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Abstract. Opening up untapped potential in smaller enterprises re-
quires methods for robot programming usable by non-experts. In a previ-
ous work on an automata-based programming approach without a graph-
ical interface, linking to previous states to close loop structures was iden-
tified as challenging for users. In this paper, we propose an approach to
generate such structures automatically from small overlap within the
programmed instructions. To this end, a marking function for state pairs
is calculated, which evaluates whether the structures starting from two
states are conflicting or in agreement (and in the latter case, how much).
Algorithms for calculating and utilizing this marking function are pre-
sented. Our experiments on an example task confirm the effectiveness of
the approach.
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1 Introduction

While robots have a long and successful history in large scale industry, there is
both increasing use and still untapped potential in small and medium-sized en-
terprises or workshops [1], where only domain experts are readily available, but
no expert robot programmers. This necessitates more intuitive forms of robot
programming. Automata-based robot programs are promising in this regard,
because they can express control flow in a conceptually easy way: in a given
situation, specify what happens next. In our research [2,3], we attempt to gauge
the viability of an automata-based approach which does not use a graphical edi-
tor. This can reduce the amount of hardware required in the workspace and the
number of changes in input devices during programming. Potentially, all inter-
actions necessary to program the robot can be done via the robot in this system.
The overall approach from our previous work is as follows: In each step, the user
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specifies the system’s next action, which in the automaton representation gener-
ates a new state and a corresponding transition. Actions can be e.g. movement to
some target robot pose or connecting the current state to another existing state
(called linking). Actions can either be defined as spontaneous (i.e. in execution,
they will trigger automatically) or requiring a specific input or perception.
Closing loops within the program (by linking) without a graphical representa-
tion proved to be conceptually challenging in the experiments for our previous
work [3]. The user needs a good understanding of how to identify states within
the automaton, and where to link, to create specific control flow. The approach
proposed in this paper attempts to alleviate this by letting the system detect
automatically when parts of the programmed structure start to overlap. When
that happens, the system can simplify the structure by itself. The detection of
overlap is based on a marking function on state pairs which describes how well
the structures starting from these states fit onto each other, or whether there is
some contradiction that distinguishes them.
In the following, we give a brief overview over works related to the approach. In
Section 3, the marking function is formally defined. Algorithms for generating
and utilizing the marking function are presented in Section 4. In Section 5, we
describe our experiments. Finally, Section 6 contains our conclusion.

2 Related Work

Automata as a basic concept are used in robotics in varying contexts and ab-
straction levels [4,5,6,7,8,9]. There is also a number of approaches where users
can explicitly generate and edit robot programs in the form of (different vari-
ants of) automata [10,11,12]. However, all of these use graphical editors. Our
research, in contrast, is trying to gauge the validity of an approach without a
GUI, as motivated in Section 1.
Because the formalism of Extended Robot State Automata (ERSA) is unique to
our research, there is no previous work on automatic simplification of structures
within them. Some existing approaches for structural synthesis in a more general
context use Version Spaces [13,14,15], for Programming by Demonstration (PbD)
with applications from text editing macros to robot programs. Other works use
planning systems for this goal [16,17]. There are also classical PbD approaches
that, if they synthesize structure, ususally do so from repeated demonstrations
[8,18,19]. In contrast, the proposed approach operates directly on the automata,
and requires only a small amount of overlap with an existing part of a program
to close a loop (as opposed to multiple complete demonstrations). Finally, there
is a number of works on structured robot programs (including loops) that em-
ploy visual programming languages, which we explicitly want to avoid for our
system [20,21,22,23].



Structure Synthesis for Extended Robot State Automata 3

3 Marking formalism

The goal of our method is to simplify programs when they start overlapping (i.e.
when the user starts to program a part of the task that has been programmed
before) and generate more complex structure (e.g. closed loops) within the pro-
gram from that. To do this, we track whether state pairs are conflicting, meaning
there is some information that lets us rule out that two states would represent a
shared state in a more concise representation of the task. The opposite term is
unifiable, i.e. states that could possibly represent a shared logical task state and
to which unification might be applied in the future. For unifiable state pairs, the
system also calculates how much overlap the two states provide in the structure
of their successors. This idea of marking state pairs according to unifiability is
directly inspired by unification of states in finite state automata, used for au-
tomata minimization (see e.g. [24,25]).
In [3] we defined the model of ERSA, a variant of finite state automata. An
ERSA is given as a tuple M = (Q,Σ, P,D, δ, u, qs), where (with the set of states
Q, input alphabet Σ, transition function δ, and initial state qs as usual) the addi-
tional components are the space of poses P , the space of pose variables D = Pn,
and the update function u. This u is the general update function, which rep-
resents the action executed by the robot when the system progresses along a
transition as defined by δ(q, σ) = q′. We defined the restricted update functions
uq,σ (to a specific q and σ) as satisfying one of a small number of possible forms.
This formulation ensures that the semantics of a logical state of the system do
not differ e.g. when the robot is at two different poses in its workspace. The
definition, for completeness, is uq,σ : P ×D × P 7→ P ×D, where

uq,σ ∈



(p, d, p′) 7→ (p̄, d),

(p, d, p′) 7→ (p · p̄, d),
(p, d, p′) 7→ (p′ · p̄, d),
(p, d, p′) 7→ (p, d1, . . . , dk−1, p, dk+1, . . . , dn),

(p, d, p′) 7→ (dk, d)


, 1 ≤ k ≤ n, p̄ ∈ P (1)

For more details on ERSA, we refer to [3].
In marking state pairs, we need to consider the updates along pairs of outgoing
transitions from the two states. If the successor states (the targets of the two
transitions) are not conflicting, but a different update is performed (e.g. move-
ment in one case and saving the current pose, or a different movement, in the
other), the preceding states themselves cannot be considered unifiable. Substi-
tuting one by the other would lead to a different action being performed.
Formally: There is a function

Mtrans : {{q, q′} | q ∈ Q, q′ ∈ Q, q ̸= q′} × (Σ ∪ {ε}) 7→ {−1, 0},

Mtrans({q, q′}, σ) =


−1 if uq,σ and uq′,σ are from different cases in (1),

or the parameters k or p̄ are different,

0 otherwise
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We will use this in the definition of the marking function. A final piece of nota-
tion: we can express Q = Qb ⊎Qv ⊎Qt as a disjoint partition, where

– Qb = {q ∈ Q | ∃σ ∈ Σ : δ(q, σ) defined} are branching states (states with at
least one transition that requires a specific input)

– Qv = {q ∈ Q | δ(q, ε) defined} are via states (states with a spontaneous tran-
sition)

– Qt = Q \ {Qb ∪Qv} are states for which no transitions are defined so far

In branching states, the automaton can also branch into several possible transi-
tions. A branching state and a via state are automatically conflicting, because
unifying them would create a state with non-deterministic behaviour (following
the spontaneous transition or gathering an input).
The marking function for state pairs {q, q′} is then defined as follows:

M : {{q, q′} | q ∈ Q, q′ ∈ Q, q ̸= q′} 7→ N ∪ {−1},

M({q, q′}) =


− 1 if ((w.l.o.g. q ∈ Qb ∧ q′ ∈ Qv)

∨(∃σ ∈ Σ ∪ {ε} : M({δ(q, σ), δ(q′, σ)}) = −1)

∨(∃σ ∈ Σ ∪ {ε} : Mtrans({q, q′}, σ) = −1)),

min ( max
σ∈Σ∪{ε}

{M({δ(q, σ), δ(q′, σ)}) + 1}, |Q|) otherwise

I.e., M({q, q′}) = −1 iff the two states are of conflicting type, or there is a
conflicting successor pair under some input σ, or the outgoing transitions under
some input σ are conflicting. Otherwise, it is one more than the highest marking
of a successor pair (under any input σ), defaulting to zero. We will call a non-
conflicting marking of value n ∈ N supporting (to depth n).

4 Algorithms

The table-filling algorithm used to determine the correct markings is presented
in pseudocode in Fig. 1. Note that calculating values of Mtrans does not require
any iteration or recursion, only simple lookups within the automaton.
If values of M higher than a threshold of m are calculated for any pair of states,
this pair is subjected to unification, which denotes merging the two states into
a single state. The unification procedure is presented in Fig. 2. It makes use
of a disjoint-set (or union-find) data structure [26,27] for tracking the central
information: which sets of states will be unified into which representative.
We first note the pairs with sufficient support, and set one of both states as the
representative. Then, we unify states with their representatives, i.e. we note their
successor pairs for unification. This may entail further unification in transitive
successors. When there are no more updates, we set all transition targets as
well as the initial and current state to their correct representatives. Finally, we
remove any states no longer reachable from either the initial or the current state;
this can be done by simple graph reachability tests.
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Data: Table M for {{q, q′} | q ∈ Q, q′ ∈ Q, q ̸= q′} (e.g. lower diagonal matrix)
if M was newly generated then

for {{q, q′} | q ∈ Q, q′ ∈ Q, q ̸= q′} do
if w.l.o.g. q ∈ Qb ∧ q′ ∈ Qv then

M({q, q′})← −1
else

M({q, q′})← 0
else if a new state q∗ was just generated then

for {q ∈ Q | q ̸= q∗} do
M({q, q∗})← 0

repeat
for {{q, q′} | q ∈ Q, q′ ∈ Q, q ̸= q′} do

if ∃σ ∈ Σ ∪ {ε} : M({δ(q, σ), δ(q′, σ)}) = −1 ∨Mtrans({q, q′}, σ) = −1 then
M({q, q′})← −1

else
M({q, q′})← min ( max

σ∈Σ∪{ε}
{M({δ(q, σ), δ(q′, σ)}) + 1}, |Q|)

until no entry of M changed in this iteration;

Fig. 1: Table-filling algorithm to generate correct markings

Data: Disjoint-set data structure I (e.g. disjoint-set forest) for states
for {{q, q′} | q ∈ Q, q′ ∈ Q, q ̸= q′,M({q, q′}) ≥ m} do

I.union(q, q′)
repeat

for {q ∈ Q | I.find(q) ̸= q} do
for {σ ∈ Σ ∪ {ε}} do

I.union(δ(q, σ), δ(I.find(q), σ))
until no previously distinct state sets were unified in this iteration;
for {q ∈ Q} do

for {σ ∈ Σ ∪ {ε}} do
δ(q, σ)← I.find(δ(q, σ))

Set initial and current state to their representatives; Remove states no longer reachable
from initial or current state

Fig. 2: Unification procedure when sufficient support has been detected.
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5 Experiments

The above methods for calculating markings and unifying state pairs were im-
plemented into the system described in our previous work [3]. In this system,
the user kinesthetically guides a lightweight robot arm with a mounted gripper
and camera. New states are generated by different haptic interactions (specific
movements the user executes with the robot). Each new state is connected to
the automaton by a new transition. The update along this transition represents
the programmed action (e.g., movement to a target pose to which the robot was
guided). The table-filling algorithm for calculating the markings is run after each
action. When sufficient support (overlap) is detected, unification takes place.
Experiments consisted of the same task from [3], programmed here without any
explicit linking. Briefly summarized, it includes all parts of the ERSA formalism:
Distinguishing two kinds of objects in an outer loop with two branches, where
in the first branch objects of one kind are picked up and placed again after some
movement. In the second branch, objects of the other kind are placed in a row
by iterating over target positions in a second small loop. The overall setup for
this task is depicted in Fig. 3 (left). Here, unification was applied for closing
the outer loop (of identifying an arriving object), as well as the inner loop (of
iterating over target positions).
The parameter m was set to 3 for the experiments. This is the lowest appropri-
ate value: The task involves overlap of two states after the inital branching state
(moving to a grasp pose above the object, and grasping it, in both branches).
Fig. 4 shows an automaton before and after unification of the first branch into
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Fig. 3: Left: Setup, reproduced from [3]. Objects arrive in the black rectangle and
have to be dipped into the container and put back, or placed at the first free spot
marked with a black dot. Right: number of states over number of programmed
steps, in one run. Each step adds a new state. On steps 14, 25 and 30, a new
state is generated, but unification afterwards reduces the number of states.

a closed loop. It illustrates how only partial overlap of the two instances of the
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loop body is sufficient for the system to suggest unification.
The approach of marking and unification was verified on the task by applica-

start

p← p̄a0

s y
:
p
←

p σ
· p̄

r 0
d← p p← p̄a1 p← p̄a2 p← p̄a3 p← d

p← p · p̄r1

p← p̄a0 s y
:
p
←

p σ
· p̄

r 0

d← p

3

2

1 0

(a) Before unification. Support depth is
printed on the dashed edges.

start

p← p̄a0

s y
:
p
←

p σ
· p̄

r 0

d← p p← p̄a1 p← p̄a2 p← p̄a3 p← d

p← p · p̄r1

(b) After unification.

Fig. 4: Partial automaton before and after the first unification. The leftmost
state pair has a support depth of 3. From there, successor states are unified.
Current state after unification is the unified version of the previously current
state. (Current states marked by double boundary.)

tion by one of the authors as well as two non-expert participants. These followed
the same procedure as the study depicted in [3]. In all three cases, unification
was applied successfully. As Fig. 3 (right) shows for a single run, the number of
states progresses linearly up to detection of sufficient support, at which point
the number of states drops by unification.

6 Conclusion

In this paper we proposed an approach to automatically close structures within
ERSA from overlap in the programmed state chains. We presented the formal-
ism of the underlying marking function on state pairs, and the algorithms for
calculating and utilizing the marking function. We also outlined our experimen-
tal verification. In conclusion, the approach generates the intended structures
without any explicit linking operation required from the user. This facilitates
the programming of structured tasks by non-experts.
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