
Extended State Automata for
Intuitive Robot Programming?

Lukas Sauer[0000−0002−7808−0907] and Dominik Henrich

Universität Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
{lukas.sauer, dominik.henrich}@uni-bayreuth.de

Abstract. Using untapped potential in smaller enterprises requires meth-
ods for robot programming usable by non-experts. In this paper, we pro-
pose an approach based on finite state automata. The basic principle is
kinesthetically guiding the robot through tasks and programming state
transitions to represent absolute movement, relative movement (to the
current pose or to that of an object), or interaction with saved pose vari-
ables. The automata structure allows us to represent control flow (loops
and branching according to conditions in the perceived scene). We forgo
a visual user interface to avoid switching between input devices. This can
save time, aid concentration, and reduce the amount of hardware in the
workspace. In our approach, the user executes specific key movements
while guiding to trigger operations. We assume that users can program
small, well-known tasks only seeing the current scene. The approach was
evaluated in a user study. The results show that it can be used effectively,
but could be improved upon in terms of intuitiveness.

Keywords: Robot programming · Automata · Haptic.

1 Introduction

While robots have a long and successful history in large scale industry, there
is both increasing use and still untapped potential in the context of small and
medium-sized enterprises or workshops [10], where there are only domain experts
readily available, but no expert robot programmers. This necessitates more intu-
itive forms of robot programming. Automata-based robot programs are promis-
ing in this regard, because they can express control flow in a conceptually easy
way: in a given situation and with a perceived input, specify what happens next.
A drawback is that such programming systems usually use visual representations

? This work has partly been supported by the Deutsche Forschungsgemeinschaft
(DFG) under grant agreement He2696/15 INTROP.
This is a preprint of the following chapter: Lukas Sauer and Dominik Henrich, Ex-
tended Robot State Automata for Intuitive Robot Programming, published in Ad-
vances in Service and Industrial Robotics, edited by Said Zeghloul, Med Amine
Laribi, Juan Sandoval, 2021, Springer reproduced with permission of Springer
Nature Switzerland AG. The final authenticated version is available online at:
https://doi.org/10.1007/978-3-030-75259-0_7



2 L. Sauer and D. Henrich

of the automata, and extensive graphical user interfaces (GUIs) to interact with
them. However, we assume that there is a subset of tasks that require the ex-
pressiveness of automata (compared to e.g. basic playback approaches), but are
at the same time simple enough to be programmed just by traversing through
the program structure and locally specifying what needs to happen next. If a
GUI can be dispensed with in this way, less hardware is required in the robot’s
workspace and fewer changes between different input modes are necessary for
the programmer: there is e.g. no need to switch between mouse and keyboard
and kinesthetically guiding the robot.
In our previous work [12], we proposed using finite state automata with an added
function mapping states to robot poses. We termed this Robot State Automata
(RSA). That model was conceptually easy enough to be used by non-experts,
but had deficits in expressiveness: There was no way to express relative move-
ment (e.g. in the body of a loop), to use object pose information (e.g. to grasp
objects at their current perceived location), and to save and later use pose in-
formation within the flow of a single execution. In this paper, we will describe
a new, extended automata variant termed Extended Robot State Automata that
aims to eliminate these deficits, while retaining the simplicity of control flow
of RSA. We outline the programming system we implemented and which uses
specific movements executed while guiding to trigger the different programming
operations. The results of a user study for evaluation are also presented.

2 Related Work

Automata as a simple concept are used in robotics in varying contexts [1, 4, 6–8,
11]. There is a number of approaches where users can explicitly generate and
edit robot programs in the form of (different variants of) automata [2, 13, 14];
however, all of these use graphical editors. Our research, in contrast, is trying to
gauge the validity of an approach without a GUI, as motivated in Section 1.
As input modalities, we would ideally like to use haptic interactions wherever
possible, becuase combined with kinesthetic guiding, this allows the user to ex-
clusively interact with the system via the robot. We use haptic in this context
meaning physical manipulation of the robot, as opposed to tactile interaction
via e.g. touch-sensitive surfaces. (In the words of [3]: ”There is no consensus
over the definitions of tactile and haptic interactions.”) There is little previous
work on using key haptic gestures while guiding to trigger operations [5, 15], and
none directly applicable to our approach. This led us to tailor interactions to
our specific operations, as detailed in Section 4.

3 Automata Model

Based on finite state automata and the variant in our previous paper [12], we
developed a model we refer to as Extended Robot State Automata (ERSA).

Definition 1 An ERSA is given as a tuple M = (Q,Σ, P,D, δ, u, qs) where



Extended State Automata for Intuitive Robot Programming 3

– Q is the finite set of states,
– Σ is the finite input alphabet,
– P is the space of robot poses,
– D = Pn = P × · · · × P is the pose variable space (for n pose variables used)
– δ : Q×Σ ∪ {ε} → Q is the state transition function,
– u : Q×Σ ∪ {ε} × P ×D × P ∪ {ε} → P ×D is the update function, and
– qs ∈ Q is the initial state.

Poses p ∈ P represent transformations: specifically, the current transformation
from the world frame to the robot’s NSA1 frame plus information on the tool
state for robots, or from the world frame to the object frame for objects. The
number n of variables is fixed for any single program. Correspondingly, the vari-
able space D differs in dimension between automata, but can be specified for
single automata.
With Σ = {s0, s1, . . . , sk}, the individual si are identifiers for all branch condi-
tions that occur in the program. These consist of one or more pairs of an object
identifier2 and some information about which poses this object is accepted with
(e.g. a subspace of P ). By s0 we denote a special branch that represents the case
in which no object was found.
The partial function δ determines state transitions as usual, i.e. if an ERSA is
in q ∈ Q and detects a branch s ∈ Σ, the automaton will transition to δ(q, s) if
defined. By ε /∈ Σ we denote an empty input, i.e. the system transitions from q
to δ(q, ε) without checking for a specific branch. As ERSA need to be determin-
istic, if, for a state q, δ(q, ε) is defined, no δ(q, s) must be defined for any s ∈ Σ.
The update function u specifies how the state of the robot and its variables
changes on a transition (as opposed to δ specifying how the logical state of the
program changes). For convenience, we define restrictions uq,σ of u to a specific
state q and input σ:

let uq,σ : P ×D × P ∪ {ε} → P ×D
s.t. ∀pa ∈ P, d ∈ D, pb ∈ P ∪ {ε} : uq,σ(pa, d, pb) = u(q, σ, pa, d, pb)

This allows us to specify such restricted update functions at each transition in
an automaton. We state that uq,σ is defined for all q ∈ Q and σ ∈ Σ ∪ {ε} for
which δ(q, σ) is defined. These uq,σ can take one of five forms:

uq,σ ∈



(pa, d, pb) 7→ (p̄, d),

(pa, d, pb) 7→ (pa · p̄, d),

(pa, d, pb) 7→ (pb · p̄, d),

(pa, d, pb) 7→ (pa, d1, . . . , dk−1, pa, dk+1, . . . , dn),

(pa, d, pb) 7→ (dk, d)


, 1 ≤ k ≤ n, p̄ ∈ P

Here, pa ∈ P is the current pose, and d ∈ D = Pn is the current variable
vector. pb ∈ P ∪ {ε} is the object pose from the detected branch, if an object

1 defined via normal/sliding/approach vectors
2 Objects need to be recognized. In pratice, we use a database of known objects.



4 L. Sauer and D. Henrich

was detected. (For σ = s0, the third option is not applicable.) The uq,σ map to
the new pose that the robot moves to and the updated variable vector. So, the
first three options above represent, in order: moving to a new absolute pose p̄;
moving to a new relative pose (i.e. applying a transformation p̄ to the current
pose), moving somewhere relative to an object (applying a transformation p̄ to
the object pose). In all of these, the transformations p̄ are constant, and the
variable vector remains unchanged. Finally, in the last two options, uq,σ can
store the current pose as a component of the variable vector d, or move to one
of the poses stored in d.3

4 Programming System

For programming ERSA as defined above, multiple interactions are necessary.
We use kinesthetic guiding, i.e. the robot is moved by hand while compensat-
ing for its own weight. To input commands, haptic interactions are favored,
since they do not require any additional hardware beside the robot and can be
performed while keeping the hands on the robot. Other inputs in the current
implementation are via a block of eight buttons mounted on the gripper, which
can also be operated while guiding. Finally, the robot has a mounted camera,
which could be used to recognize hand gestures. This has not been implemented,
but we will point out several places where it would be a convenient extension in
the future.
New states can be simply added into Q, but when a new transition is generated
(as necessary with new states), the corresponding update function uq,σ needs
to be specified. We decided to use separate interactions for the different update
function options, and have them generate new successor states automatically.
For the first two update options (absolute and relative movement), we use two
symmetric haptic interactions. For an absolute move, from a standstill the robot’s
gripper is moved down (in negative world z direction) a short distance, then up
again, to another standstill. The mnemonic here is a pinning gesture (fixating
the robot’s pose like with a pin on a pinboard). For a relative move, the inter-
action is vertically flipped (moving the gripper first up, then down again).
Movement to a pose relative to that of an object is generated via one of the
buttons. Here, for a potential future gesture recognition, pointing at an object
in the scene would be an obvious candidate.
Saving and loading pose variables is triggered by another pair of haptic inter-
actions, twisting the robot’s last joint either clockwise and back, or the reverse.
This actually generates an update function uq,σ where the current pose is saved
to or restored from a pose variable in execution (as opposed to saving a pose
once in programming). There is no abvious mnemonic for these, but they proved
easy to remember.
Since all previous commands add new states by default, we need another one for
transitions to existing states. We use a haptic interaction: guiding the gripper

3 Specifying the index k, i.e. which component of the variable vector to write to or
read from on a specific transition, is part of programming.



Extended State Automata for Intuitive Robot Programming 5

in a small circle in a horizontal plane (again starting and ending in a standstill).
The mnemonic here is that linking to a previous state closes a circle or loop.
Marking that the next transition should require an input is done via one of the
buttons. The corresponding input s is added to Σ and, in execution, compared
to. The transition itself can then be generated by any of the previous commands.
In a state that has a transition which requires an input, additional transitions
can be generated (via the same command inputs). In that case, any new inputs
are also added into Σ for later comparison.

5 Evaluation

Fig. 1. Left: experimental setup. Objects arrive in the black rectangle and have to be
either dipped into the green container and put back, or placed at the first free spot
marked in black. Right: reminder icons on the robot. Up/down arrows represent the
pin gestures for relative/absolute movement. Horizontal circle represents the linking
gesture. Right/left arrows on the flange are labeled ‘save’/‘restore’ (for pose variables).

We conducted a user study on the viability of the approach. The setup con-
sisted of a Kuka LWR IV, with a Robotiq gripper as tool and an Intel RealSense
D435 RGB-D-camera mounted as an eye-in-hand. Furthermore, a mini-keyboard
with eight buttons was attached to the gripper. The buttons are labeled with
icons, and another set of icons illustrating the haptic interactions was pasted
onto the robot. Both the general setup and these icons are shown in Fig. 1.
Experiments consisted of two parts: an introductory tutorial, and an actual
programming task. In the tutorial part, participants were shown all of the in-
teractions (their triggers and their effects). They also had the opportunity to
try the haptic interactions. Then, in the programming part, the following task
was given: Two types of objects would arrive in a marked area in the workspace.
Objects of one of those types had to be picked up, dipped into a container



6 L. Sauer and D. Henrich

(symbolizing e.g. a liquid coating), then put back at the exact pickup location.
Objects of the other type had to be placed at locations marked by crosses, at
the first unoccupied position starting from the right.
This task, illustrated in Fig. 2, uses all ERSA capabilities: branching accord-

start

. . .

p← p̄a0

s y
:
p
←
p σ
· p̄

r 0

sd : p← pσ · p̄r0

p← p̄a3 s0 : p← p · p̄r3

sd : p← p · p̄r2p← p

d← p p← p̄a1 p← p̄a2 p← d p← p · p̄r1

p← p

Fig. 2. A simpflified automaton for the task. Edges labeled “σ:” execute only on de-
tection of that branch. As the example only uses one pose variable, d is used in place
of d1. Updates are specified in a pseudocode assignment fashion; e.g. “d ← p” means
saving the current pose in the pose variable (everything else is unchanged).
Uses movement relative to the object pose for pickup (red). In the top path, saves the
pose (cyan), dips the object (absolute moves, green), then restores the pose (magenta).
In the bottom path, moves to the next target location in a loop (relative moves, blue).

ing to the perceived scene; picking up objects at their current pose; saving and
restoring a precise, but a priori unknown (pickup) location; relative movement
from one marked location to the next; and loops within the automaton structure.
To evaluate effectiveness and intuitiveness of the programming process, we used
several questionnaires collated in the MINERIC toolkit [9]. Specifically, partic-
ipants were asked to gauge the complexity value (COM) of the system (once
after a brief general introduction, but before the tutorial, and once after pro-
gramming), the mental effort of programming (SSEE), and to answer a ques-
tionnaire on different aspects of their programming experience (QUESI), while
the researcher noted the degree of success in programming the task (PAC-U).
Experiments were conducted in October 2020. Due to Corona pandemic-related

restrictions, only a small sample size of seven participants was taken. The results
are presented in the diagrams of Fig. 3. There are two main considerations: effec-
tiveness and intuitiveness of programming. As for effectiveness, the PAC-U mean
value of 2.43 out of 5 corresponds to a mostly successful programming process
with frequent questions posed at or hints requested from the researcher. The G
subscore mean of 3.95 expresses that the QUESI-statements on the achievement
of goals with the programming system were generally agreed with. As for intu-
itiveness, results are less satisfying. The COM-C mean (overall complexity score)



Extended State Automata for Intuitive Robot Programming 7

E C D
−5
−4
−3
−2
−1

0
1
2
3
4
5

COM

0
20
40
60
80

100
120
140
160
180
200
220

SSEE

0

2

4

PAC-U

W G L F E All
1

2

3

4

5

QUESI

Fig. 3. Left to right: perceived complexity of the system before/after use and difference
(negative is more complex), mental effort (lower is better), effectiveness of programming
(higher is better), and agreement with positive statements in QUESI (higher is better).
The mean PAC-U and G values of 2.43 and 3.95 respectively show that participants
were able to program using the system (albeit requesting hints multiple times).

is –1.86 and the COM-D mean (difference to expected complexity) is –0.86, both
on a scale from 5 to –5. This means that participants found the system both
slightly complicated to use, and slightly more complex than they expected from
the brief introduction. The SSEE mean of 132.14 out of 220 depicts a mental
effort between ‘rather much effort’ and ‘great effort’. Finally, the W, L and F
QUESI subscores are all below the neutral value of 3, meaning participants
tended not to agree with the positive statements on mental workload, low effort
of learning, and familiarity with the system.

6 Conclusion

In this paper we presented Extended Robot State Automata (ERSA), a sub-
stantial extension of our previous automata model for robot programming that
eliminates several deficits identified in the original model. We outlined our sys-
tem for programming ERSA, still without using a GUI. We conducted a user
study to evaluate the effectiveness and intuitiveness of the approach. The for-
mer is positive, while the latter can still be improved upon. Overall, this serves
as a proof of concept that the ERSA model can be used for programming, in
particular without a GUI even for moderately complex tasks.
In future research, intuitiveness of the programming system could be improved.
For instance it frequently led to errors in the study that pose variables need to be
saved at a point before they need to be used, which participants tended to forget.
Gestic interactions are an obvious extension to potentially get rid of the handful
of button interactions. This would necessitate a direct comparison to evaluate.
Finally, the system could generate some of the underlying automata structure



8 L. Sauer and D. Henrich

without explicit programming. This applies e.g. to loop structures, where partic-
ipants struggled deciding which states to link. Instead, they could demonstrate
the first and second execution of the loop body, and the system could roll those
into a loop according to correspondence of the states and transitions.

References

1. Brooks, R.A.: A Robust Layered Control System For A Mobile Robot. IEEE J.
Robotics and Automation 2(1), 14-–23 (1986).

2. Brunner, S.G., Steinmetz, F., Belder, R., Dömel, A.: RAFCON: A graphical tool
for engineering complex, robotic tasks. In: Proc. 2016 IEEE IROS, pp. 3283—3290.
IEEE (2016). https://doi.org/10.1109/IROS.2016.7759506.

3. Carter, J., Fourney, D.: Research Based Tactile and Haptic Interaction Guidelines.
In: Guidelines on Tactile and Haptic Interaction, pp. 84—92 (2005).

4. Grollman, D.H., Jenkins, O.C.: Can we learn finite state machine robot controllers
from interactive demonstration? In: Sigaud O., Peters J. (eds.) From Motor Learning
to Interaction Learning in Robots. SCI, vol 264. Springer, Berlin, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-05181-4_17.

5. Jokinen, K., Wilcock, G.: Multimodal Open-Domain Conversations with the Nao
Robot. In: Mariani J., Rosset S., Garnier-Rizet M., Devillers L. (eds.) Natural In-
teraction with Robots, Knowbots and Smartphones. Springer, New York (2014).
https://doi.org/10.1007/978-1-4614-8280-2_19.

6. König, L., Mostaghim, S., Schmeck, H.: Decentralized Evolution of Robotic Behavior
Using Finite State Machines. Int. J. Intelligent Computing and Cybernetics 2(4),
695-–723 (2009). https://doi.org/10.1108/17563780911005845.

7. Marino, A., Parker, L., Antonelli, G., Caccavale, F.: Behavioral control for
multi-robot perimeter patrol: A finite state automata approach. In: Proc. 2009
IEEE ICRA, pp. 831–836. IEEE (2009). https://doi.org/10.1109/ROBOT.2009.
5152710.

8. Orendt, E.M., Henrich, D.: Control flow for robust one-shot robot programming
using entity-based resources. In: Proc. 18th ICAR, pp. 68–74. IEEE (2017). https:
//doi.org/10.1109/ICAR.2017.8023498.

9. Orendt, E.M., Fichtner, M., Henrich, D.: MINERIC toolkit: Measuring instruments
to evaluate robustness and intuitiveness of robot programming concepts. In: Proc.
26th IEEE RO-MAN, pp. 1379–1386. IEEE (2017). https://doi.org/10.1109/

ROMAN.2017.8172484.

10. Perzylo, A., et al.: SMErobotics: Smart robots for flexible manufacturing. IEEE
RAM 26(1), 78-–90 (2019). https://doi.org/10.1109/MRA.2018.2879747.

11. Riano, L., Mcginnity, T.M.: Automatically composing and parameterizing skills by
evolving finite state automata. RAS 60(4), 639–650 (2011). https://doi.org/10.
1016/j.robot.2012.01.002.

12. Sauer, L., Henrich, D., Martens, W.: Towards Intuitive Robot Programming
Using Finite State Automata. In: Benzmüller C., Stuckenschmidt H. (eds.) KI
2019, LNCS, vol. 11793. Springer, Cham (2019). https://doi.org/10.1007/

978-3-030-30179-8_25.

13. Steinmetz, F., Wollschlager, A., Weitschat, R.: RAZER—A HRI for Visual
Task-Level Programming and Intuitive Skill Parameterization. IEEE RAL 3(3),
1362–1369 (2018). https://doi.org/10.1109/LRA.2018.2798300.



Extended State Automata for Intuitive Robot Programming 9

14. Thomas, U., Hirzinger, G., Rumpe, B., Schulze, C., Wortmann, A.: A new skill
based robot programming language using UML/P Statecharts. In: Proc. 2013 IEEE
ICRA, pp. 461–466. IEEE, (2013). https://doi.org/10.1109/ICRA.2013.6630615.

15. Wösch, T., Feiten, W.: Reactive motion control for human-robot tactile interaction.
In: Proc. 2002 IEEE ICRA, vol. 4, pp. 3807–3812. IEEE (2002). https://doi.org/
10.1109/robot.2002.1014313.


