
Sensor-based loops and branches for
playback-programmed robot systems

Michael Riedl, Eric M. Orendt, and Dominik Henrich

Lehrstuhl für Angewandte Informatik III
Universität Bayreuth, D-95440 Bayreuth, Germany

michael.riedl@uni-bayreuth.de,

http://robotics.uni-bayreuth.de

Abstract. Usually, programming robot systems is expensive and com-
plex and only profitable for companies with big lot sizes. Hence these
systems do currently not play a big role in small or medium sized en-
terprises. This work extends the programming paradigm published in [1]
that is based on the playback programming method, so that also sen-
sor information can be used to generate more complex robot programs
by means of playback programming in addition to the already existing
functionality. This is achieved by developing a concept for sensor-based
loops and branches that fits well to the programming paradigm. Finally,
the enhanced programming system is evaluated in a user study with ex-
perts and non-experts with respect to its intuitiveness. The user study is
divided into a part that tests the user interface and a part that evaluates
the system as a whole, so that possible weak spots of the system or the
user interface can be detected and can be taken into account in further
work with this programming system.

Keywords: playback programming, sensor-based control structures, in-
tuitive robot programming

1 Introduction

This article deals with sensor-based control structures for playback-programmed
robot systems. Therefore the programming system from [1] is extended so that it
can also deal with control structures, which in our case are loops and branches.
An illustration of the programming system is shown in Figure 1. On the one
hand, branches are helpful, if a certain action should be executed depending on
a detected object, e.g. sorting objects depending on their color. On the other
hand, loops are useful in a playback programming environment if a task has to
be executed as long es a certain object is detected by the system, e.g. picking
up parts from a conveyor belt and placing them in a box as long as parts are
arriving.

At the beginning, this paper gives an overview over the related work that is
already done in this field, the next part deals with sensor-based control structures
in general and loops and branches in particular and the last section shows the

The final publication is available at Springer via
https://doi.org/10.1007/978-3-319-61276-8_21

1

https://doi.org/10.1007/978-3-319-61276-8_21


2 Michael Riedl, Eric M. Orendt, Dominik Henrich

Fig. 1: An illustration of the programming system for sensor-based playback
programming. It shows the programming aspect, the representation aspect and
the reproduction aspect. The blue arrows show the transformation from the
demonstration layer to the representation layer and from the representation layer
to the reproduction layer and the red arrow shows the task that should be
executed by the robot.

outcome of a user study that has been done to evaluate the intuitiveness and
usability of the developed programming system.

2 Related work

Different approaches to robot programming are discussed in [2]. It distinguishes
between on-line- and off-line programming approaches, where off-line program-
ming techniques are textual programming, graphical programming and pro-
gramming using CAD and on-line programming techniques are programming
by demonstration and playback programming. The playback programming ap-
proach is distinguished to other approaches by the fact, that robot manipulators
are programmed by an operator that guides them through the desired trajec-
tory. This guiding can be done manually, with the help of a teach pendant
or a master robot. After the trajectory is recorded, the robot plays back ex-
actly the same path as taught. In [3], robot programming is divided into on-line
programming, off-line programming and programming using augmented real-
ity. The work further divides the on-line programming approaches into sensor
guided on-line programming and operator assisted on-line programming. The
off-line programming part compares different off-line programming systems and
the programming using augmented reality part describes possible ways of inte-
grating augmented reality into robot programming systems. Another survey on
robot programming techniques can be found in [4]. It divides robot programming
in automatic programming methods and manual programming methods.

Since we use playback programming, we review the related work in this field,
too. In [5] the programming technique is firstly described by the terms teaching
by showing and guiding, which is the simplest form of the playback programming
where the trajectory is taught by the operator and exactly played back after-
wards. An extension, called extended guiding, enables the operator to record

The final publication is available at Springer via
https://doi.org/10.1007/978-3-319-61276-8_21

2

https://doi.org/10.1007/978-3-319-61276-8_21


Sensor-based loops and branches for playback-programmed robot systems 3

the trajectory relatively to a coordinate system and then change the coordinate
system when the operator is going to play back the trajectory. The first ap-
pearance of the term playback programming is in [6], where it is described as a
programming method where the robot is guided through the desired trajectory
either by hand, with the help of a master robot or with a teach pendant. The
playback programming technique counts among on-line programming methods
as described in [2] and [3] and among manual programming methods described
in [4].

A last big part of research that is related to our programming approach is
the intuitive robot programming section. The EU project SMErobot developed
different intuitive robot programming methods, e.g. programming a robot by
drawing a path onto the workpiece in [7], by using Programming by Demon-
stration with post processing for welding in [8], by using a combination of voice
recognition and guiding in [9] and by using a combination of voice recognition
and a accelerometer-based hand-held device in [10]. Besides SMErobot, another
article that unites playback programming with intuitive robot programming can
be found in [11], where a welding robot for shipyards is programmed by using the
walk-through programming technique that is a synonym for playback program-
ming technique. One last approach for intuitive robot programming is shown in
[12] and [13], where a one-shot programming by demonstration approach is pro-
posed which is capable of adapting its motion to slightly different scenarios. This
approach is evaluated in [14] regarding intuitiveness and it is used to compare
the outcomes of the user study made with our programming system.

The achieved results of this paper are based on a playback programming
system using Gantt-charts [1], which is briefly explained in the next section.

3 Playback programming using Gantt-charts

This part gives a short overview on the programming system from [1] that we will
extend. The central part of the programming system is the playback program-
ming technique to allow also non-professional users to program robots. It aims
to eliminate different disadvantages of this technique like the non-editability of
recorded trajectories. Besides that, the visual representation of the recorded tra-
jectories is also a central aspect of the system. A Gantt-chart like illustration is
used to show the operator a schematic representation of the recorded trajecto-
ries. The representation from [1] was slightly modified within the scope of this
work to give the user more detailed information on the motion of the robot. The
block-representation was replaced by a velocity profile that displays the velocity
of the tool center point for each configuration in the trajectory, so the user does
not only see when the robot is moving but also how fast it is moving. Illustrations
of the Gantt-chart representation are shown in Figure 1, Figure 2 and Figure 3.
Another important feature that was introduced in [1] is the edit functionality for
playback-programmed trajectories. It enables the user to manipulate the already
recorded trajectory in the Gantt-chart with drag-and-drop, copy, paste, cut and
delete. This programming paradigm is extended within the scope of this work.

The final publication is available at Springer via
https://doi.org/10.1007/978-3-319-61276-8_21

3

https://doi.org/10.1007/978-3-319-61276-8_21


4 Michael Riedl, Eric M. Orendt, Dominik Henrich

4 Sensor-based loops and branches

Depending on a sensor input, loops and branches add more possibilities to the
already existing playback programming system. To give a formal description on
how to add loops and branches to playback programmed trajectories, a definition
of the term trajectory is needed. A trajectory q(t) of a robot with N joints is
for our purposes defined as q(t) = [q1(t), q2(t), · · · , qN (t)]T with the joint angles
qi(t) of the i-th joint at time t, an integer amount of joints N ∈ N, and 1 ≤ i ≤ N .
Hence, for every point in time t > 0, an explicit configuration for the N joints
of the robot exists.

4.1 Loops

Fig. 2: The visual representation of a loop in the Gantt-chart. The pictogram
shows the reference stimulus that is the loop condition. Additionally the position
of it shows, whether it is a while- or a do-while-loop.

We use the concept of loops in imperative programming languages and extend
it to the playback programming technique. The visual representation of loops in
the Gantt-chart is shown in Figure 2. A loop consists of a loop condition and a
loop trunk. The different types of loops emerge from the different points in time,
when the loop condition is evaluated. Inserting a loop into a trajectory q(t) seems
easy at first sight, one just has to define the range [t1; t2] with t1 ≤ t2 as the loop
trunk and add the loop condition, which is in our case the comparison between
an image that was taken at programming time and an image that is taken at
runtime, either at the beginning (t1) or at the end (t2) of the loop trunk. But a
problem accrues when the execution of the trajectory comes to an end of a loop
trunk. Then it would have to jump back to the beginning of it. This motion is
not recorded, so a transfer motion needs to be inserted into the trajectory. In [1],
different methods for generating transfer motions within playback programmed
trajectories are shown. Another problem that accrues when camera images are
used as sensor input is, that the robot has to stand still while the image is
taken. Since the loop condition is always evaluated at the beginning or the end
of the loop trunk and images are only taken at these points, we define as a
precondition, that the velocity of all joints has to be 0 at both ends of the loop
trunk. Therefore, q̇i(t1) = q̇i(t2) = 0 must apply for 1 ≤ i ≤ N .

In addition, it has to be dealt with the loop condition. All three loop types,
i.e. for-loop, while-loop and do-while-loop are represented by this concept. For
the for-loop, a counter is used that is compared with the predefined maximum
of loop iterations and afterwards incremented before the execution of the loop.
Therefore, the loop-counter and the predefined amount of iterations is attached
to the trajectory q(t) at point t1. While and do-while loop differ from each

The final publication is available at Springer via
https://doi.org/10.1007/978-3-319-61276-8_21

4

https://doi.org/10.1007/978-3-319-61276-8_21


Sensor-based loops and branches for playback-programmed robot systems 5

other in the point, where the loop condition is evaluated. For the while-loop, the
loop-condition and therefore the point of evaluation is attached to q(t) at point
t1, so that it is evaluated before the execution of the loop trunk, and for the
do-while-loop, it is attached to q(t) at point t2, so that it is evaluated after the
execution of the loop trunk. For the evaluation of the loop-condition, a compare
function is used to determine whether the stimulus is similar to the prerecorded
one or not. This function is defined as

f(S1, S2) =

{
true, if S1 and S2 similar

false, else

with stimuli S1 and S2. It compares both stimuli and returns a boolean value.

4.2 Branches

Fig. 3: The visual representation of a branch in the Gantt-chart of the program-
ming system. The small pictograms on the left of each branch show the reference
stimulus for the branch.

Analogous to the loops, we used the branch concept of imperative program-
ming languages to find a concept for branches in playback-programmed trajec-
tories q(t). The visual representation of branches in the Gantt-chart is shown in
Figure 3. Let tb be the point in time where the branch should be inserted into
q(t). Then, the constraint q̇(tb) = 0 needs to be fulfilled for the same reasons as
for the loop constraint. Branches consist of N conditions C ∈ {C1, C2, · · · , CN}
and N +1 trajectories T ∈ {T1, T2, · · · , TN , Td}, where Td is the optional default
trajectory. A branch B = (C, T ) is a tuple of a condition and a trajectory, where
the i-th condition is connected to the i-th trajectory. No condition exists for Td,
because it is executed if none of the N conditions evaluate to true.

A condition Ci consists of a reference stimulus that is compared to the stimu-
lus that is received during runtime with the help of the compare function defined
in subsection 4.1. The branch that should be executed is the branch with the
highest similarity value of all branches whose conditions evaluate to true. If no
condition evaluates to true, the default branch Td is executed. If Td does not
exist, the whole branching is skipped and q(t) is executed with t > tb.

5 User study

The intuitiveness of the presented programming system was evaluated in a user
study from the 17th until the 25th of May 2016 at our lab with 20 participants.
The evaluation was done with the methods and questionnaires published in [14]
to get a result that is comparable with other studies.

The final publication is available at Springer via
https://doi.org/10.1007/978-3-319-61276-8_21

5

https://doi.org/10.1007/978-3-319-61276-8_21


6 Michael Riedl, Eric M. Orendt, Dominik Henrich

5.1 Evaluation

Fig. 4: The three tasks that had to be
processed by the participants illustrated
schematically as start and goal condi-
tion.

The presented programming paradigm
is implemented in a prototypical way
to test and to evaluate the concept
regarding intuitiveness. Every partici-
pant had to fulfill three tasks that are
shown in Figure 4 and in a video1.
To generalize from a specific applica-
tion domain, all tasks are designed to
be fulfilled with colored cuboid. The
first task is a simple pick-and-place
operation to make the participant fa-
miliar with the programming system.
The participant has to grasp the block
with the robot and place it at the
marked goal area. The core of the sec-
ond task is a sensor-based loop. The
participant should demonstrate a mo-
tion that grasps the red block and

throws it into a box as long as a red cube lies at the start area. A green cube
is used as a stop-block. As a last task, the participants should implement a
branching with three branches depending on the color of the cuboid.

Three questionnaires and one observation sheet have to be filled out for
every participant, where the first questionnaire has to be answered before the
processing of the tasks. The second questionnaire is divided into two parts to
evaluate the graphical user interface (GUI) and the programming system as
a whole separately. It is filled out separately for each task while the task is
processed. In parallel, the observer fills out the observation sheet. The third
questionnaire has to be answered by the participant after all tasks are fulfilled.
The detailed procedure and goals of the questionnaires can be found in [14].

5.2 Outcomes

All 20 participants were between 20 and 36 years old with a mean value M = 25.5
and a standard deviation SD = 4.3. They were divided into two groups, experts
and non-experts, whereas experts are defined as people that already worked with
robots and non-experts are defined as people that have never done anything with
a robot. With this definition, both groups consisted of 10 participants.

Since EN ISO 9241 and IBIS [15] define the intuitiveness of a system as a
combination of effectiveness, efficiency and satisfaction, all three aspects were
evaluated within the scope of this work. The effectiveness was examined for
both, the GUI and the programming system separately. A value between 0 and

1 http://www.ai3.uni-bayreuth.de/resypub/files/riedl2017a.Sensorbased.loops.and.
branches.for.playbackprogrammed.robot.systems.mp4

The final publication is available at Springer via
https://doi.org/10.1007/978-3-319-61276-8_21

6

https://doi.org/10.1007/978-3-319-61276-8_21


Sensor-based loops and branches for playback-programmed robot systems 7

Fig. 5: The left two diagrams show the results of the measuring of the effective-
ness for each task and group divided into GUI and programming system in a
whole. High values represent high effectiveness. The right two diagrams show
the results of the measuring of the effort for each task and group divided into
GUI and programming system in a whole. Low values represent low effort.

100 is the result for the effectiveness, whereas a high value represents a high
effectiveness. The results are shown in the left two diagrams in Figure 5. The
chart shows, that the average effectiveness is higher for experts than for non-
experts. The overall mean value for the effectiveness of the GUI over all groups
and tasks is 70%, for the programming system it is 92.3%. This shows, that, the
GUI has a lack of effectiveness, especially for the tasks two and three, but the
programming system in a whole has already a good effectiveness.

The efficiency was also raised for the GUI and the programming system
separately. The results were values between 0 and 220, where lower values corre-
spond to a lower effort and therefore a higher efficiency. The right two diagrams
in Figure 5 show the results. The mean value over all groups and tasks was
M = 54.9 (SD = 47.5) for the GUI and M = 55.0 (SD = 39.5) for the program-
ming system. Since the standard deviation is relatively big, one can see, that the
effort is perceived differently from participant to participant, but in average, the
mean value is literally translatable to a bit to somewhat exhausting.

Fig. 6: The rated level of agreement of
both groups for each of the five criteria
of the QUESI-questionnaire.

The satisfaction was evaluated
with the QUESI-questionnaire from
IBIS [15] in five categories. All cat-
egories have values between 1 and
5, whereas higher values represent a
higher satisfaction. The results are
shown in Figure 6. The mean value
over all categories and groups is M =
3.6 (SD = 0.4). According to IBIS,
this value has to be compared to other
studies using QUESI, so that a state-
ment on the satisfaction can be made.
In [14], the programming by demon-
stration approach from [12] and [13]
was evaluated with the same method
and it reached a QUESI-value of 3.6, which is the same as the one our system
received. This can be interpreted in a way, that our developed programming
system is as satisfying and intuitive as the one in [12] and [13].

The final publication is available at Springer via
https://doi.org/10.1007/978-3-319-61276-8_21

7

https://doi.org/10.1007/978-3-319-61276-8_21


8 Michael Riedl, Eric M. Orendt, Dominik Henrich

6 Conclusion

The contribution of this work is the extension of the playback programming
paradigm from [1] by the aspect of sensor-based loops and branches. To achieve
this, the concepts of loops and branches in imperative programming languages is
applied to the Gantt-chart represented and playback-programmed trajectories.
The user study shows, that the developed programming system can be seen as
intuitive compared to other intuitive robot programming approaches.

Acknowledgments. This work has partly been supported by the Bayerische
Forschungsstiftung (BFS) under the project FORobotics.

References

1. M. Riedl, J. Baumgartl, and D. Henrich. Editing and synchronizing multi-robot
playback programs. 47th International Symposium on Roboics - ISR2016, 2016.

2. M. Hägele, K. Nilsson, and J. N. Pires. Industrial Robots. In Springer Handbook
of Robotics. Springer, 2008. 978-3-540-23957-4.

3. Z. Pan, J. Polden, N. Larkin, S. van Duin, and J. Norrish. Recent progress on
programming methods for industrial robots. Robotics and Computer Integrated
Manufacturing, 28(2):87–94, 2012.

4. G. Biggs and B. Macdonald. A survey of robot programming systems. In Proc. of
the Australasian Conference on Robotics and Automation, CSIRO, page 27, 2003.

5. T. Lozano-Perez. Robot Programming. Proceedings of the IEEE, 71(7):821–841,
1983.

6. D. Ardayfio. Fundamentals of Robotics. Mechanical Engineering. Marcel Dekker,
Inc., 1987. 978-0824774400.

7. J. N. Pires, T. Godinho, and R. Araujo. Using digital pens to program welding
tasks. Industrial Robot: An International Journal, 34(6):476–486, 2007.

8. C. Meyer, R. Hollmann, C. Parlitz, and M. Hägele. Programmieren durch Vorma-
chen für Assistenzsysteme - Schweiß- und Klebebahnen intuitiv programmieren. it
Information Technology, 49(4):238–246, 2007.

9. J. N. Pires et al. Programming-by-demonstration in the coworker scenario for
SMEs. Industrial Robot: An International Journal, 36(1):73–83, 2009.

10. P. Neto et al. High-level programming and control for industrial robotics: using
a hand-held accelerometer-based input device for gesture and posture recognition.
Industrial Robot: An International Journal, 37(2):137–147, 2010.

11. M. H. Ang Jr., W. Lin, S.-Y. Lim. A walk-through programmed robot for welding
in shipyards. Industrial Robot: An International Journal, 26(5):377–388, 1999.

12. C. Groth and D. Henrich. One-shot robot programming by demonstration by
adapting motion segments. In 2014 IEEE International Conference on Robotics
and Biomimetics (ROBIO), pages 1068–1075, Dec 2014.

13. C. Groth and D. Henrich. One-shot robot programming by demonstration using
an online oriented particles simulation. In 2014 IEEE International Conference on
Robotics and Biomimetics (ROBIO), pages 154–160, Dec 2014.

14. E. M. Orendt et al. Robot programming by non-experts: Intuitiveness and robust-
ness of one-shot robot programming. In 2016 IEEE 25th International Symposium
on Robot and Human Interactive Communication (RO-MAN), 2016.

15. A. Wegerich, D. Löffler, and A. Maier. Handbuch zur IBIS Toolbox. 2012.

The final publication is available at Springer via
https://doi.org/10.1007/978-3-319-61276-8_21

8

https://doi.org/10.1007/978-3-319-61276-8_21

