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Abstract. This paper describes an approach to intuitive robot program-
ming, with the aim of enabling non-experts to generate sensor-based,
structured programs. The core idea is to generate a variant of a finite
state automaton (representing the program) by kinesthetic programming
(physically guiding the robot). We use the structure of the automaton
for control flow (loops and branching according to conditions of the envi-
ronment). For programming, we forgo a visual user interface completely
to determine to what extent this is viable. Our experiments show that
non-expert users are indeed able to successfully program small sample
tasks within reasonable time.
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1 Introduction

While robots are used most in large scale industry, their future use is expected
to comprise fields where no expert programmers are available, e.g. small and
medium-sized enterprises, workshops, or private households. We describe an ap-
proach extending playback programming (guiding in [13]) by simple means of
program structuring, based on the model of finite state automata, thus taking an
automata theory point of view to robot programming. It aims to enable intuitive
programming of sensor-based, structured robot programs by non-expert users.
Furthermore, we do not use a textual or graphical user interface. This means
that no monitor is required, reducing the amount of necessary hardware both to
acquire and to set up in the workspace. While personal devices like smartphones
are present for many users, these are generally too small for more complex inter-
faces and program representations. Interaction in our approach takes place solely
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via the robot (and a small number of hardware buttons, similar to the controls
of a media player). Our hypothesis is that, for programming a task known to the
user, the visible state of robot and environment is sufficient. In that case, the
absence of a textual or graphical interface allows the user to focus exclusively
on the robot. The user especially does not need to switch between devices, and
always has both hands available to interact with the robot. In the experiments,
we explore the viability of such a system.

Robot programming is a well-known field of research, surveys of which can be
found in [4,13,20]. In programming by demonstration (PbD), the user guides the
robot through tasks. Overviews can be found in [2,5]. Kinesthetic programming
as employed here (guiding the robot directly, in a real environment, while it
compensates for its weight) has been used in numerous works, e.g. [1,12,15,17].
Finite state automata (FSA) have been used in robotics repeatedly, but mostly
at other levels of abstraction. Some applications are [6, 10, 14]. In all of these,
states represent more abstract properties of the system, while here, they are as-
sociated directly with robot configurations. An exception, [18] can also employ
states like we do. But their automaton as a whole is generated in an automatic
fashion rather than explicitly by the user. Generalizing demonstrated behaviour
is typical for PbD, found e.g. in [8, 21]. This is applied to FSA in [11, 23] in the
strongest extent, where the automata are evolved via genetic algorithms.
Most works about simplified robot programming use extensive visual user inter-
faces, as [7, 16, 26, 28]. This includes approaches commercially available like the
Franka Emika Desk interface [9], the Artiminds Robot Programming Suite [3],
the TechMan software TMflow [27], Universal Robots’ PolyScope [29], or the
Rethink Robotics Intera software for their Baxter or Sawyer robots [22]. An ap-
proach close to ours in terms of program structuring is [24], with basic loops and
branches. But there, too, a visual representation of the program (in the vein of
Gantt charts) is essential for the concept.
To summarize, robot programming (by demonstration or using FSA) is and has
been an active field of research. But to the best of our knowledge, this approach
of explicitly generating structured, sensor-based programs (represented as au-
tomata) without a visual interface has not been explored so far.

2 Programming Concept

Our model is a variation of FSA that we refer to as Robot State Automata (RSA).

Definition 1 An RSA is given as a tuple M = (Q,Σ,C, δ, ϕ, qs, E) where

– Q is the finite set of states,
– Σ is the finite input alphabet,
– C is the space of robot joint configurations,
– δ : Q×Σ ∪ {ε} → Q is the state transition function,
– ϕ : Q→ C is the function mapping states to robot joint configurations,
– qs ∈ Q is the initial state, and
– E ⊆ Q is the set of terminal states.
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A (robot joint) configuration c ∈ C is a tuple of positions of all joints of the robot,
also including gripper opening. States q ∈ Q are mapped to configurations by
ϕ. The input alphabet Σ is the set of stimuli the robot perceives via its sensors.
This can be as simple as a color space (e.g. represented as [0, 255]3), when a
single stimulus is the average color of a camera image. But it is also possible to
use entire images (in which case Σ is the set of n×m matrices of color values for
image dimensions n×m) and use an image-based similarity measure to compare
stimuli. Another option is extracting information about objects in the image,
with stimuli being vectors of properties. Note that Σ will, generally, be a large
set, and that it is neither practical nor necessary to ever list it explicitly.

The partial function δ determines the possible state transitions, i.e. if the
RSA is in q ∈ Q and the robot perceives a stimulus s ∈ Σ, it will move to
δ(q, s) if defined. By ε /∈ Σ we denote, as in FSA, an empty input sequence.
We need this for transitions where the robot does not read a stimulus and the
RSA directly moves from q to δ(q, ε), called spontaneous transitions. We require
RSA to be deterministic, i.e., if δ(q, ε) is defined, then δ(q, s) must be undefined
∀s ∈ Σ. As a consequence, Q can be partitioned as Qε ] Qb where Qb = {q ∈
Q | ∃s ∈ Σ : δ(q, s) defined} are branching states and Qε = Q \ Qb are states
with spontaneous transitions. In branching states, the automaton can branch
into several possible transitions. Fig. 1 provides a visualization of branching in
a robot program. Spontaneous transitions are, by definition, always uniquely
determined.

Fig. 1: Example: Parts arriving on
the left are sorted onto different
conveyor belts. Sensors measure the
color of objects (different si ∈ Σ)
to select a branch in the branching
state.

In execution, the RSA starts in qs, the
robot in ϕ(qs). In each step, the current
state q is either in Qε or in Qb. If q ∈ Qε,
the RSA changes state to q′ = δ(q, ε) and
the robot moves from ϕ(q) to ϕ(q′). If
q ∈ Qb, the RSA makes the robot take
a stimulus s ∈ Σ. If q′ = δ(q, s) is de-
fined, the RSA changes state to q′ and
the robot moves from ϕ(q) to ϕ(q′). Oth-
erwise, the RSA remains in q and makes
the robot take another stimulus s. This
keeps repeating until a stimulus s with a
defined transition is perceived. Execution
stops when the new state is in E.

We now explain how an RSA is created
in our approach. User interaction consists
of guiding the robot and using three com-
mand inputs. Note that command inputs (triggering a command, e.g. by pushing
a button) and recorded stimuli (elements s ∈ Σ, e.g. observed color values) are
different. Command inputs are used to program the robot, as explained below.
We start with Q = {qs}, no transitions, and ϕ(qs) as configuration. Then, incre-
mentally, new states are generated. In the default interaction, the user (physi-
cally) guides the robot, while the system records its configuration in fixed time
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intervals ∆. So, with the RSA in q at time t, the system automatically adds a
state q′ to Q at t + ∆, defines δ(q, ε) = q′, and sets ϕ(q′) = c, where c is the
configuration at t+∆.
The first command input is for branching. When triggered in some state q, this
makes the robot record a stimulus s. When the user then continues to guide the
robot, the next transition is set as δ(q, s) = q′, where q′ is a newly generated
state. Note that this is not an ε-transition and will require the same stimulus
s to be executed. After this transition, the system goes back to recording the
guided trajectory.
The second command input is for recurrence transitions from a current state q
to an already existing state q′. For this, the user moves the robot back to the
configuration ϕ(q′) and triggers the command input. This generates a new ε-
transition δ(q, ε) = q′. Then, the robot starts executing spontaneous transitions
from q′ until reaching a branching state, where the user can take control again
to add a new branch. To introduce a new branch in the branching state, the first
command input is used again, just as above.3 To make recurrence transitions
easier to use, it can be decided to only allow branching states as targets (greatly
reducing the number of potential targets to keep in mind).
The third command input is used to define terminal states. Triggering it while
in state q adds q to the set of terminal states E.
These command inputs and guiding the robot are the only interactions neces-
sary. No display is used, and mapping the command inputs to physical buttons
installed on the robot itself allows the user to only interact with the manipulator.

So the user generates the robot program (i.e. the RSA) step by step in pro-
gramming mode. In execution mode, this program controls the robot. These two
modes are interwoven. When reaching a terminal or a previously known state in
programming mode, the system switches to execution mode. Then, the automa-
ton is executed from the initial or current state, respectively. When execution
reaches a branching state, the robot executes known branches for corresponding
stimuli, or the user can expand the program with a new transition. If they record
a new transition, the system switches back to programming mode. This interwo-
ven process of programming and execution has the benefit that the automaton
can be expanded on demand, even after executing it a number of times.

3 Expressiveness of the Approach

Different approaches to robot programming can express programs of different
complexity. For our approach, this is the class of FSA. By construction, generated
programs are RSA. We can reduce a given RSA to an FSA by removing the excess
components (C and ϕ). By these steps, generated programs can be mapped to
FSA. We argue the reverse to be true as well: any given FSA can be (mapped
to an RSA and then) generated in the proposed approach.

3 Note that looping back is not the only way to reach a branching state for adding new
branches. The system can also be programmed up to a terminal state, then executed
from the beginning, until reaching the branching state again, as detailed below.
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First, if we cut away all unreachable states of an FSA, the result will be
functionally equivalent to the original, so we use such a reduced FSA as basis. We
then need to specify a mapping from FSA to RSA. The components Q,Σ, δ, qs
and E can be adopted directly. We demand ϕ(qs) to be a known, fixed start
position, and ϕ(qe) = ϕ(qs) ∀qe ∈ E. Configurations ϕ(q) for all other q ∈ Q can
be chosen freely (assuming they do not generate collisions with the environment
and targets for recurrence transitions have different configurations). Transitions
correspond to movements of the robot (possibly degenerate ones from and to the
same position), which also need to be collision-free. With some convex region
of free space including ϕ(qs), we can guarantee this e.g. by spacing evenly over
that region all states with more than one incoming transition and one additional
position for all other non-start and non-end states. This mapping leads to an
RSA that satisfies the conditions: All linking targets can be distinguished from
each other, and all configurations and movements are in the free space.
It remains to show that any legal RSA can be programmed. We can trivially
generate branches and recurrence transitions, and a state that is visited for
the first time is generated automatically. So to generate a given RSA, we can
choose a sequence of runs of that RSA (each a sequence of states with legal
transitions between them) with the conditions that each run must cover at least
one state or transition not covered before, and over all runs we must cover all
states and transitions in the (reduced) automaton. Since the number of states
and transitions is finite, we can do this in a finite number of runs.
Together, this shows that arbitrary FSA can be both represented as RSA and,
in the proposed approach, generated in terms of program structure.

4 Experimental Evaluation

The prototype setup used in the experiments consisted of a Kuka LWR IV, with
a Robotiq three-finger gripper and an IDS uEye color camera as eye-in-hand, as
depicted in Fig. 2. Command inputs were given via buttons on a keyboard. For
the prototype, recording a stimulus consisted of taking the average color value
over a central area of pixels in the camera image.

Experiments were structured as follows: First, an introductory briefing of
approximately five minutes was held to detail the programming system. Then,
participants were asked to program three small pick-and-place tasks with colored
wooden cubes aimed to use the features of the approach, sketched in Fig. 3. In
the first task, a branching state with two branches was programmed, testing the
color of a block. Green and red blocks were placed in respective target areas. In
the second task, a second layer of branches was programmed. Blocks were placed
in their target area only if a mat of the same color was present. In the third task,
recurrence transitions were used. Green or red blocks were picked up and placed
on a blue block, when the latter was present. Blue blocks detected were placed
as basis. The states after picking up red and green blocks were linked to program
the rest of those branches only once. An automaton for the first task is depicted
in Fig. 4, omitting most non-branching states.
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Fig. 2: The robot setup as
used in the experiments.

(a) (b) (c)

Fig. 3: Task sketch used in the experiments for expla-
nation. First a simple sorting task, using a branch-
ing state (a). The second requires a second layer of
branching to check the presence of the correct mat
(b). The third makes use of recurrence transitions,
uniting the branches for green and red (c).

These were conducted with five non-expert participants. Programming times
are given in Fig. 5. Overall, the concept was deemed comprehensible by the par-
ticipants and 12 out of 15 tasks were successfully programmed. The main prob-
lem in failed attempts was the camera implementation (small misplacements
sometimes led to a wrong color value). The robot also deviated from its position
in some configurations (due to imperfect calibration). Apart from these issues,
which are orthogonal to the programming concept, participants were found to
cope well with this concept of RSA programming, despite having no prior knowl-
edge of finite state automata.
Of the twelve successful tasks, ten were programmed in less than five minutes.
Recalling that the study involved non-expert users with a briefing of roughly five
minutes, we feel this demonstrates that the approach can be adopted quickly and
efficiently, despite not using a visual interface.
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Fig. 4: Automaton for the first task. States go from q0
to branching state qc, to grasp states qαg for picking
up blocks (α ∈ {R,G}), to placement states qαp, then
return to qc.

Parti- Task
cipant 1 2 3

1 131s 160s

2 134s 290s 285s

3 106s 253s 413s

4 112s 234s

5 127s 368s

average 122s 234s 355s

Fig. 5: Programming
times. Missing values
indicate failed tasks.
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5 Conclusion

We have outlined an approach to intuitive programming via robot state au-
tomata and presented the results of experiments on the implemented prototype.
The approach aims to enable non-expert users to easily generate sensor-based
structures, without the feedback of a visual interface. The experiments con-
firm that this is indeed possible: Users completely new to robotics were able to
program the example pick-and-place tasks quickly and with only a short intro-
duction to the system. More complex tasks and programs are expressible in the
system and its underlying formalism. Whether it is also practically feasible to
program such tasks in this manner will require further study.
In future work, the automata model can be expanded, allowing for tasks other
than pick-and-place with absolute positioning. Here, states correspond to robot
configurations, but they could be generalized e.g. to positions relative to per-
ceived objects. This could provide solutions for problems such as placing blocks
next to each other, for an variable number of blocks. Different models for per-
ceiving and recording stimuli could be tried and evaluated, especially such that
extract more high-level information about the objects in view. Motion planners
could be employed to cope with dynamically placed objects. Furthermore, on
an interface level, the problems of dealing with errors in programming and of
debugging robot programs should be considered. Finally, to compare directly to
other approaches, user studies with a larger number of participants should be
conducted, with the same tasks being programmed on different systems.
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