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Abstract— One long term goal of artificial intelligence research
is the development of robot systems, which have approximately
the same cognitive, communicational, and handling abilities like
humans. For instance, a human-like communication requires an
intuitive and symbolic user interface. Since actual robot control
systems typically consist of subsymbolic interfaces, the robot must
be able to extract subsymbolic information from given symbolic
instructions. This requires the grounding of information and the
utilizing of appropriate sensors and components. In this work, we
describe the grounding of symbols based on physical properties,
since we describe executable actions in form of physical effects
in our system [1].

I. INTRODUCTION

One long term goal of current robotic research is the
development of robot systems, which have approximately the
same cognitive, communicational, and handling abilities like
humans. As part of this ongoing development, application
domains for robot systems shall be expanded, from industrial
settings with separated working cells, fixed object positions,
and preprogrammed motions towards a flexible usage in small
or medium-sized enterprises (SMEs) or private households.
This sets additional requirements to the abilities of future robot
systems. In the field of cognitive abilities, future robot systems
must utilize appropriate sensors to extract information from
the environment. In the field of handling abilities, future robot
systems need action representations, which allow a flexible
parameterization and execution of a specific task. In the field of
communicational abilities, future robot systems must provide
an intuitive and symbolic user interface.

The interaction between cognitive, communicational, and
handling abilities is crucial for future robot systems. In Figure
1, potential tasks in SMEs or private households are visualized.
Such tasks typically require the definition of sensor-based ac-
tions, which are defined utilizing a subsymbolic robot control
interface like iTaSC [2] or manipulation primitives [3]. The
definition of sensor based actions require expert knowledge
in the domain of robotics, since the programmer must define
subsymbolic parameters like positions, forces, setpoints, or
control strategies. In SMEs or private households, it cannot
be assumed that this expert knowledge in robotics is available.
Therefore, future robot systems must provide an intuitive user
interface, which allows a symbolic communication. Such a
robot system needs information about the semantics of the
used symbols, for example executable actions or manipulable

Fig. 1. Typical applications in SMEs or private households which require
the execution of sensor based motions. From left to right: Drilling, Paletting,
Pouring.

objects. Furthermore, the robot system must be able to extract
the needed subsymbolic information from the environment,
utilizing appropriate software components and sensors.

For instance, a robot system shall execute a sym-
bolic instruction given according to a domain specific lan-
guage [4] shove("the red cube", "towards the
green box"). First, the robot system must be able to
analyze the structure of the instruction. In this case, the robot
system must be able to detect the instructed action shove, and
the set of parameters the red cube and towards the green box.
Since the instruction only specifies the goal of the task and not
how the execute the task, this information must be grounded
in form of a flexible action representation [1].

In addition, the robot needs geometric and dynamic in-
formation about the objects, which may be extracted using
appropriate sensors and components. In this case, the robot
needs the position of the object cube and box, which can
be extracted using a camera-based object recognition. Fur-
thermore, the robot needs information about the mass of the
object cube and the friction coefficient between the cube and
the surface. This is required for the calculation of the applied
force for shoving the cube towards the box. This subsymbolic
information can be extracted utilizing available components
and sensors, for instance an object recognition using an optical
sensor, or a mass recognition using a force sensor.

In this work, we analyze and structure the subsymbolic
information contained in specific symbols. More specific, we
analyze the physical properties manipulated by a symbol,
since we ground executable actions in form of verbalized
physical effects in our previous work [1]. We describe the
relations between symbols, subsymbolic physical parameters
which are manipulated by specific symbols, and components



for extracting subsymbolic information from the environment.
This information is stored in form of a physical dictionary to
the robot system.

The remainder of this work is organized as follows: The
related work is described in the next section. Here, an overview
of robot systems utilizing a symbolic user interface is given.
In Section III, we give an overview of our system, outline
the action representation based on verbalized physical effects,
and describe the relations between the used symbols, physical
parameters, and components for the extraction of the needed
subsymbolic parameters from given symbolic instructions. In
Section IV, we show the extraction of subsymbolic information
from given instructions and highlight the influence of the used
symbols on the execution of an instruction. At last, we describe
our future work in Section V.

II. RELATED WORK

The problem of assigning semantics to symbolic tokens like
words is known as the symbol grounding problem and was
described by Harnad [5] with aspects from psychology and
artificial intelligence. Since practical applications of artificial
intelligence, for example in form of robots and intelligent
systems, become more complex, also researchers from these
domains have to consider about the problem of symbol ground-
ing [6]. The grounding of symbols can be organized into two
subtopics, physical symbol grounding [7], and social symbol
grounding [8]. While social symbol grounding focuses on
sharing symbols in populations of agents, physical symbol
grounding focuses on building relations between sensor values
and symbols. Since we want to extract subsymbolic physical
parameters, we focus on physical symbol grounding in more
detail.

We highlight systems, which can be operated utilizing
symbolic commands. In general, such robot systems are either
used within navigational or handling tasks. Lauria et al. [9]
describe the navigation of a miniature robot using a prede-
fined functional vocabulary, which includes known actions
and parameters. For the navigation of (virtual) robots, Kemke
[10] proposes the usage of an ontology based knowledge
representation, Matuszek et al. [11] propose the usage of a
semantically-labeled map, and Kollar et al. [12] propose the
usage of spatial description clauses.

In the area of handling tasks, Laengle et al. [13] use
commands with a predefined syntax and known parameters and
execute them via predefined plans. Knoll et al. [14] describe
the assembly of wooden toys using a skill library with flexible
object positions. Pires [15] describes the control of a industrial
robot using predefined commands. Tenorth et al. [16] utilize an
ontology based knowledge representation and learned action
models for the execution of natural language instructions from
the world wide web. Stenmark and Nugues [17] describe the
programming of industrial robot systems using semantically
annotated state machines. Misra et al. [18] define manipulation
actions based on a set of low-level instructions, which are
parameterized by an symbolic object identifier.

We conclude that diverse robot systems can execute sym-
bolic commands and extract various subsymbolic information.
We categorize these systems according to the extractable
subsymbolic information in three categories.

The first category of systems allows no extraction of sub-
symbolic information, i.e. they can only execute predefined
instructions. The second category of systems is able to extract
geometric information from known object identifiers utilizing
an object database and an object recognition system. Systems
of the third category can additionally extract spatial relations
from symbolic instructions.

Because all of the described systems are based on action
representations, which utilize geometric information, they do
not need to extract kinematic and dynamic parameters like
forces, torques, or energies. Our system is based on a ac-
tion representation utilizing verbalized physical effects and
manipulation primitive nets [1], which is parameterized by
geometric, kinematic, and dynamic parameters, therefore we
need to specify how to extract these quantities from a symbolic
representation.

Therefore, the contribution of this paper consists of a com-
ponent we call physical dictionary, which grounds symbols to
a robot system according to manipulated subsymbolic physical
properties. Our dictionary consists of two parts. The first part
of the dictionary grounds relations between symbols and the
manipulated physical information. In contrast to other ap-
proaches, our dictionary considers additional physical proper-
ties like kinematic and dynamic properties. The second part of
the dictionary grounds information about external components
and sensors, which can be utilized for the automatic extraction
of the needed subsymbolic information from the environment.

III. APPROACH

The main idea of our approach is based on the working hy-
pothesis that object manipulation tasks consist of mechanical
operations and can be described using the laws of physics,
especially from the field of mechanics. Therefore, we intro-
duced the concept of principal physical effects PPEs in [20].
We extend the concept of PPEs to verbalized physical effects
VPEs, a flexible action representation based on PPEs and
manipulation primitive nets MPN s [1].

In the following subsections, we first give an overview of
our system architecture. Next, we outline the concept of VPEs
which is used as action representation and which shall be
parameterized using symbolic parameters. Next, we describe
the relations between symbols and the contained subsymbolic
physical information, which are stored in form of a physical
dictionary in our system. At last, we describe the parameter
extraction based on the physical dictionary using appropriate
sensors and software components.

A. System Overview

An overview of our system architecture is shown in Figure
2. Our system is build according to the 3T architecture [21],
a common architecture for systems which have to trans-
form between different types of representations. The system



Fig. 2. Overview of the system architecture.

consists of a user layer, which provides intuitive high-level
user interfaces. At the current stage, our system provides a
domain specific language interface [4] and a simple natural
language interface. This high-level user input is mapped to a
specific VPE , which is transformed into a representation of a
manipulation primitive net using a toolbox consisting of the
physical dictionary, sensors, and software components. The
parameterized manipulation primitive net is then transfered to
the control layer, which executes the sensor-based motions
defined by the manipulation primitive net.

B. Verbalized Physical Effects

The concept of verbalized physical effects VPEs is used for
the linkage of symbolic instructions and sensor based motions,
and the calculation of subsymbolic parameter from a given
symbolic instruction. Furthermore, this concept is used for the
identification of needed information and the automatic gener-
ation of temporal states, since instructions typically specify
only the goal state of a task. In this subsection, we give an
overview of the used physical quantities, principal physical
effects PPEs, and the mapping of a verbal expression to an
specific PPE .

Generally, seven base units are defined in ISO 30-0 [22].
Within an object manipulation task, mechanical base units
length L, mass M and time T are manipulated. In addition
to these base units, also derived units can be measured and
manipulated, which can be categorized geometric, kinematic,
and dynamic units [23]. We use these physical quantities as
parameter for a set of principal physical effects and define the
five principal effects absorb, change, transform, merge, split
on physical quantities (PPEs).

The next step is to find a suitable verb for a principal
physical effect, for example for the physical effects transform
a force into a length (displacement), transform a momentum
into a displacement, or absorb a force. These terms are not
intuitive to verbalize for a user. The most proper verb for
each PPE can only be evaluated by collecting and analyzing
empirical data, which is described in our previous work [20].
There, we collected the data in German, and use here an
appropriate translation. For instance, the PPE transform a
force into a length (displacement) is mapped to the VPE
consisting of the verbal expression to shove (schieben), the
PPE transform a momentum into a displacement to the VPE
consisting of the verbal expression to push (stoßen), and the
PPE absorb a force to the VPE consisting of the verbal
expression to touch (berühren). More details about the concept
of verbalized physical effects are presented in [1].

C. Symbol Analysis and Grounding

The first objective of the physical dictionary is the repre-
sentation of the manipulated subsymbolic information by a
symbol. Since we are interested in an intuitive user interface,
we want to use natural language symbols as parameters.
Therefore, the first step is to categorize natural language
symbols, extract which symbols are relevant for a robot system
according to the application of object manipulation tasks, and
analyze which subsymbolic information is manipulated by the
symbols.

We categorize symbols according to the syntactical function
and the part-of-speech. For the categorization in syntactical
functions, we use the tagset described in [24], which is also
used for the well-known PENN treebank [25]. The main



syntactical functions are a sentence (S), an adjective phrase
(ADJP ), an adverb phrase (ADV P ), a noun phrase (NP ),
a prepositional phrase (PP ), and a verb phrase (V P ). The
information of the syntactical function is used to determine
coherence between different symbols. For instance, given an
instruction like ”Shove the red cube towards the green box!”,
it is allowed to extract that the adjective red refers to the noun
cube, and the adjective green refers to the noun box.

Besides the syntactical function, we utilize the part-of-
speech of the symbols. For the categorization we use a
universal tagset described in [26]. The set of tags consists
of nouns (NOUN), verbs (V ERB), adjectives (ADJ), ad-
verbs (ADV ), pronouns (PRON), determiners and articles
(DET ), prepositions and postpositions (ADP ), numerals
(NUM), and conjunctions (CONJ). In the next paragraphs,
we describe the principal function of each word class based on
[27]. In addition, we describe the relevant information which
must be utilized and grounded to a robot system.

The group of nouns NOUN is typically organized in
common and proper nouns, while common nouns are further
categorized in concrete and abstract nouns. Concrete nouns
describe real physical objects (cup, table) of the environment,
while abstract nouns describe properties (kindness, fortitude),
processes (payout, aging), or states (war, peace). Furthermore,
a noun contains information about the affected amount of
objects, which is either a single object (cube, box) or multiple
objects (cubes, boxes). In the context of robot systems, a
noun describes an object of the real world, which has physical
properties like a position, mass, or color. In addition, the noun
determines if an action shall be executed one or multiple times.

The group of verbs V ERB contain information about
actions, which shall be executed by the robot system. Since the
execution of a verbal expression results typically in more than
one elemental robot motion, the robot needs information about
subtasks of the specified instruction. Therefore, a flexible
representation of executable actions is required. This was
analyzed in a previous work [1], where we introduced the
concept of a flexible action representation based on verbalized
physical effects.

The group of adjectives ADJ describe properties of objects.
Each physical quantity can be modified by a specific adjective,
for instance geometric (big, right), kinematic (slow, fast),
dynamic (light, heavy), or visual (green, blue) properties.
Similar to singular and plural of nouns, adjectives can pro-
vide information about the frequency of a executable action.
In contrast to nouns, which can only specify exactly one
or a undefined multiple amount, adjectives can additionally
describe boundaries (minimum, maximum). Furthermore, ad-
jectives typically describe properties in form of fuzzy sets. For
instance, the adjective green describes a visual property of an
object and subsumes a range of potential real color values.
Since some adjectives are comparable (great, greater, greatest),
adjectives can implicit demand a comparison between objects.

The group of adverbs ADV describe properties of actions.
Similar to adjectives, adverbs can provide information about
the frequency of a task. In addition to nouns and adjectives,

adverbs can specify a property exactly (e.g. twice) without
comparing properties.

The group of pronouns PRON typically replace words
from the group of NOUN . The extraction of the substituted
noun is one of the classical types of information extraction
tasks in natural language processing, the co-reference reso-
lution. Since a pronoun can be replaced by the originally
noun, pronouns and nouns describe the same subsymbolic
information.

The group of articles and determiners DET describe in-
formation about the certainty of an object. This group is
categorized in definite determiners (the, this) and indefinite
determiners (a, any). Similar to nouns, DET can describe
either a specific object or multiple objects.

The group of prepositions and postpositions ADP describe
relations between objects. This relations are typically spatial
(on, in) or temporal (before, after). In context of a robot
system, we describe a relation between object by a set of
boolean constraints on object properties, which can be checked
by the robot system.

The group of numerals NUM describe symbols for exact
subsymbolic information. The subsymbolic information con-
tained in a numeral can be extracted directly by a robot system.
Since a numeral has no unit, the combination between numeral
and unit specifies the manipulated physical quantity.

The group of conjunctions CONJ describe relations be-
tween sentences, phrases, or clauses. Similar to prepositions
and postpositions, conjunctions are defined by a set of boolean
constraints.

Based on the analysis, a schematic representation of the
physical dictionary is illustrated in Figure 3 (upper dashed
frame).

D. Subsymbolic Parameter Extraction

The second objective of the physical dictionary is to provide
information about components and sensors, which can be
utilized by the robot system in order to extract physical
parameters from the environment. Therefore, we extend the
physical dictionary by a component and sensor submodule.
The component submodule contains a list of components,
which are available in the overall system, and maps extractable
quantities to specific components. The sensor submodule
describes the required/utilized sensors of a component (see
Figure 3, lower dashed frame). This allows the robot system
to identify the quantities, which can be extracted utilizing
available components and sensors. If no component or sensor
for the extraction of a quantity is available, the robot sys-
tem can identify a missing component and can retrieve the
information using user requests or default values. Furthermore,
the development of extraction components is decoupled from
the overall functionality and new components or sensors can
easily be integrated in the physical dictionary. This allows us to
integrate existing approaches in the overall system. Since there
are typically more components and sensors available for the
extraction of a physical quantity (for instance a 2D and a 3D
object recognition utilizing the same sensor like a Microsoft
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Fig. 3. Schematic representation of the grounded information in the physical dictionary (white frame). The physical dictionary stores the subsymbolic
information of a specific symbol (upper dashed frame) and the components and sensors needed for extraction (lower dashed frame). Since the physical
dictionary is one component of the overall system, it utilizes other components like the action representation based on verbalized physical effects, an object
database, components like an object recognition, and sensors like force-torque sensors for extracting subsymbolic parameters from the real world.

Kinect), it is conceivable to define a criteria function, which
describes the most suitable component for a specific task,
respectively a specific context. In the actual prototype, we use
a boolean flag which sets the active extraction component of
a physical quantity.

IV. EVALUATION

In the last section, we described our approach for the defi-
nition of a physical dictionary. Now, we illustrate a prototype
for the execution of symbolic instructions and the extraction
of subsymbolic information on a robot system consisting of
a Kuka LWR 4, a two-finger-parallel gripper Schunk PG70
and a Microsoft Kinect. The robot system is equipped with
internal force-/torque sensors, a depth sensor, and a color
sensor. In addition, the system can utilize different compo-
nents for the extraction of physical information like positions,
masses, forces, friction coefficients, or energies. We integrate
the physical dictionary in form of a relational database and
ground diverse symbols for each class of words. Since we

cannot present all executable instructions, we select a subset
of executable instructions and focus on two behaviors for the
evaluation. On the one hand, the evaluation shall demonstrate
the influence of specific symbols to the execution of a specified
action. On the other hand, the evaluation shall demonstrate the
extraction of subsymbolic information from a given symbolic
instruction utilizing the physical dictionary. The executable
instructions are defined in our domain specific language [4].

The execution of selected symbolic instructions is shown
in Figure 4. We execute three verbalized physical effects
and variate the symbolic and subsymbolic parameters. In
the next paragraphs, we describe the results in detail. For
each of the three scenarios, we highlight the differences due
to the variation of the used symbolic parameters, and the
subsymbolic information extracted by the robot system.

The first row of Figure 4 (a)-(d) shows the execution of
the verbalized physical effect mapped to the verb to touch.
The action takes one parameter in form of a noun phrase,
which specifies the object that shall be touched. We use



(a) (b) (c) (d)
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(i) (j) (k) (l)

Fig. 4. Schematic demonstration of different symbolic instructions executed by the robot system. Each row describes the execution of a specific verbalized
physical effect. The columns illustrate the execution due to the varied symbolic parameters.

this effect to demonstrate the influence of a noun and an
adjective on a symbolic instruction. We use the nouns box
and cube. These are known objects which are grounded in
an object database. In addition, we use the adjectives red
and blue, which restrict a property of the noun within the
noun phrase. The adjectives describe the visual property color
based on a fuzzy set. In the actual system, we describe
a fuzzy set in form of a specified interval. The extracted
subsymbolic information are the geometric property position,
and the visual property color. Figure 4 (a) shows the execution
of the instruction touch("the red box"), Figure 4 (b)
shows the execution of the instruction touch("the blue
box"), Figure 4 (c) shows the execution of the instruction
touch("the red cube"), and Figure 4 (d) shows the
execution of the instruction touch("the blue cube").

The second row of Figure 4 (e)-(h) shows the execution of
the verbalized physical effect mapped to the verb to shove.
The principal physical effect mapped to the verbal expression
is transform a force into a displacement, which has two
parameter. The first parameter describes the object, on which
a force has to be applied in order to achieve a displacement of
the object. In addition, this parameter estimates the value of the
force. The second parameter is used to calculate the direction
of the force. We use this effect to demonstrate the extraction
of diverse subsymbolic parameter by the robot system. The
extracted subsymbolic information are the geometric property
position of the objects, the visual property color of the objects,
the dynamic property mass of the object which shall be shoved,
and the geometrical property distance between the two objects.

The mass and distance parameter is utilized for the calculation
of the value and direction of the force, which has to be applied
on the manipulated object. For the extraction of the dynamic
property mass, we utilize either the force sensors (see Figure 4
(e)) or a geometric based component using an approximation
of the density (see Figure 4 (g)). This shows the flexible
usage of components for the extraction of the same physical
property. Figure 4 (e) shows the extraction of the dynamic
parameter mass using the force sensor component, Figure
4 (f) shows the execution of the instruction shove("the
red box", "the blue cube"), Figure 4 (g) shows the
extraction of the dynamic parameter mass using a geometric
based component, and Figure 4 (h) shows the execution of
the instruction shove("the red cube", "the blue
box").

The third row of Figure 4 (i)-(l) shows the execution of
the verbalized physical effect mapped to the verb to place.
The action takes two parameter in form of a noun phrase,
which specifies the object that shall be placed. The second
parameter describes the destination of the object, typically in
form a prepositional phrase. We use this effect to describe
the influence of determiners on a symbolic instruction. We
use the determiners the and a. The determiners specify either
only one object, or allow a selection of objects. The deter-
miners describe the property amount either exact, or free. In
addition, we describe the preposition on in this scenario. The
preposition on is specified by boolean constraints according
to the geometric property area and height of the objects. The
extracted subsymbolic information are the geometric property



position and height, and the visual property color. Figure 4 (i)
shows the execution of the instruction place("the red
box", "on the blue cuboid"), Figure 4 (j) shows
the execution of the instruction place("a blue cube",
"on a box"), Figure 4 (k) shows the execution of the
instruction place("a cube", "on the blue box"),
and Figure 4 (l) shows the execution of the instruction
place("a cube", "on a box").

V. CONCLUSION AND FUTURE WORK

In this work, we introduced a system which utilizes a phys-
ical dictionary for the extraction of subsymbolic information
from symbolic commands. The physical dictionary provides
information about the physical properties, which are manipu-
lated by specific symbols. Furthermore, it provides information
about components and sensors, which can be utilized to
extract subsymbolic information from the environment. This
information is required for the parameterization of verbalized
physical effects, a flexible action representation based on the
description of executable actions in form of principal physical
effects [1].

Based on the analysis of word classes and syntactic func-
tions, we showed that symbols contain and specify phys-
ical subsymbolic information, which can be systematically
described and utilized by a robot system. Furthermore, we
showed that symbols can specify subsymbolic information in
different degrees of determination like exact, fuzzy, or by
defining intervals with or without specified endpoints.

We evaluated the physical dictionary using a real robot
system, which uses an action representation based on verbal-
ized physical effects for the execution of sensor based robot
motions. The physical dictionary act as connector between
the symbolic representation suitable for the users of the robot
system, the components used for information extraction, and
the subsymbolic representation, needed by the robot control.
Since the actual extraction of subsymbolic information is
decoupled, existing approaches for extracting subsymbolic
information can be used in a new context.

In future work, we will extend the supported vocabulary.
Furthermore, we will address the definition of a criteria
function, which describes the most suitable extraction method
for a specific physical quantity. In addition, we will extend the
toolbox of components, which are available for the extraction
of subsymbolic information from the environment.
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