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Abstract. Natural language is an intuitive interface to supplement
programming in modern automation settings. However, most natural
language frameworks are specialized and not universally applicable.
We contribute a novel layered pipeline that transforms the instruc-
tions of laypersons into robot programs with non-linear control flow
and that facilitates reuse. The instructions are analyzed regarding
grammatical features. From this, the syntactical analysis derives pro-
grams with nested control structures and references to physical parts
within a scene to be manipulated. These programs are semantically
interpreted during online execution in a concrete scene – i.e., the con-
trol structures are evaluated, and part specifications are grounded
to physical parts. With that, a fully specified skill is created and
executed by a robot system. Since only the input/output interface
of each pipeline stage is defined, they are adjustable independently
of each other. Our experiments demonstrate how industrial robots
in diverse domains can be verbally programmed using the pipeline.

Keywords: Dependency Grammar · Modular Architecture · Intelligent
Robots · End-User Programming · Syntax · Semantics.

1 Introduction

Shorter innovation cycles and small-batch production pose significant challenges
for automation [4]. One response is to increase the accessibility of robot pro-
gramming [17, 18, 24]. We envision future programming to feel equally natu-
ral as instructing human co-workers. Inspired by the main human interaction
method [23], we follow the approach of natural language programming. However,
the few currently existing natural language programming frameworks in robotics
are limited to specific applications and are thus not universally applicable.

We therefore aim to advance natural language programming of industrial
robots (Figure 1). Compared to mere robot commanding our notion of program-
ming differs in the utilization of control structures, thus allowing the control
flow of the program to be adapted online. We distinguish between the typi-
cally used control structures: Sequences, selections, and loops. The latter can
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Fig. 1: Natural language (a) is transformed into programs with control structures (b).
Using the program, the robot consecutively applies operations to the current scene (c).

be further subdivided into number-, condition-, and set-controlled loops. Other
typical control structures are not explicitly considered, as they can be composed
of the control structures above (e.g. switches or post-test loops). To facilitate a
high degree of flexibility and thus quick adaptations to the desired domain, the
approach must be modular. Thus, the programming system should be divided
into independent sub-components connected with clearly defined input/output
interfaces. This can be achieved using a pipeline architecture. The transforma-
tion of the spoken instruction into robot movements traverses different layers of
abstraction – hence, resulting in a layered pipeline.

We present a layered pipeline for natural language robot programming (Fig-
ure 3). Our contribution is twofold: (i) We transfer the concepts of natural lan-
guage programming using control structures to the context of industrial robots.
(ii) Owing to the modular design, individual pipeline stages can be adjusted with
little effort, facilitating reuse and quick adaptation to the desired domain.

2 Related Work

A common method of instructing a robot is to command pre-implemented robot
skills. The language system interprets the verbal instruction by determining
the skill type from the verb and deriving parameters from its valences – i.e.,
modifiers of the verb [6, 15, 21, 24]. However, this approach without additions
does not allow the programming of complex programs since the control flow is
not adapted. Nevertheless, we build upon this approach in order to define the
operations embedded within the control structures (Section 3.1).

The morphology and grammatical dependencies of a naturally instructed
sentence can be analyzed to derive control structures: For example, conjunctions
of main clauses can be converted into sequences with the help of feasibility
calculations [9]; selections are derived from the conditional member clauses [20];
condition- and amount-controlled loops can be generated from function words
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Fig. 2: The dependency tree encodes grammatical connections between words in a sen-
tence. These dependencies are abbreviated with short keywords, which include deter-
miners (det), adjective modifiers (amod), objects (obj), obliques (obl), and conjunctions
(conj). Coreferences specify groups of words referring to the same thing.

like “while” or from mentioning the number of repetitions [8,11]. Set-supervised
loops can be programmed by defining the set of parts to be manipulated [5].
However, these approaches only focus on a few distinct control structures.

In contrast, analyzing the dependency tree of the instruction is a promising
approach to derive all relevant control structures (as shown in [7, 22]). Depen-
dency trees represent the syntactical make-up of an instruction by connecting
words based on their grammatical relation (Figure 2) [10]. Starting from a root
word, dependencies (e.g. subject, adjective, conjunction) are established to other
sentence constituents. Through this, grammatical composition can be analyzed
uniformly. Coreferences identify references between mentions of the same iden-
tity [3] – e.g. in Figure 2 ’them’ refers to ’bottles’.

In this paper, we expand on the work of Landhäußer et al. [7] and Weigelt et
al. [22] in the context of flexible robot programming. So far, their approach has
only been exemplarily applied to two specific robotic systems (humanoid/mobile
robot). It neither includes a conceptual pipeline for natural language robot pro-
gramming nor provides an adequate interface to cover diverse robot domains. Ad-
ditionally, the grounding of underspecified part specifications to concrete parts
(as discussed in our previous work [18]) is implemented prototypically only. This
work addresses these problems to enable natural language programming for ar-
bitrary robot systems utilizing dependency analysis.

3 Approach

The goal of our layered pipeline is to transform spoken instructions into robot
movements which perform the desired manipulation of parts within the scene
(Figure 3). This pipeline subdivides into abstraction and concretization stages.
The former converts the spoken instructions into a program. Consequently, the
abstraction includes Automatic Speech Recognition (ASR), Dependency Pars-
ing, and Syntactical Analysis. We regard those stages as abstraction since in-
formation is primarily stripped from the instruction – ASR removes the explicit
octave of the speech, and syntactical analysis may extract equal program state-
ments from different sentence structures. The concretization stages interpret the
program, thus transforming it into the desired robot motions for a concrete
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Fig. 3: The layered pipeline transforms spoken commands into fitting robot movements:
Such commands are converted to text, whose grammatical dependencies are analyzed.
These are parsed into a program with control structures. The program is interpreted
for a scene to create skills, which are executed by the robotic system.

scene. To further increase modularity, the concretization has two stages: During
Semantical Interpretation, the program is gradually interpreted online yielding
robot skills, which the Robot Execution stage converts into concrete trajectories.
Hence, the program is transformed to increasingly more explicit representations.

In more detail, the instructions are transformed by this pipeline as follows:
The ASR stage transcribes the spoken audio signal into text. This text then is
parsed with regard to its grammatical dependencies (Section 2). Program code is
synthesized by exploring these dependencies and matching keywords to the local
vocabulary during the Syntactical Analysis (Section 3.1). The instruction pro-
vides an implicit execution flow that must be transformed into concrete control
structures with associated robot operations and part specifications. The resulting
program is scene-independent, allowing it to be used with different task variants
– e.g. by not having to precisely define the position of the individual parts in
advance. Accordingly, the program is executed by providing a scene state dur-
ing the Semantical Interpretation (Section 3.2), wherein the underspecified part
specifications and conditionals are grounded to physical parts. The specific robot
skill is then determined based on the grounding and the previous program state.
Utilizing the skill definition of Pedersen et al. [14], hardware independence is
guaranteed during this stage. Finally, the skills are transformed into concrete
motion sequences that achieve the desired manipulation of the scene.

Both ASR and Dependency Parsing are studied extensively within compu-
tational linguistics. Thus, optimized methods are readily available. Robot Ex-
ecution mostly follows the approach of executing skills [14]. In this paper, we
therefore mainly cover the Syntactical Analysis and Semantical Interpretation.

3.1 Syntactical Analysis

The Syntactical Analysis converts dependency trees into programs (Figure 4a).
We require such programs to represent the instructed parts, operations, and
control structures. Based on this, the program is divided into declaration and
procedure sections. The declaration lists all named part specifications P̃ and
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(a) Example program.

Depend. Mark Control Structure

conj And Sequence
sconj If Selection – Positive
parataxis Instead Selection – Negative
sconj While Conditional-loop
sconj Until Conditional-loop (Neg.)
obl Times Count-loop
... ... ...

(b) Excerpt of the control structure table.

Fig. 4: Programs are synthesized from instructions utilizing their grammatical depen-
dencies (a). The control structures connecting statements are derived from a table of
grammatical dependencies and function words (b).

assigns unique labels to each of them. We call each declaration list entry a vari-
able, distinguishing between atomics and compounds. Atomic variables always
refer to one part specification, whereas compounds link several atomic or other
compound variables with one common operator (’and’, ’or’). Depending on the
domain, part specifications p̃ ∈ P̃ can include features such as the type pt,
number pn, color pc, or location pl (see Section 3.2) – resulting in the tuple

p̃ = (pn, pt, pc, pl). (1)

The procedure section contains the control flow and operations that access
the declared part variables. We group the operations and the control structures
into the superordinate term statement. Each operation is defined by its type, part
variable to be manipulated, and other instructed modifications that describe the
process in more detail. Programs are created by analyzing the dependency tree.
Starting from the root node, the dependencies linking nodes within the tree are
transformed into program constituents based on their mark (e.g. ’if’ within a
subordinated conjunction). The operation is identified by the verb node and its
dependencies [21]. These include the parts to be moved (accusative object) and
other specifying parameters (e.g. adverbs or obliques). A part specification is
created if a dependency relates to a nominal node whose identifier is assigned
to a part type in the language model. By analyzing its connected dependencies,
additional part features are extracted (e.g. adjectives, numerals, or compounds).

A table of dependencies contains the control structures between statements
with associated function word markings (Figure 4b). This method is reasonable
since only few distinct function words exist (e.g. ’if’, ’while’, ’until’) and they
are rarely altered [2] – resulting in a table with few entries. Several statements
are linked to a sequence employing chained conjunctions of main sentences with
the marker ’and’ (coordinating conjunction dependency). If the user instructs
several sentences, the determined partial programs are likewise strung together
as one sequence. However, humans rarely structure instructions concisely with-
out ambiguities or contradictions so that the desired instruction sequence does
not necessarily correspond to the one spoken [13]. Therefore, the feasibility of
the possible orderings must be considered [9]. Selections are identified by the de-
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pendency subordinated conjunction (sconj) and the associated marker ’if’. The
condition is derived from the subordinate sentence and its positive case from the
main sentence. If there is additionally a parataxis dependency on the main clause
(e.g. with an ’instead’ marker), the subordinate clause is considered the negative
case. Conditional loops are determined analogously to the selections using e.g.
the marking ’while’, whereby the main clause corresponds to the contents of the
loop body. Repetitions of an operation (e.g. “Press it five times”) can be deter-
mined using an oblique dependency resulting in an amount loop. Set-loops are
not derived directly from this table since they are inherently encoded in the part
specifications by defining the required number of parts (e.g. “Move four cubes”).
The operation performs similarly for all specified parts resembling a set-loop.

Occasionally, a part should be manipulated multiple times in succession. This
can be taken into account by analyzing the coreferences as follows: Only refer-
ences between nominals related to parts are considered, though one compound
may also combine multiple references to such nominals. We obtain this set of
part-related nominals N by analyzing the dependency tree and the local vo-
cabulary, where each id refers to the word at the corresponding position in the
instruction. We use the set of coreference chains K, where one coreference chain
k = (kmsm, kref) contains two word id sets: kmsm (the most specific mentions)
and kref (all references to kmsm). We define the word id set of all atomic mentions

A = {w ∈ N
∣∣ (∀k ∈ K : w /∈ k.kref)} (2)

as a subset of N , whose ids are not referenced in any coreference (k.kref). Every
atomic mention is transformed into an atomic variable with corresponding part
specification (Equation 1). Compounds link atomics or other compounds via one
conjunction. Accordingly, ∀kc ∈ Kc ⊆ K with

Kc = {k ∈ K
∣∣ |k.kmsm| > 1} (3)

one compound must be formed by linking the appropriate atomics or compounds
of the k.kmsm. The remaining conjunctions of atomics and compounds without
coreferences should also be usable as contiguous variable in the operation. For
example, a sentence ’Move the bottle and lid to the left’ should result in two
atomic (’bottle’, ’lid’) and one compound variables. Therefore, such conjunctions
must also be linked within a compound variable. Following the outlined stages,
we can transform natural instructions into programs with nested control flow.

3.2 Semantical Interpretation

In this stage, the program is interpreted within a scene resulting in robot skills
with concrete parameters. For this purpose, the program is processed sequen-
tially, and the part specifications in the current program stage are grounded
(Figure 5). Operations are converted to a concrete skills utilizing grounding as
introduced in our previous work [18]. Grounding refers to assigning physical parts
to part specifications that are associated to atomic variables. If a grounding was
already found for one variable and is referenced, the existing grounding result is
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Fig. 5: The program is interpreted and consecutively transformed into precise skills,
partially grounding the part specification on demand. Here, the first operation (move)
was already executed, and the grounding for ’A0’ is reused to interpret the selection.

reused, allowing repeated manipulations. The parts are grounded dynamically
during the execution – i.e. only a subset of parts in the scene are grounded at
one execution stage. This is for two reasons: (i) The scene state and, thus, future
assignments may change; and (ii) the parts specified in the body of a selection
must only be present if its condition resolves.

The operation is converted to a concrete skill utilizing grounding [18]. The
current world state P̂ = {p̂0, p̂1, ...} is the set of the part states in a given
scene. One state encompasses the relevant and identified features of the part
(e.g. geometrical shape, color, or position). In contrast, part specifications P̃
define boundary conditions that part states must satisfy in the context of an
operation execution. To use the concept from [18] we convert every specifica-
tion into pn equal part templates with the same properties. Such part templates
P = {p0, p1, ...} are defined equal to the specifications without the amount pn.
Therefore, we utilize the function γ : P → P̂ , which maps all templates injec-
tively to a part state, where each mapping must suffice the function σ : P̂ ×P →
{True,False}. Function σ return whether a part state p̂ satisfies the boundaries
defined by part template p. Thus, for each part template p, exactly one state
p̂ must be found that satisfies the boundaries of p. This general construction
allows grounding to be performed on arbitrary domains. Since a local grounding
is performed in this case, the states can be assigned to the templates in a greedy
manner. Grounding allows skills to be filled with concrete parameters.

For example, a template p = (pt, pc, pl) might contain information about the
geometric type pt, the color pc, and location pl (based on Equation 1). A corre-
sponding state p̂ = (p̂t, p̂c, p̂l) is analogous in structure. Hereby, named features
(such as type or color) can be described as an entry within a taxonomy. Such a
taxonomy captures “is-a”-relations between a set of nodes T . Leaf nodes T̂ ⊂ T
denominate concrete features which part state may exhibit. When ascending
from leaf nodes upwards towards the root node, encountered inner nodes encode
increasingly abstract descriptions. Thus, such inner nodes may occur exclusively
in similarly abstract part templates. An example of a taxonomy of part types in
the palletizing domain might include the term ’box’, which covers products rang-
ing from small tea boxes to large packages. The set of part locations L = Ls∪Lu

includes well-specified affine transformations (Ls) and underspecified constraints
on the part transformation (Lu). Hence, an underspecified location e.g. describes
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an area in scene space in which a part should be present. Each location l ∈ L is
associated with a location function is at : p̂×l → {True,False}, which outputs
whether the pose of p̂ matches the location l. Analogously to named features,
part states may only exhibit locations ls ∈ Ls, while templates underlie no such
restriction. In this domain, the satisfies function σ would correspond to

σ(p̂, p) = is atype(p̂t, pt) ∧ is acolor(p̂c, pc) ∧ is at(p̂, pl). (4)

The program is executed utilizing a call stack analogous to programming
languages such as C++. Statements are pulled successively, where operations
can be transformed into skills and control structures added to the call stack
depending on their type. Sequences put their statements in reverse order, making
the following pulled statement equal to the first one. Selections push either the
positive or negative case based on their evaluation. If the head of a loop resolves,
the loop is pushed again along with the body statement. Thereby, the body is
pulled next, and the loop head is rechecked afterward. The resulting grounded
skills can be executed on any suitable robot system.

4 Experimental Validation

We designed four benchmark tasks to highlight specific aspects of natural lan-
guage programming using our proposed architecture(Figure 6): In Task T1, ’la-
beled’ is an additional binary feature of part states corresponding to a taxonomy
with an agnostic root node and two leaf nodes. The subordinated conjunction
with ’if’-marking is transformed into a selection with the ’labeled’ condition
and positive/negative branches. This task shows that the definition of parts can
be adapted by adding or removing features. With Task T2, an electrical con-
nection is completed within an assembly benchmark toolkit [19]. One arbitrary
conductor and one resistance conductor must be inserted in a pre-assembled
electrical circuit. The general concept of our part types allows part states with
unique naming. Therefore, the goal locations of the conductors can be uniquely
identified by directly addressing the plates (e.g. ’P0’ and ’Q0’), bypassing the
possibly ambiguous grounding of part states. However, this task also highlights
the drawback of local grounding: Based on the type taxonomy, ’resistance’ is
the child of the ’conductor’ type. For example, the resistance may be mistakenly
grounded for the first operation, leaving no matching part for the second op-
eration. Task T3 shows a count-loop within a laboratory domain. The content
of a measuring cylinder is shaken five times, resulting in a for-loop with the
upper bound parametrization of five. Due to the general skill definition, skills
more complex than pick-and-place may be defined (e.g. ’shaking’ and ’emptying’
the measuring cylinder). This relates both to the required robot movements and
the applied manipulation to the parts (e.g., a ’mixed’-feature may be increased
during shaking). Task T4 displays a condition-loop in a service domain by in-
structing the cleaning of a whiteboard. The position-controlled skills in T1-T3
can be extended with force-control. Each task is situated within its unique do-
main and utilizes different control structures – thus, demonstrating the flexibility
and adaptability of our approach.
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Fig. 6: Four benchmark tasks highlight the system’s capabilities. The first row shows
the instruction(s), which are transformed into programs (second row). The third row
displays a robot executing the instruction in the context of a corresponding domain.

5 Conclusion and Future Work

In this paper, we contributed a modular pipeline for natural language robot pro-
gramming by laypersons. We achieved this by analyzing the grammatical speech
patterns within the implicit instructions and transforming them into programs
with explicit control structures (Section 3.1). Thus, we synthesized operations
and part specifications embedded within control structures from language. By
grounding these specifications, we can parametrize the operations to be suit-
able for industrial robots (Section 3.2). We showed the high adaptability of our
pipeline by customizing it for diverse domains (Section 4).

Our approach may be extended in future work: (i) Currently, interpretation
errors are propagated through the pipeline without mechanisms to seek user
feedback. A dialog component may resolve this error propagation. (ii) Addi-
tionally, we defined the input/output within the pipeline to be human-readable.
Thus, intermediate results may help by error detection and correction. (iii) The
local grounding may lead to additional errors (Section 4) and must therefore be
extended to a global grounding approach [18]. (iv) Furthermore, behavioral pro-
gramming can be incorporated into natural language such that the programming
more closely resembles the training of human co-workers. (v) Finally, we plan to
compare the usability of our prototype with other programming systems.
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