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Abstract – In manipulation, workpieces have to be placed in
an exact relationship to other objects that usually constrain
the possible  motions of  the workpiece.  Thus,  control  of  a
manipulation  task  can  often  be  done  by  detecting  the
changes in the set of constraints acting on the workpiece. In
the case of hard positional constraints on rigid objects, the
detection can be done using simple thresholds on measured
forces and/or moments. When some of these constraints are
non-rigid (i.  e.  elastic)  (Fig.  1), forces  and moments  vary
during motions even if there is no change in the constraints,
making  it  difficult  if  not  impossible  to  find  appropriate
thresholds  for  forces  and  moments.  In  such  situations
changes in the constraints mostly lead to discontinuities (i.
e. jumps and corners) in the measured force and moment
signals.  This paper presents a constant time algorithm for
jump and corner detection in 1-dimensional sensor signals. 

Index  Terms  –  discontinuity  detection,  corner  detection,
jump detection, force-based manipulation, stationary robots 

I. INTRODUCTION

When manipulating objects, the main issue is to change the
set  of  constraints  acting on the manipulated objects,  i.e.  to
change the number of degrees of freedom for the objects mo-
tions.  According to [5],  the performance of assembly tasks
can be regarded as stepwise increasing the number of con-
straints  for  one of  the mating parts  by establishing contact
with other parts. A lot of research introduces contact states to
describe  differently  constrained  situations  [1-3],  [6],  [11].
Even  if  some  of  these  work  address  the  difficult  tasks  to
clearly distinct between different situations or contact states,
it is often sufficient to detect the transition when the current
contact situation changes in some way. 

For handling rigid objects in a rigid environment, changes
in  the  number  of  degrees  of  freedom  can  be  detected  by
simple thresholds on the forces and moments measured dur-
ing the manipulation operations. This approach to monitoring
manipulation tasks is included in commercial robot control-
lers with a force option already (e.g. “guarded mode” in Ad-

ept  V + controllers  or  end
conditions  like  “FCCond-
Force”  in  ABB RAPID con-
trollers). 

If  the  manipulated  object
or the environment are non-ri-
gid, there may be elastic con-
straints  acting  on  the  work-
piece  (Fig.  1).  Elastic  con-
straints  can  be  found  when
manipulating  elastically  de-
formable objects, when a rigid
workpiece is already fixed to
some  elastically  deformable
object, or when elastically de-

formable cables, ropes, hoses or wires are attached to the ro-
bot tool (or gripper) for its supply and control. 

As the robot moves, elastic constraints produce changing
forces and moments even if the set of constraints remains un-
changed making it difficult to choose universally safe and re-
liable thresholds for forces and moments directly. 

An example for a manipulation under elastic constraints is
illustrated in Fig. 2. A polyamid hose that is threaded through
a hole (left side in the picture) has to be threaded through a
slot in a plate (right side in the background of the picture). In
order to achieve this, the endpoint of the hose is first localized
on the plate by drawing it over the right side edge onto the
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Fig.  1:  Elastic  constraints
may disturb the forces used to
control a manipulation task

Sensor

Fig. 2: The endpoint of a hose (blue) is first localised on the rear plate by draw-
ing  it  over  the  right  edge  of  the  plate  (green  arrow).  A  transfer  motion
(magenta arrow) moves the endpoint beneath the slot in the rear plate.The end-
point is drawn over the downside edge into the slot (red arrow).
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plate. A new constraint to the hose's motion is added when the
right edge of the plate is contacted. As the robot moves paral-
lel to the plate, the effect of this additional constraint on the
hose's motion slowly diminishes and finally disappears, when
the  endpoint  moves  over  the  edge.  Assuming  these  two
changes in the set of constraints can be detected, the endpoint
is  localized near the edge of the plate, allowing to move the
endpoint underneath the slot by a simple transfer motion with
a fixed distance. From here, the endpoint is moved upwards
until the remaining constraint of the endpoint sliding over the
face spontaneously disappears when the endpoint drops into
the slot.

The low-pass filtered forces and moments for three differ-
ent runs of this experiment are depicted in Fig. 3. The contact-
ing of the right  side  edge  of  the  plate  can be seen by the
corners in the Fy force and in the Mz moment at 60 mm from
the robots starting position. The endpoint sliding onto the face
can be seen by the jumps in the Fy force and the corners in the
Mz moment at 170 mm or 185 mm, depending on the run. The
insertion  of  the  endpoint  into  the  slot  can  be  seen  by  the
jumps in the Fx force and Mz moment at 60 mm, 110 mm or
120mm,  depending  on  the  run.  The  large  irregularities  in
these later signals are caused by friction in the first hole and
on the plate.

In general, due to slightly different initial bendings, materi-
al  parameters,  or  gripping positions,  the  location  of  the
changes in constraints as well as the forces or moments pro-
duced by elastic constraints vary from situation to situation,
making  it  difficult  to  select  the  right  universal  thresholds
without risking damage or false alarms.  In some situations,
the changes in a set of constraints cannot be monitored by a
threshold for forces and moments at all, because they reach
their extrema exactly at or even before the change of the con-
straining situation (see Fig. 3 for examples).

In general,  all  elastic  constraints  produce variable forces
and moments while the robot moves. If some, not necessarily

elastic, constraint is added (or removed) at some position dur-
ing the robot motion, the effect of this additional (or lost) con-
straint will be a discontinuity in some derivative of the signal.
If  a  constraints  vanishes  spontaneously,  we  observe  signal
discontinuities, so called  jumps, directly in the force or mo-
ment signal. In all other situations, discontinuities in the first
derivative of the signal, so called corners, are most probable
to be observed.

Thus,  jumps and corners  indicate  changes in  the  current
constraint situation and, consequently, the detection of such
discontinuities  enables  the  control  of  manipulation  tasks as
described in [7] or [9] for instance. In fact, discontinuity de-
tection  can be  applied  to  all  situations,  where  the  relevant
changes do be detected can be described using the L-function
formalism described in [1].

The rest  of the paper is organized as follows: Section II
summarizes the state of the art  concerning the detection of
discontinuities,  Section  III  describes  our  algorithm  to  find
jumps and corners in one-dimensional signals and Section IV
presents the performance of our algorithm on filtered and un-
filtered data taken from the presented example manipulation.

II. STATE OF THE ART

The problem of discontinuity  detection has already been
addressed before. In [9], an algorithm based on the extrapola-
tion of the prediction band of a linear regression onto the sig-
nal  is described. It  performs acceptably for signals  that are
linear before the discontinuity. Curved signals often lead to
false alarms, as the signal curvature may be seen as corners. 

The equiarcide points algorithm described in [7] uses data
of different statistic quality leading to a scale dependency of
the  algorithm.  Additionally,  good  performance  of  the  al-
gorithm relies on a maximum to maximum and minimum to
minimum filter [8], leading to an evaluation of the input sig-
nal in blocks of mostly unpredictable length, and thus to sig-
nal dependent delays in the detection of discontinuities. 

In [4], pairs of a filter and a pattern are constructed for dif-
ferent types of discontinuities. The presence of the scaled pat-
tern in the response of the signal to the corresponding filter
indicates a discontinuity of the specified type. Both, the filter
response and the check for the presence of the pattern are cal-
culated by convolution, leading to a computational complex-
ity in the order of the length of the filter and of the pattern for
each new measurement. 

III. DISCONTINUITY DETECTION

 Let us assume that the signal of interest is sampled at dis-
crete points in time  t and that  the samples (xt,  yt)  follow  a
piecewise  linear  function  corrupted  by  white  noise  n with
mean E(n) = 0 and variance V(n) = σn

2:

y t={al x tbln xt≤x*

ar xtbrn x*x t

(1)

This assumption holds for all real signals at least in some
small neighborhood around the discontinuity x*. 
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Fig. 3: Relevant forces and moments for three different runs of the experiment
from Fig. 2. The forces Fy (upper left) and moments  Mz (upper right) for the
endpoint  location  on the plate,  the forces  Fx (lower  left)  and moments  Mz
(lower right) for the insertion of the endpoint into the slot. High resolution pic-
tures may be downloaded from http://ai3.inf.uni-bayreuth.de/projects/rodeo/



In the case of force-based manipulation, the moments and
forces are influenced by the robot position or configuration
relative to the constraints, thus, the force measurements yt are
a function of some distance xt of the current robot position to
the starting position. 

Given an arbitrary signal yt according to (1) and an interval
of  N + M consecutive samples (xt,  yt) prior to some point in
time t0, detection of a discontinuity can be done by estimating
al,  ar,  bl and  br and  rejecting the  hypothesis  H0:  al = ar ∧
bl = br. This can be done by finding evidence for one of the al-
ternatives “positive corner” (HC+ :  al < ar  ), “negative corner”
(HC–:  al > ar),  “positive  jump”  (HJ+ :  bl < br)  or  “negative
jump” (HJ–: bl > br ).

A. Jump Detection

In order to reject H0 by confirming one of the jump altern-
atives, an ideal jump Jt (Fig. 4, left) of size Δb with discontinu-
ity at  t0 –  M is fitted to the measured signal at each point in
time t0.

J t={a xtb t0−N−M1≤t≤t0−M
a xtbb t0−M1≤t≤t0

In the subsequent calculations, we will use the notations 

Lx= ∑
t=t0−N−M1

t0−M

x t , L y= ∑
t=t0−N−M1

t0−M

y t Lxx= ∑
t=t0−N−M1

t0−M

xt
2 ,

Lxy= ∑
t=t0−N−M1

t0−M

xt y t , Rx= ∑
t=t0−M1

t0

xt , R y= ∑
t=t0−M1

t0

y t

Rxx= ∑
t=t0−M1

t0

x t
2 , Rxy= ∑

t=t0−M1

t0

x t y t and S *=L*R*

(2)

Note that those sums can all be updated in constant time by
adding each new sample to the different sums and to a buffer
and subsequently removing the oldest sample from the sums
and from the buffer.

The parameters  a,  b, and Δb are calculated by minimizing
the sum of squared errors (SSE): 

SSE J= ∑
t=t0−N−M1

t0

 y t−J t 
2  (3)

Using the notations from (2), we find:

a=
NM S xy−M Lx L y−N R x R y

d J

 

b=
Lx  Rx R y−M S xy −L y  Rx

2−M S xx 
d J

b=R x L y−Lx R yS xN R y−M L yS xx

M Lx−N R xS xy  /d J

d J=NM S xx−M Lx
2−N Rx

2 (4)

Under the hypothesis H0,  Δb is an unbiased estimator for
the jump size E(Δb) = 0 = br – bl with variance

V b=
NM S xx−S x

2

N M S xx−N Rx
2−M Lx

2 n
2

(5)

If  the  signal  noise  is  normally  distributed,  the  estimate
SSEJ / (N + M – 3)  for  σn

2 has  a  χ 2–distribution  with
N + M – 3 degrees of freedom. Thus, using this estimate for
σn

2  the following test statistic  tJ has a Student's  t-distribution
with N + M – 3 degrees of freedom

t J :=
b

V b
(6)

In order to confirm a jump at some point in time t0 – M, we
need evidence for either the alternative that there is a positive
jump HJ+ :  Δb > 0 or the  alternative that  there is  a  negative
jump  HJ-:  Δb < 0  or  the  two-tailed  alternative  that  there  is
some kind of a jump HJ:  Δb ≠  0.  This hypothesis test can be
done at a desired confidence level α  by choosing a threshold
for tJ in a way that the type-I error probability of deciding in
favor of some kind of discontinuity (HJ+, HJ–, or HJ) if there is
none will be α . With tβ being the percentage point of the stu-
dent's  t-distribution for a given probability  β , the thresholds
for the test statistic tJ can be summarized in the following re-
jection regions for the H0 hypothesis:

H 0 : al=ar∧b=0
H J + : b0 accept if t Jt1−

H J – : b0 accept if t J−t1−

H J : b≠0 accept if ∣t J∣t1−/2

(7)

If the measurement noise is not normally distributed, for
instance when using low pass filtered force-data, we have to
choose an application specific threshold for  tJ  or for  Δb dir-
ectly based on the real noise distribution. 

B. Corner Detection

In order to reject H0 by confirming one of the corner altern-
atives, an ideal corner Ct (Fig. 4, right) of size Δa with discon-
tinuity at t0 –  M is fitted to the measured signal at each point
in time t0.

C t={a xtb t0−N−M1≤t≤t0−M
aa x t−a x t0−Mb t0−M1≤t≤t0

The parameters  a,  b, and  Δa are calculated by minimizing
the sum of squared errors 

SSEC= ∑
t=t0−N−M1

t0

 y t−C t
2  (8)
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Fig.  4: Ideal jump  Jt  (left) and ideal corner  Ct (right) to be fitted to the past
N + M measurement samples y(xt) at each point in time t0.

xt0 – M – N + 1

Jt = y(xt)

∆b

xt0 – M xt0

Ct = y(xt)
∆a

xt0 – M – N + 1 xt0 – M xt0



Using the notations from (2), we find:

a= M L y−N R yS xxN Rx−M LxS xy

Lx R y−R x L yS x  x t0−MLxy Rx−Lx RxyS x

Lx Rxx−Lxx R xS yLxx Rxy−Lxy R xxNM  /d C

a=N M S xy−M Lx L y−N R x R y x t0−M
2

Lx S yS x L y−LxyS xyN R xN Rxx R y

−M Rxx L yLx Rxy x t0−M

Lxy NM −Lx S yR xxRx −Lxy RxLx Rxy /dC

b=L y S xx−Lx S xyMLx R y−Rx L yRx x t0−M
2

LxS xLxy−S yL yLxxLx RxyRx

−Lx R y R xxLxx Rxy M−Lxy Rxx M  x t0−M

Lxx S y Rxx−Rxy Rx−Lxy Lx Rxx  /dC

dC=N M S xx−N Rx
2−M Lx

2 x t0−M
2

2Lx R x S x−M Lx Rxx−N R x Lxx x t0−M

−Lx
2 R xx−Rx

2 LxxNM Lxx R xx

(9)

Under the hypothesis H0,  Δa is an unbiased estimator for
the corner size E(Δa) = 0 = ar – al with variance

V a=
NM S xx−S x

2

dC

n
2 . (10)

In order to confirm a corner at some point in time t0 – M,
we need evidence for either the alternative that there is a pos-
itive corner HC+ : Δa > 0 or the alternative that there is a negat-
ive corner HC–: Δa < 0 or the two-tailed alternative that there is
some kind of a corner HC:  Δb ≠  0. The corresponding hypo-
thesis tests can easily be adapted from the jump detection (7)
using the test statistic

tC :=
a

V a
(11)

C. Choosing the Parameters N and M

As the measured signal (xt, yt) cannot reveal itself based on
any numbers of samples N and M without a sufficiently large
change in the robots position xt, N and M should be implicitly
defined by fixing the constant lengths

LL=x t0−M−x t0−M−N1 and LR=x t0
−x t0−M1

Using these together with the robot speed  v and the data
sampling rate R, N and M are given respectively by

N =
LL

v
R and M=

LR

v
R

As the lengths  LL and  LR depend mostly on the given ap-
plication and R is given by the sensor system, we need to ad-
just  the  robot  speed  v in  order  to  achieve  N and  M large
enough  for  the  central  limit  theorems  involved  in  the
threshold calculations to hold. Note that the algorithm will not
give reliable results before the end of its  initialization length
LL + LR (or  N + M) and that  LR (or  M) determines the detec-
tion delay.

D. Jump-Corner Distinction

Running the jump and the corner detection in parallel, it is
easy  to  find  the  discontinuities  in  piecewise  linear  signals
conforming to (1). Unfortunately, the jump and the corner de-
tector react each to both jumps and corners with Δb and Δa dif-
fering from 0 respectively, making it difficult to classify a de-
tected discontinuity (Fig. 5).

In order to get a correct classification and measurement of
a detected discontinuity at some time td, the following N + M
detector outputs have to be taken into account. In fact, if the
discontinuity is located exactly in the “middle” of the calcula-
tion interval (xtd–M = x*), the expected values of the detectors
correspond to the real sizes of the respective discontinuities,
i.e.  E(Δa) = ar – al for  br = bl – Δa x* and  E(Δb) = br – bl for
ar = al. Thus, only the output of the detectors around time t1 +
M in the interval starting with the first detection at t1 and end-
ing with the last detection before time t1 + N + M gives an ap-
proximation for the real size of the discontinuity in the signal.
Note that this kind of classification can only be done  N + M
samples after a discontinuity occurred.

IV. EXPERIMENTS

A. Experiments on simulated data

The described algorithm is tested using data generated by
the  following  function  S(x)  with  a  corner  of  size  –0.1  at
x = 100 and a jump of size –1 at x = 200. 

S  x ={0.2 x 0x100
0.1 x10 100x200
0.1 x9 200x300

(12)

The data is sampled at a rate of 40 samples per unit of  x.
To each sample, a random number is added. The distribution
for the random numbers is normal with mean 0 and standard
deviation 0.5. The window lengths N and M are fixed to 400
samples  each,  thus  covering  10 units  of  x.  The  signal,  it's
moving average over 200 samples (i. e. 5 units of x), and the
calculated values for the test statistics tJ and tC are depicted in
Fig.  6.  Additionally,  a  threshold  of  4.0  corresponding to  a
confidence  level  of  α = 0.007% and  the  resulting  detected
corners and jumps are plotted over the data. With this confid-
ence level, we can expect that less than 1 value of the 12000
(12000 α = 0.84 < 1) in the complete experiment fall outside
the threshold, and, thus, that there will be no false detection.
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Fig.  5:  Reactions  Δb(t) (green) of the jump detector and  Δa(t) (blue)  of the
corner detector to an ideal jump J(t) (left) and to an ideal corner C(t) (right)



B. Experiments on real data

The described algorithm is also tested on the example ap-
plication from Section I (Fig. 2). The robot is a Stäubli RX
130 with a CS-7b controller from Adept. It is driven at a lin-
ear speed of  v = 10 mm/s. As a sensor, a wrist-mounted 6D
force/torque sensor 90M31A from JR3 is used. The data is
sampled at the maximum possible rate of around R = 400 Hz.
As  the  algorithm  cannot  distinguish  between  jumps  and
corners corresponding to friction and other unwanted effects,
the operator needs to select the force signal with the best cor-
respondence  between  detectable  discontinuities  and  the
wanted transitions between differently constrained situations. 

For the localization of the endpoint on the plate, N and M
are fixed by  LL = LR = 10 mm. The raw data of the  Fy force
and Mz moment, each together with its moving average over
an interval of length 5 mm (Fy filtered  and Mz filtered), and

the calculated values for the test statistics tJ and tC are depic-
ted  in  Fig.  7 and  Fig.  8 respectively.  In  addition,  the
thresholds for the two-tailed alternatives HJ and HC and the
resulting detected jumps and corners are plotted over the data.

In the Fy force (Fig. 7), both the negative corner at 90 mm
and the positive jump at 180 mm are safely recognized using
a  threshold  of  1.0.  In  fact,  the  jump is  recognized  as  two
corners and three jumps, but in the middle of the correspond-
ing interval of detected discontinuities, it can be classified as
a positive jump. 

In the Mz moment (Fig. 8), both of the real transitions are
recognized correctly as corners using a threshold of 1.64. The
first one is recognized as two jumps and a corner, but it can be
classified correctly as a positive corner by the middle of the
interval  of  detected discontinuities.  Using lower thresholds,
the curvature of the moment after  the first corner is recog-
nized as corners at 100 mm and at 125 mm. On the other side,
higher thresholds may miss the second corner. Thus it is near
impossible to choose a safe threshold for the Mz moment sig-
nal that detects the second corner without false alarms. Fortu-
nately, monitoring the Fy force and the Mz moment signals at
the same time with a high threshold of around 3, both tran-
sistions can be detected safely. 

For the insertion of the endpoint into the slot, only the Mz
moment can be used, as the  Fx force is too much disturbed
(Fig. 3). The point of insertion coincides clearly with the jump
in the signal, so we can ignore all corners. That is why we
choose a shorter N and M by LL = LR = 5 mm in order to better
follow  the  small  corners  without  erroneously  interpreting
them as jumps. The raw Mz moment, its moving average over
5 mm, the calculated test statistics  tJ and  tC ,  the thresholds
and the resulting detected corners and jumps are plotted in
Fig. 9. The jump at 113 mm is correctly located by the detec-
tion algorithm as the test statistic tJ falls below the threshold –
3.  The jumps and corners detected directly before and after
the real jump can be classified as side-effects.
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Fig. 8:  Mz force signal and calculated decision signals for the endpoint local-
isation phase ploted against the robot location relative to its starting point: un-
filtered data (red), moving average filtered data (black), test statistic for jump
size (green), test statistic for corner size (blue), the thresholds for α  = 10% and
the intervals of detected jumps (brown) and corners (orange).

Fig. 7: Fy force signal and calculated decision signals for the endpoint localisa-
tion phase ploted against the robot location relative to its starting point: un-
filtered data (red), moving average filtered data (black), test statistic for jump
size (green), test statistic for corner size (blue), thresholds for α  = 30% and the
intervals of detected jumps (brown) and corners (orange).

Fig. 6: Simulated data with a corner at x = 100 and a jump at x = 200 and cal-
culated test statistics tJ and tC with thresholds for α  = 0.007% and the resulting
detected corners and jumps



Note that the presented thresholds of 1.0, 1.64 and 3.0 cor-
respond  to  confidence  levels  of  α = 30%,  α = 10%  and
α = 0.3% respectively. But, as there are no false alarms at all
using those low thresholds, we can assume that the measure-
ment noise is not really white noise, and that the real confid-
ence of those thresholds is much better.

V. CONCLUSIONS

As shown  in  the  experiments  section,  both  corners  and
jumps can be detected using our discontinuity detection al-
gorithm.  It  has  been seen,  that  curved signals  may lead to
false corner detections. If the curvature mostly remains buried
in the noise and if the corner to be detected is much bigger
than the curvature, false detections can be eliminated using
another significance level α. 

The proposed algorithm has low delay in detecting any dis-
continuity because the probability for detection starts to in-
crease at the very moment, when a discontinuity enters the in-
terval  of calculations. Unfortunately, jumps may be seen as
corners  and corners  as  jumps when they enter  respectively
leave  the  interval  of  calculation.  An exact  decision can be
found by checking the N + M detector output values following
a detection. 

Compared to [7] our algorithm implements a completely
continuous analysis of all the samples. In comparison to [4], it
only  uses  constant  computation  time  for  each  new  signal
sample, allowing to run it independently of N and M even on
robot controllers with little computing power, provided that
they can handle the constant calculation complexity involved
in processing a signal sample at the minimum required sensor
sampling rate. 

Application of the algorithm is easy, as there are only three
parameters  controlling  its  operation.  The  first  two  are  the
numbers of samples N and M that should be fixed via LL  and
LR. It has been found, that  LL = LR varying between 5 and 10

mm (200 to 400 samples) is usually a good choice. Unless the
robot  speed is  decreased or the  sampling rate  is  increased,
smaller values for LL and LR tend to produce noisier output but
they allow the detectors to follow the signal more closely. The
last parameter is the threshold for the test statistics. It should
be set according to some desired significance level  α  for the
case of raw data with normally distributed noise. For filtered
data, an application specific threshold has to be chosen based
on  the  real  noise  distribution.  In  both  cases,  optimal
thresholds can be learned offline using some recorded force
and moment data for different runs, each together with an op-
erator's signaling about where the relevant discontinuities are
located. 

Of course, the algorithm cannot decide, whether a detected
discontinuity corresponds to a desired transition between dif-
ferently constrained situations or if it is due to friction or to
some other unwanted effect. Thus, the most difficult remain-
ing task for the robot programmer is to choose the most signi-
ficant signal, i.e. the signal that is least disturbed while con-
taining the minimum number of discontinuities needed in or-
der to detect the desired transitions. This can be done accord-
ing to [9].
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Fig.  9:  Mz force signal and calculated decision signals for the endpoint inser-
tion phase ploted against the robot location relative to its starting point: un-
filtered data (red), moving average filtered data (black), test statistic for jump
size (green), test statistic for corner size (blue), the thresholds for α  = 0.3% and
the intervals of detected jumps (brown) and corners (orange). 


