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ABSTRACT
Three dimensional models are represented in various ways. One
possibility are boundary representation (B-Rep) models, which con-
tain geometric and topological information. This makes B-Reps
suitable for tasks that need an explicit algebraic representation of
the surface, e.g. numerical optimization or simulation. Reconstruct-
ing a B-Rep model of an object or the environment often is a tedious
task needing much manual intervention. An intuitive way is to use
a hand-held depth camera and perform a real-time reconstruction.
In the domain of robotics, we previously presented a system [18]
that is able to incrementally reconstruct a planar B-Rep model from
a stream of organized point clouds acquired from a robot mounted
camera. Since the acquisition poses are known, this approach can
not directly be used in a setup with a hand-held camera.
The contribution of this work is a new method for matching planar
B-Rep models and estimating their relative pose. In particular, the
input models can be noisy and incomplete containing very few
geometric features like corners, which is likely to occur when a
model from only one viewpoint is processed. In combination with
our previous work, we show that our approach can be used to build
a simultaneous location and mapping (SLAM) system for an easy
reconstruction of planar B-Rep models.
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1 INTRODUCTION
Representing the environment as a 3D model plays an important
role in many domains. Depending on the demands of applications,
such models are represented at different levels of abstraction rang-
ing from low-level sensor readings as point clouds to high-level
models including geometry, topology, physical properties or se-
mantics. One type of representation are boundary representation
(B-Rep) models that include both geometric and topological prop-
erties. Depending on the degree and complexity of the face repre-
sentations, B-Rep models can range from polyhedra up to volumes
bounded by freeform surfaces. In contrast to other surface models
like triangle meshes, B-Reps contain an explicit geometric repre-
sentation of faces and edges and their neighborhood relations. This
makes B-Reps suitable for tasks that need an explicit algebraic repre-
sentation of the surface, e.g. numerical optimization or simulation.
In a previous work [18], we presented a system that is able to incre-
mentally reconstruct a planar B-Rep model from a stream of orga-
nized point clouds. In contrast to other reconstruction approaches,
we instantly reconstruct a B-Rep model from each viewpoint and in-
crementally merge this partial B-Rep into the reconstructed B-Reps
of the previous frames. This procedure can be performed online,
which means that a valid B-Rep model is available at each point in
time during camera movement. The more images are incorporated
the more complete the model becomes. This is advantageous for
example in the field of robotics, where intermediate models can be
used to plan grasp poses when the robot approaches a workpiece.

The drawback of this approach is that acquisition poses have to
be known, for example in a setup where the camera is mounted to
a robot arm [18]. In other applications like object reconstruction
or mapping, it would be useful to reconstruct B-Rep models with
hand-held depth cameras. Therefore, the camera poses have to be
estimated from the images. In this paper, we present an approach
for estimating the relative pose of two partial, planar B-Rep models
that contain noise. In combination with [18], this yields a complete
SLAM (simultaneous location and mapping) system that directly
reconstructs planar B-Rep models with hand-held cameras.

A similar result can be reached by using a SLAM system for
point clouds (e.g. [9, 22]), merging all clouds to a global cloud
and applying reverse engineering methods [1, 2, 10, 21]. Despite
the advantage of higher accuracy, since all data is available, this
approach has significant drawbacks: For large scenes, point cloud
data might not fit into memory and processing times of the reverse
engineering methods prevent an online application.
Methods based on signed distance functions [6, 11, 20, 26, 27] can
produce large triangle meshes. Internally a voxel grid with distance
functions is used from which a mesh can be extracted with the
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Figure 1: Two partial B-Reps of a box on a plane with 4 faces,
5 edges and 2 corners (left) and 5 faces, 3 edges and 0 cor-
ners (middle). The incompleteness can originate e.g. due to
the viewpoint or occlusions. The estimated pose aligns both
models (right).

marching cubes algorithm. In contrast to these methods, matching
and merging B-Rep models has the advantage that the surface is
continuously and efficiently represented without the need of voxel
discretization. Additionally, intermediate results during acquisition
are also valid B-Rep models that can be used for e.g. planning
algorithms in robotics.

The pose estimation procedure from B-Reps presented in this
paper can also be used for localization problems: If a complete
model of an object is given (e.g. from CAD data), the pose of a
hand-held camera observing the real object can be estimated by
reconstructing a single partial B-Rep from the point cloud of the
camera and matching it to the given model.

In this paper, we contribute an approach for matching two in-
complete, planar B-Rep models and computing their relative pose.
Our method can be performed online and can handle partially over-
lapping models. Faces that are available in both B-Reps need not
have common edges and may overlap. In combination with our
previous work [18], this can be used to build a complete SLAM
system for incrementally reconstructing planar B-Rep models from
organized point clouds of a hand-held camera.

2 RELATEDWORK
Various approaches for aligning 3D models have been proposed
that can be distinguished by the data representation. For aligning
raw point cloud data, the well-known ICP algorithm [3] is often
employed using all point data. If color is also considered, methods
based on photoconsistency [12, 13, 22] can be used. Sparse methods
[7, 9] reduce the amount of data to match by extracting feature
points. All these methods do not consider geometric properties.
Approaches that extract planes for pose estimation [14, 17, 23] head
for this direction, but do not consider topological information.
Algorithms for matching of 3D surface models like triangle meshes
can utilize topology information. There is a great number of meth-
ods for matching 3D surface models, mainly in the field of 3D model
retrieval. An extensive survey of these methods can be found in [24].
A direct application to our problem is prevented by the fact, that
all global feature-based methods do not support partial matching,
since they describe the object as a whole. Local methods overcome
this problem, but are designed for triangle meshes and thus can not
utilize the topological and geometric information of a B-Rep.
Graph-based methods utilize the topology graph of solid models
like B-Reps. Faces are represented as graph nodes and boundary
edges between faces are graph edges. Using graph comparison
[8, 16], a matching can be performed. An application to our use

case is not possible, because partial B-Reps reconstructed from one
image can contain a different topology graph due to occlusions or
noise (see Fig. 1).
A group of methods that support partial matching are approaches
withmixed input representations: Single point clouds can be aligned
to complete CAD models [5], or CAD models are found in large
laser scans [4].
In summary, we see that the main challenge is the incompleteness
of the models, which leads to varying topology graphs and the
necessity for partial matching. Nevertheless, both models, we want
to align, are B-Rep models which contain geometric and topological
information we want to employ as much as possible.

The contribution of this paper is a fast matching procedure for
planar B-Rep models which suffer from a high degree of incom-
pleteness due to occlusions or noise. Therefore, our method does
not rely on topology graphs for matching, but uses the adjacency
information as support if available.

3 POSE ESTIMATION OF PARTIAL B-REP
MODELS

For representation of our B-Repswe use the half-edge data-structure
[15], consisting of faces, half-edges and vertices. Since the model
can be incomplete, not every half-edge must have an opposite half-
edge. To describe physical features, we define the following terms
(Fig. 1):

• A pair of opposite half-edges of a B-Rep is called edge.
• A vertex of a B-Rep with at least three adjacent faces is

called corner.
• Edges, corners and faces are named physical elements.

To account for a partial matching, we employ local features for
matching the models. Typically, local feature based methods con-
tain the following three steps: First, features that represent spe-
cial points of interest are found. Descriptors give a compact and
comparable representation of a feature. Then, correspondences
between features are determined utilizing their descriptors. Option-
ally, wrong correspondences are rejected. Last, a pose hypothesis
is calculated using the correspondences.
The main reason for this procedure is that features are plenty in
number and the pose is only uniquely estimable with a certain num-
ber of features. If features are located on points in space, at least
three point-point correspondences are needed. When point clouds
are registered, most elements of the cloud (the points themselves)
have a corresponding point if they are located in a region where
both clouds overlap. But this does not hold for elements of incom-
plete B-Reps: Vertices and half-edges do not necessarily match (see
Fig. 1). Therefore we rely on the physical elements: faces, edges and
corners. The number of these physical elements is much smaller
compared to the number of points in a point cloud registration
problem. But instead, they contain more information: A corner is
not only a location in space, but also the common point of three
faces each having a plane equation (containing a normal) and a
centroid (for planar B-Reps).
These observations explain the key point of our approach: Because
of the small number of physical elements containing a large amount
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of information, we design our features in a way that a single corre-
spondence of features is enough to estimate the pose. Our approach
can be summarized as follows:

(1) Find features and create a descriptor that contains a relative
and an absolute part (Sect. 3.1)

(2) Find corresponding features using the relative part of the
descriptor (Sect. 3.2)

(3) Create a pose hypothesis for each correspondence using
the absolute part of the descriptor (Sect. 3.3)

(4) Find the best hypothesis using a quality measure (Sect. 3.4)

3.1 Features and descriptors
Traditionally, a feature is a point with special properties that can
be recognized in different images. In B-Rep models the physical
elements can be utilized: edges, faces and corners. In order to esti-
mate the pose from one correspondence, the features must contain
enough information to fix the six degrees of freedom of a rigid body
motion. A correspondence between two corners with its at least
three adjacent faces is sufficient whereas a pair of faces or edges is
not. So in general, we define a feature as a set of three faces of a
B-Rep. To find all features, we iterate over all sets of three faces of a
B-Rep model and check if the three faces are linearly independent.
This ensures that subsequent pose calculation is not prevented by
e.g. parallelism.
Descriptors are used to compare features for similarity and to es-
timate the final pose. Suppose a feature of the linearly independent
faces f1, f2 and f3, then our descriptor D is the 3 × 5-matrix

D(f1, f2, f3) =


α23 ®pT1
α13 ®pT2
α12 ®pT3


where ®pTi = (®nTi di ) are the plane coefficients of face fi with
®ni ∈ R3 being the normalized normal vector that points to the
outside of a face and di ∈ R being the offset of the plane from
the origin. The right 3 × 4 part of D is called absolute part of
the descriptor since it can be used to calculate the pose when a
correspondence of features is given. The left 3 × 1 part is called
relative part since it is translation- and rotation-invariant and can be
used for similarity checks. The angles αi j ∈ [0, 2π [ are the interior
angles between the faces fi and fj . For example, α of two adjacent
perpendicular faces would be π/2 if the faces build a convex edge,
or 3π/2 if they build a reflexive edge (Fig. 2).
Calculatingα for two faces that share a common edge is simple since
convexity can be determined using the direction of a half-edge:

αi j =

{
π − arccos(®ni · ®nj ) if (®vi × ®ni ) · ®nj > 0
π + arccos(®ni · ®nj ) else

where ®vi is the normalized direction of the half-edge of face fi
where fi and fj are connected. See Fig. 2 for an example.
If two faces do not share a common edge, the angle is ambiguous. To
decide on the convex or reflex angle, we use the following procedure:
Consider the plane with normal ®ni × ®nj (see figures in Table 1). The
projection of the planes ®pi and ®pj yields two lines дi and дj that
intersect in a point ®P . The projection of the polygon of fi and fj
on дi resp. дj yields two line segments si and sj . Depending on
whether the start and end point of the line segment lie on the same

(a) (b) (c)

Figure 2: (a) Convex edge. (b) Reflexive edge. (c) An object
containing two faces that share both a convex and a reflexive
edge (marked in red).

side of the line in relation to ®P , we can distinguish five cases as
shown in Table 1: In Case A we use the convex angle, in Case B the
reflex angle. In Cases C and D both faces cannot intersect because
the normal directions are inconsistent. So there is no inner angle
and we use αi j = arccos(®ni · ®nj ) in these cases. In all other cases,
when at least one line segment spans both sides of ®P , the angle is
ambiguous and we discard the entire feature. An object where this
ambiguity occurs is depicted in Fig. 2c.
This distinction is still advantageous since with incomplete B-Reps
connected edges can be missing, but the faces are still uniquely
convex or reflexive (for example in Fig. 1).

3.2 Correspondence detection
To detect whether two features DA and DB are similar, we use the
relative part of the descriptor:

®DT
rel,A = (α23,α13,α12), ®DT

rel,B = (β23, β13, β12)

Since the order of the three faces is arbitrary, there are six possibili-
ties for comparing the three angles of DA with DB . We reorder the
faces in each descriptor so that ®n1, ®n2, ®n3 build a right-handed sys-
tem. This reduces the number of possibilities to three. The similarity
can be expressed by

S( ®Dr el,A, ®Dr el,B ) = min {S0, S1, S2}

with Si being the maximum norm of the differences during a cyclic
shift by i:

S0 = max {α23 − β23, α13 − β13, α12 − β12}

S1 = max {α23 − β13, α13 − β12, α12 − β23}

S2 = max {α23 − β12, α13 − β23, α12 − β13}

When S( ®Dr el,A, ®Dr el,B ) is smaller than a threshold δ , both features
are selected to be corresponding.

3.3 Hypotheses
Since the absolute part of a descriptor contains enough information
to estimate a pose, we build a pose hypothesis for every pair of cor-
responding features. The goal is to estimate the rigid body motion
T B
A = [R | ®t ] from the pair of corresponding descriptors DA and
DB . First, we reorder the rows of DB by cyclic shifting so that S0 is
the minimum of (S0, S1, S2). This ensures that the faces expressed
in each row match. Next, we define a local coordinate system for a
descriptor represented by the affine transform K ∈ R4×4:

K(D) =

[
®n1 ®n2 ®n3 ®J
0 0 0 1

]
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A B C D E
type: convex
αi j = π −arccos(®ni · ®nj )

type: reflex
αi j = π +arccos(®ni · ®nj )

type: separated
αi j = arccos(®ni · ®nj )

type: separated
αi j = arccos(®ni · ®nj )

type: unknown
-

Table 1: Different cases for the calculation of angle αi j for non-adjacent faces.

with ®J being the point of intersection of the three planes ®p1, ®p2 and
®p3. The final pose can then be formulated as

T B
A = K−1(DB ) · K(DA).

If the normals of the planes in DA do not have exactly the same
ratio of angles as in DB , the resulting transform is affine containing
anisotropic shearing and not a rigid body motion: T B

A = [A | ®t ].
Thereforewe apply a singular value decomposition (SVD) on thema-
trixA = U ΣV ∗ and remove the anisotropic part by setting R = UV ∗

to build the final rigid body motion T B
A = [R | ®t ].

3.4 Finding the best hypothesis
Given a set of pose hypotheses, we aim to find the one that best
aligns the two B-Rep models. Therefore we propose a measure
m that indicates how much the faces of the models overlap. To
calculatem for one hypothesis, we perform the following steps:

(1) Transform B-Rep A into the coordinate system of B-Rep B
using T B

A
(2) Determine every pair of faces (fi , fj ) with fi ∈ A and

fj ∈ B that satisfies these two criteria:
(a) The plane equations of fi and fj are similar, i.e. the

angle between the normals and the offset is below a
threshold:

| ®ni · ®nj | < δanдular ∧ |di − dj | < δdistance

(b) The polygons of fi and fj intersect. Note that this is
a 2D intersection test on non-convex polygons that
may contain holes.

(3) For each pair (fi , fj ), determine the intersection polygon(s)
Gi j = fi ∩ fj and calculate the ratio

mi j =
area(fi ∩ fj )

area(fi ∪ fj )
=

area(Gi j )

area(fi ) + area(fj ) − area(Gi j )
.

Sum up the values of all pairs:

m =
∑

mi j

The best hypothesis is the one with the greatest value ofm.
Calculating the aforementioned procedure exactly is expensive,

since it includes a non-convex polygon intersection for every pair
of faces in every hypothesis. In worst case the time complexity
is O(h · f 2 · k logk), where h is the number of hypotheses, f the
number of faces in one B-Rep, and k the number of half-edges in
one face. Next, we propose an alternative approximate calculation
of the area measurem that is significantly faster:
As a preprocessing step, we calculate a face-aligned bounding-box
for each face of the two B-Reps. A face-aligned bounding-box (FABB)
is a 2D bounding box that lies in the face’s plane, encloses the face
and is oriented to have minimum area. To calculate the FABBs, we

employ the rotating-calipers algorithm [25]. The time complexity
is O(f k logk) where f is the number of faces and k the number of
edges in one face.
For speed up, we replace the intersection test of step 2(b) by a bound-
ing box intersection test using the separating-axis algorithm [19],
which can be performed in constant time. Additionally, we replace
the polygon intersection (step 3) by a bounding box intersection,
which has also constant time complexity, since the intersection of
two rectangles contains at most eight edges. In summary, the time
complexity is thus reduced to O(f k logk + hf 2).

Our procedure always finds the best hypothesis. But there can
be situations where even the best pose is wrong, e.g. when the
overlapping region of both B-Reps only contains linearly dependent
faces. To detect theses situations, a conflict test can be performed
that checks that faces of aligned models do not intersect in the
interior of faces. For a fast, but approximate intersection test, the
already calculated face-aligned bounding boxes can be used.

4 EVALUATION
To evaluate our method, we used the following experimental setup:
To simulate a hand-held camera and simultaneously obtain ground-
truth data, we attached an ENSENSO N10 depth camera (with a
range of 20 to 90 cm) to a KUKA LWR IV robot arm (Fig. 3a). Using
gravity compensation mode, the user is able to guide the robot by
manually moving the robot and the mounted camera.
We used 3 scenes with different objects (Fig. 3b-d) and took 30
images per scene yielding 90 reconstructed partial B-Reps in total.
For each pair of B-Reps of the same scene, we calculated the relative
transformations Ttruth and Texper iment from the robot poses and
by executing our proposed procedure. The error is denoted as

Terror = T
−1
truth ·Texper iment = [R | ®t ]

We define the rotational error δerror as the angle obtained by trans-
forming the rotation matrix R into an angle-axis representation and
dropping the axis. Formally this can be written as

δerror = arccos (0.5 · (R00 + R11 + R22 − 1)) .

We define the translational error terror as the amount by which
the centroid point ®pc of the B-Rep differs when applying Terror :

terror = | |Terror · ®pc − ®pc | |2

Because B-Reps may be distant from the origin, this is superior
to | |®t | |2 since it considers the translation at the point of interest,
which is ®pc .

We define two datasets for evaluation: In the dataset DS SEQ
all pairs of B-Reps are evaluated that are successive in the camera
path or have at most one frame between. So the camera poses will
not differ much. This dataset represents the common application
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without conflict test with conflict test
δerror [rad] terror [cm] δerror [rad] terror [cm]

dataset area measure µ, σ Q2 Q3 µ, σ Q2 Q3 µ, σ Q2 Q3 µ, σ Q2 Q3

DS TOTAL exact 0.25, 0.62 0.018 0.046 2.5, 7.4 0.4 0.9 0.03, 0.14 0.015 0.029 0.6, 2.0 0.3 0.6
approximate 0.23, 0.58 0.019 0.046 2.4, 7.4 0.4 1.0 0.03, 0.14 0.015 0.029 0.6, 2.0 0.3 0.6

DS SEQ exact 0.03, 0.15 0.010 0.019 0.4, 1.1 0.2 0.3 0.01, 0.01 0.010 0.018 0.3, 0.3 0.2 0.3
approximate 0.03, 0.15 0.011 0.019 0.4, 1.1 0.2 0.3 0.02, 0.02 0.011 0.019 0.3, 0.3 0.2 0.3

Table 2: Average value µ, standard deviation σ , median Q2 and upper quartile Q3 of error measures δerror and terror for both
datasets and for exact and approximate area measure of Sec. 3.4. For other quantiles see Fig. 4.

(a) (b)

(c) (d) (e) (f) (g) (h)

Figure 3: For evaluation, a robot with a registered eye-in-hand depth camera (a) was used to reconstruct three different scenes
(b-d). For each scene, thirty images from different poses have been acquired and compared to ground-truth. Images (e) and (g)
show two of the scenes used for hand-held SLAM, (f) and (h) show the reconstructed models (see also accompanying video).

Figure 4: Quantiles of angular error δerror and translational
error terror of the area measures of data set DS TOTAL.

that subsequent images are incrementally registered and merged
to the previous image like in SLAM applications. In the dataset
DS TOTAL all combinations of two B-Reps from the same scene
are evaluated. Thus it contains pairs whose B-Reps may not even
overlap and registration is impossible.
Table 2 and Fig. 4 show the results of our evaluation. From these,
the following observations can be made: The error is not normally
distributed, the median differs much from the average value. The
reason is that there are many samples with a low error, but also a
few outliers with large error. These outliers originate from false
matching of features, especially in the DS TOTAL dataset, where
some pairs of B-Reps do not even overlap. As a consequence, it is
better to consider quantiles instead of average and standard devia-
tion. As Fig. 4 shows, about 75% of the samples have a translational
error smaller than 1 cm for exact area measure. The quantile plots
(Fig. 4) show that the conflict test discards wrong matchings and
improves the results since higher quantiles have smaller values.
In the ideal case, the conflict test only detects conflicts in hypothe-
ses with large error. Due to noise some false positives occur, too.
This can be seen by the fact that the green dashed curve in Fig.
4 does not instantly rise near the 0%-quantile. About 6% of the
conflicting samples have terror < 1 cm (approximate measure). But
these false positives are not relevant in an online SLAM application:
If one frame fails to match, the application can drop it and continue
with the next one. Detecting true conflicts is by far more important.
As expected the approximate area measure performs worse than
the exact one, but is more than ten times faster (see Table 3). In real
time applications, the speed improvement clearly compensates the
slight increase in error.
The runtime for our matching procedure (using approximate mea-
sure) is about 50 milliseconds on average on a single core for the
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average DS TOTAL DS SEQ
number of hypotheses 145 298
runtime exact [ms] 232 592
runtime approx. [ms] 18 47

Table 3: Average number of hypotheses created during
matching of datasets DS TOTAL and DS SEQ and average
overall runtime in milliseconds depending on the used area
measure (single core).

DS SEQ dataset which has many corresponding features. Since the
runtime depends on the number of hypotheses, it is clear that the
average is lower for the DS TOTAL dataset, where some pairs of
B-Reps do not even overlap.
To summarize, in the best configuration our method is able to match
B-Reps of subsequent frames (data set DS SEQ) with an average
error of 3 millimeters resp. 1.2 degrees.

As stated in the introduction, our approach in combination with
[18] can be used as complete SLAM system for the reconstruction
of B-Rep models with hand-held cameras. The accompanying video
shows the reconstruction of three scenes, two of them are depicted
in Fig. 3e-h.

There are also limitations of our approach: Since we do not
constrain our estimated pose, matching B-Reps of symmetric objects
may be wrong because there’s a pose with more overlap. This is
the reason for the missing backside of model in Fig. 3f. Wrong
alignments can also occur when the overlapping part of two partial
B-Reps only contains linearly dependent faces.

5 CONCLUSIONS
In this paper we presented a method to match and estimate the
relative pose of two planar B-Rep models. In particular, we are
able to match partial and noisy models that contain very few and
differing geometric characteristics like e.g. corners (Fig. 1). This is
achieved by calculating a feature set with features that - in contrast
to other methods - are not plenty in number, but contain enough
information to estimate a pose hypothesis from a single correspon-
dence. For selection of the best hypothesis we proposed a measure
based on the area of overlap of the models.
When we combine our approach with our previous work [18], in
which partial B-Rep models are incrementally reconstructed and
merged, we yield a complete simultaneous location and mapping
(SLAM) system that directly generates and operates on B-Rep mod-
els. If a model is given (e.g. fromCAD data), our matching procedure
can also be used as a localization method for a hand-held camera.
A shortcoming of our approach is that alignment may fail on sym-
metric objects or when the overlap only contains linearly dependent
faces. To account for this, future work can be the additional use of
color, since we currently only rely on geometric features.
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