  well-known  functions  (this  is  also
known as “Ritz's method”):

k u=∑
i=1

nc

ci qi u=c q (6)

Thus, we call  qi an  approximation function and define
q as a given set of such approximation functions and c
the corresponding set  of coefficients.  Based on these
prerequisites,  the total  energy is  a  function of  nc un-
knowns: (most constants ignored):

W c1 ,⋯, cnc
 =∫
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L ∫0
s
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t

∑
i=1

nc

ci qiududt ds

∫
0

L

∑
i=1

nc

ci qis
2 ds

(7)

This energy function as shown in eqn. (7) consists of
integrals that are difficult or even impossible to solve
analytically.  To  use  the  Trapezoidal  Rule  for  the  re-
quired numerical integration, we divide the DLO into
ns segments of equal length. Thus,  O(ns  nc) operations
are needed to calculate the energy function.

2.2.Minimization
The  Downhill  Simplex  Method  (DSM)  is  an  estab-
lished method to minimize an “objective function” of
more  than one  argument under  a  set  of  (linear)  con-
straints; see e.g. [5]. The method requires nc + 1 sets of
unknown coefficients that constitutes the nc + 1 vertices
of the simplex. We use the following initialization:

c0=0 , c j= e j j=1,⋯ , nc , ∈ℝ (8)

with  ej the  j-th base vector. (I.e. the first set has all  ci

initialized to 0 and all following sets have all but ci set
to 0 and one set to λ.)

The total computation time depends on λ (as  λ defines
the initial size of the simplex) and on the set of approx-
imation functions used (because different types of ap-
proximation  functions  have  different  levels  of  com-
plexity and different optimal values for λ). To compare
the average computation time for different types of ap-
proximation functions, we must first find the best λ for
each type of approximation function, and then perform
benchmark tests with each such function type using the
optimal  λ value previously determined. To determine
the best λ for each type of approximation function, we
perform several experiments under varying initial con-

Fig. 1: Model of a DLO
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ditions (i.e. R, nc, ns, θ0) for each type of functions. We
determine the best  λ for each set of initial conditions
for a given type of approximation functions. Then we
use  the  arithmetic  average  of  the  resulting  λ values
(rounded to the nearest integer value) as the optimal  λ
for the given type of approximation functions. It turned
out that the optimal λ is 1 in most cases, except for the
Chebyshev-1 and Legendre functions.

2.3.Approximation function types
The approximation  function types are summarized in
Table 1: The first column shows the function’s name
and the second column specifies the function’s domain.
The DLO is scaled to  fit  into this  domain.  The third
column shows whether the function describes an ortho-
gonal system; if it does, the column contains the appro-
priate normalization function. The fourth column con-
tains the best  λ for that function, as discussed above.
Finally, the last column summarizes special properties
of the function that could be of interest in our study.
The set of “Fourier2” functions is the set of “Fourier”
functions with an additional function of y = x. The ad-
ditional function covers the linear component of the to-
be-approximated function.

Table  1 Table of approximation functions analyzed in
this paper.

functions [a,b] w(t) λ Special properties

Chebyshev 1. [-1,1] 21/ 1 t− 10

Chebyshev 2. [-1,1] 21 t− 1

Fourier [0,2π] 1 1

Fourier2 [0,2π] - 1 Fourier-Functions +
Function x

Legendre [-1,1] 1 10

Haar [0,1] 1 1 Step function 

Standard [-1,1] - 1 Simple polynomials: ti

i=0,1,… 

Bernstein [0,1] - 1 Linear dependent func-
tions (“Partition of
One”), symmetrical

Hermite [-1,1] - 1 Orthogonal at ( , )−∞ ∞

wrt. 
2

( ) tw t e−=

3. EXPERIMENTS

Our aim is  to find out  which approximation function
type is best suited to approximate the bending of our
DLO. Our evaluation criteria are: 1) the time needed to
compute the minimized energy; 2) the accuracy of the
computed shape. In general, as the computed minimal
energy decreases,  the bending approximation  become
more  accurate.  However,  a  poor  approximation  may
lead to an overly low calculated energy. We found that
the experiment can result in poor approximations, if the
following relation is lower than two:

rcs=
ns

nc

(9)

with nc the number of coefficients in eqn.  6 and ns the
number of supporting points in the numerical integra-
tion. Relation (9) is an experimental finding, we do not
know the reason behind this observation, but see dis-
cussion below for a possible reason. Unfortunately, the
actual value of the energy is unknown and there is no

clear distinction between energy values that are reason-
able and those that appear to be invalid. Therefore, the
entire distribution of energy across different values of
nc is considered when evaluating a given approximation
function type.

3.1.Fixed Model Parameters
Our  model  contains  several  parameters  that  can  be
changed as needed. Some of these are modified during
our tests, while others are held constant.

The energy function (eqn.  7) is modelled and minim-
ized in terms of the bending of the DLO. The minimiz-
ation is performed with the Downhill Simplex Method
using 1⋅e-10 as the termination criteria for the difference
between minimum and maximum values of  the func-
tion to be minimized. The integrals involved are calcu-
lated using the trapeze method. The DLO is a 1m long
copper fiber (specific mass 8960 kg/m3) with an elastic
modulus of 126⋅109 N/m2. The origin of the DLO (i.e.
the fixed end point) is at position (0,1) in the Cartesian
coordinate system.

3.2.Variable parameters
The following parameters  are modified in our experi-
ments:

• Number of approximation functions nc: As the num-
ber of functions increase, both the accuracy of the
approximation and the computation time increase.

• Number of segments of the DLO ns: Increasing the
number of segments improves the accuracy of the
calculated  numerical  integrations,  providing  more
realistic energy values.

• Orientation  of  the  DLO's  fixed  endpoint  θ0:  The
shape of the DLO depends on the endpoint orienta-
tion (as measured by the angle between the tangent
of the DLO at this point and the vertical coordinate
axis).

• The DLO radius R: The radius influences the stiff-
ness of the DLO.

3.3.Description of Experiments
Two  different  types  of  experiments  are  performed.
First, the energy minimization is examined with respect
to  different  sets  of  variable  parameters  as  defined
above. We record the calculated energy (Fig. 4) and the
computation time needed (Fig.  5) depending on  nc for
different  values  of  each  variable  parameter  (such  as
number  of  segments,  endpoint  orientation,  DLO dia-
meter, etc.). A series of experiments is performed for
each function type, in which only one parameter is var-
ied while all other parameters are fixed. All minimiza-
tion curves  resulting from each series,  are  combined
into a single diagram and compared.

Secondly,  we  determine  which  set  of  approximation
functions handles  interrupted DSM computation best.
As before,  we compute the minimum energy with re-
spect to different sets of parameters,  but this time the
minimization is interrupted at specific intervals and the
current set of coefficients  is  recorded. After each ex-
traction of the coefficients, the minimization process is
continued. This cycle is repeated several times for each
set  of  parameters.  Then,  for  each such set  of  coeffi-



Fig. 2: Calculated bending of a DLO using Bernstein (nc=12),
Hermite (nc=22) and Legendre (nc=30); (ns=200, θ0 = -90,
R=0.0005).

Fig. 3: DLO geometries calculated using Bernstein (nc=12),
Hermite (nc=22), and Legendre (nc=30); (ns = 200, θ0 =-90,
R=0.0005)

cients,  the  calculated DLO geometry (as  encoded by
the set of coefficients) is compared with the expected
geometry and the geometry given by the other sets of
coefficients.  If  all  computed  geometries  (beyond  a
fixed and parameter-independend number of iterations)
for a given set of parameters can be considered realist-
ic, the type of approximation functions used is classi-
fied as  „real-time capable“.  However,  it  is  unclear  if
this type of approximation functions is actually „real-
time capable“ with respect to all possible parameters.

Altogether  four  series  of  experiments  are  performed:
The first  series  test  the  limits  of  our  model  and the
DSM in respect to the number of coefficients and seg-
ments as well as in respect to the resulting energy and
shape. The next two series compares the different types
of functions with respect to average computation time
and  preciseness  of  the  computed  shape  and  energy,
while the fourth series is used to examine the real-time
capabilities of our model. The parameters used in each
series can be found in table 2.

Table 2 Summary of the parameter values used in some
of the experiments.

Parameter
Values 

Experiment 1,2
Values

Experiment 3
Values 

Experiment 4

nc 2,...,40 2,...,20 8,16,24,32

ns
50,100,200,250

, 400
50, 100 100, 200

θ0 (°) -10, -90, -160 -10, -90, -160 -10, -90, -160

 R (m) 0.0005, 0.0002 0.0005, 0.0002 0.0005, 0.0002

4. CONCLUSIONS

In the first series we vary both, the number of coeffi-
cients  and the number  of  segments,  using very  large
and very small numbers. The results of the first series
of experiments indicate that not every set of approxim-
ation functions can be used to compute the bending of a
DLO.

Both the Hermite and Bernstein functions calculate the
bending incorrect (Fig. 2) and therefore produce incor-
rect DLO geometries (Fig. 3). This problem is also vis-
ible in Fig.  8, displaying wild and impossible changes
in the bending energy. To find out why both sets  of
functions  cannot  not  be  used  to  properly  calculate
bending  energies,  more  experiments  have  to  carried
out. Causes such as the partition of one and symmetric-
al effects are excluded by restricting the set to one half
of the Bernstein function ( n

iB  with  i  = 0,...,n/2). Be-
cause of instability in the coefficients  of the bending
approximation  with  respect  to  different  initialization

and termination criteria of the DSM, we assume that
these  results  are  due to  numerical  problems  such  as
rounding errors. However, it is unclear why the calcu-
lation works well for most odd numbers of n.

Most  likely  the  steepness  of  the  Hermite  functions
causes  their  poor  approximation  of  the  bending.  The
Hermite functions are scaled to the length of the DLO
in the interval from [-1,1]. The function values increase
steeply  with  each  new  function  in  the  Hermite  se-
quence,  so  that  increasingly  small  coefficients  are
needed to approximate the bending, leading to numeric-
al  instabilities  due to rounding errors.  Thus,  Hermite
and Bernstein functions are disregarded in the follow-
ing experiments.

Another  important point we found is,  that the energy
and the resulting shape is wrong if  nc reaches approx-
imately half of ns. The exact limit depends on the type
of functions used. This problem is illustrated in Fig.  9
as a discontinuity in the energy and seems to be related
to the sampling theorem as the higher order approxima-
tion  functions  have  very  high  frequencies.  If  only  a
small  number  of  segments  is  used  (and  therefore
providing very few sampling points for the integration),
we lose the relation between the original function and
the function used to compute our integrals. The same is
true  for  the  corresponding  function  for  the  tangent
angle, which itself corresponds to the stem function of
the  bending.  Consequently,  the  bending  and  tangent
functions can lose their functional relation under cer-
tain circumstances. Apparently the number of segments
must be at least twice the number of coefficients.

The next two series of experiments are used to ascer-
tain the precision and computation time of our simula-
tion. The results from the second series are shown in
Fig. 4 and Fig. 5 for a fixed value of θ0 = -90° and aver-
aging time and energy over ns from 50 to 200. It can be
argued that averaging the computation time for differ-
ent values of ns is not that useful as the time increases
with  ns,  but  as  our  objective is  to  compare  function
types over a broad range of parameters and not to com-
pare or find optimal parameter sets,  we believe aver-
aging  the  time  is  useful  under  these  circumstances.
Again we can see wrong energy values for high num-
bers of nc.

In the final series the DSM is interrupted after 1, 2, 3
and 10 iterations and then after every 50th iteration, as
described  in  section  III  and  the  resulting  shapes  are
plotted in one diagramm to visualy compare the shape
and to identify a fixed number of iterations after  which
no significant change in the shape occures.
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Fig. 4: Average energy after minimization (experiment 2).
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Fig. 7: Average computation time  (exp.3)

The results can be summarized as follows:

1 Minimizations using the Fourier, Fourier2 and Haar
function sets results in a local minimum for some
values of the parameter sets (θ0  = -10, R = 0.0002).
This is due to the manner in which the DSM is ini-
tialized.

2 The Fourier functions provide by far the worst en-
ergy approximation.  While  the  Fourier2  functions
produce  better  results,  they  still  performe  worse
than other functions (see Fig. 4 and 6) and addition-
ally require long computation times (Fig.  5 and 7).
These properties render them unusable in our con-
text.

3 The energy computed with respect to the number of
coefficients for Legendre and Chebyshev-1 and -2
functions are almost identical. The Legendre func-
tions require the least  computation time,  followed
by Chebyshev-2 (see Fig. 4 - 7).

4 The Standard functions  require  short  computation
times for large  nc and  ns (5) and average computa-
tion  times  for  small  nc and  ns (7).  Because  we
mainly use small  nc and ns, the Legendre functions
are more appropriate in our context. Generally, the
Standard  functions  produce  good  results  with  re-
spect to both the calculated energy and the neces-
sary computation time.

5 Because the Haar functions are not continuous, they
generally  provide  good  minimization  results.
However, the energy diagrams show a stepwise en-
ergy distribution with occasional high energy values

for small nc and ns. The computation time is  a little
higher than average (See Fig.  4 and 5 as well as  6
and 7).

In terms of a fast and fairly precise simulation, all of
the functions analysed (except the Fourier and Fourier2
and  the  early  excluded Bernstein  and  Hermite  func-
tions)  can  be  used.  If  a  more  precise  simulation  is
needed, the Legendre functions are a better choice.

The fourth series of experiments shows that none of the
approximation  functions can produce a realistic DLO
geometry under all  circumstances when the computa-
tion process is interrupted at a random point. Addition-
ally, one can see what effect varying DSM initializa-
tions have on the results when the minimization is in-
terrupted.  The  DSM  may  produce  a  realistic  set  of
coefficients if interrupted randomly during the calcula-
tion only if the set used to initialize the DSM is realistic
to begin with. However, this raises the question where
the  realistic  initial  set  of  coefficients  for  the  DSM
comes from, if it is not first computed using this DSM.
Accurate coefficients known beforehand indeed render
the entire calculation unnecessary.

After the appropriate type of approximation functions
and minimization method has been chosen,  additional
optimizations can be applied. If only the elastic bend-
ing energy is taken into account and if the approxima-
tion functions are orthogonal, we can simplify the func-
tion for the bending energy to 

W B=
1
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A E R2∑
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ci d i (10)
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Fig. 8: Energy after minimization  (ns = 200,θ0 = -90, R = 0.0005) Fig. 9: Energy after minimization (ns = 50, θ0 = -90, R = 0.0005).

with the constant di  derived from the orthogonality of
qi :

∫
0

L

qi sq j sds=d ii j (11)

The limits of the integrals must of course be adjusted
accordingly.

5. SUMMARY

We present a 2D-model to simulate a DLO and outline
the model’s basic characteristics based on several ex-
periments. Our aim is to identify which approximation
function  from  a  pre-selected  set  of  functions  is  best
suited to simulate the DLO deformation in the presence
of contact forces. We focus on short computation times
and a realistic but not necessarily exact physical shape.
One special  requirement  is  to  make our DSM-driven
simulation  as  “any-time”  capable  as  possible,  i.e.  it
should provide a realistic coefficient set if interrupted
at any point during the calculation.

We find the Bernstein functions inappropriate for our
purposes. The number of useful Hermite functions are
limited to the first 19th order function, as higher-order
functions  suffer excessively from numerical  rounding
errors.  All  other  approximation  functions  analyzed
could be used in our system,  but  the Legendre func-
tions are found to be best suited for our purposes, fol-
lowed by the Standard functions. This is surprising, as
the Fourier functions (not the Legendre functions) are
very  common  in  many  approximation  systems.  We
cannot prove the method to be real-time or “any-time”
capable under all conditions.

6. FUTURE WORK

This  paper  analyzes  the most  basic  model,  involving
calculation of a free-hanging DLO's geometry in two-
dimensional space without obstacle interaction. In this
case the bending function remains nearly constant, but
in the presence of obstacles the bending function will
change, requiring further analysis. Similarly, considera-
tion of dynamics will require modification of the com-
putation method used to calculate the bending function.

Extending the model from 2D to 3D space requires ap-
proximation  of  three  functions  rather  than  just  one.
This  significantly  increases  the  number  of  combina-
tions that must be taken into account; thus it might be

useful to approximate different functions using differ-
ent sets  of approximation functions.  Taking obstacles
and dynamics into account will naturally result in in-
creased  complexity.  This  can  be  assumed in  the  3D
case too.
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