
Editing and synchronizing multi-robot playback programs

Michael Riedl, Universität Bayreuth, michael.riedl@stmail.uni-bayreuth.de
Johannes Baumgartl, Universität Bayreuth, johannes.baumgartl@uni-bayreuth.de
Dominik Henrich, Universität Bayreuth, dominik.henrich@uni-bayreuth.de

Abstract

Controlling and programming multi-arm robots is cost-intensive and complex. As a result, such systems currently do
not play a big role for small and medium sized enterprises. This paper tackles the task of intuitive multi-robot playback
programming and introduces a new programming paradigm that allows teaching of both, single arm and multi-arm robots
with only little knowledge about robotics. To achieve that, the common playback programming approach is extended to
more than one robot and an editing mechanism is added to allow a graphical post processing of the generated trajectories.
This editing mechanism contains both, manual editing the trajectories and temporal synchronizing the trajectories of the
robots. Additionally, an example on how to use the new programming paradigm is given and also possible scenarios on
how to use it and its limits are shown.

1 Introduction
Programming industrial robots is a tedious task that needs
a lot of technical knowledge about the robot manipulator
itself and the surrounding environment. This holds true es-
pecially for programming multi-arm robots. As a result,
small or medium sized enterprises do usually not use robots
to fulfill certain tasks, because the effort to program them
bears no relation to the benefit they get from it. Usually
it takes too long to teach tasks, or well trained personnel
is needed to program industrial robots. The goal we aim
for is, to simplify the programming of both, single-arm and
multi-arm robots, so that no specialist is needed anymore.
In this paper, we present a new programming paradigm that
enables to teach multi-arm robots by means of playback
programming and afterwards manipulate the recorded tra-
jectories. An illustration of the developed system is shown
in Figure 1. The playback programming approach is dis-
tinguished to other approaches by the fact, that the robot
manipulators are programmed by an operator that guides
them through the desired trajectory. This guiding can ei-
ther be done manually, with the help of a teach pendant or
with a master robot. After the trajectory is recorded suc-
cessfully, the robot plays back exactly the same path as
taught [1]. A disadvantage of the playback programming
approach is, that it is hardly possible to post process the
recorded trajectory, e.g. delete unnecessary parts of it, and
therefore the whole trajectory has to be reprogrammed if
there is a mistake in the recorded one. To tackle this dis-
advantage, a visual representation of the recorded trajec-
tories and an editing mechanism is introduced, that allows
the user to edit and synchronize the taught trajectories af-
terwards. The visual representation is similar to a Gantt
diagram. It has one timeline per robot component inside a

Figure 1 An illustration of the developed programming
system, including a user-guided robot arm, a graphical
representation of the recorded robot movements, and a
synchronized two-arm task execution (left to right).

common time scale. A robot component is that part of a
system, that can be actuated independently from the other
parts. A robot manipulator, a gripper or a conveyor are all
examples for robot components, but the single joints of a
robot manipulator are no robot components. This form of
programming makes it easier for non-expert users to teach-
in and synchronize multi-arm robots and therefore makes
it interesting for small and medium sized enterprises. Even
for expert users, the programming becomes much easier.
In the rest of the paper, a short overview over the related
work to this topic is given. Afterwards, the new program-
ming paradigm is described, which includes a method to
program multi-arm robots by means of playback program-
ming and then to edit and synchronize the generated tra-
jectories in an intuitive way. In the last section, a short
experiment shows, how to program an example robot sys-



tem, which tasks can be done by using our programming
paradigm and what the limits are of our approach.

2 Related Work
There is various work about the playback programming
method and multi-robot programming, but there is hardly
any previous work about an intuitive way to edit and syn-
chronize playback programs for multiple robots, that we
want to introduce in this paper. Many different papers deal
with robot programming itself and playback programming
in particular.
In [2], a good overview over different programming meth-
ods for industrial robots is given. The overview dis-
tinguishes between online and offline programming tech-
niques. If the program is created by directly teaching the
robot, then the programming method is called online pro-
gramming, whereas a technique that creates the robot pro-
gram independent from the physical robot is called offline
programming. It also explains the most common ones,
e.g. textual programming methods, graphical programming
methods or programming by demonstration. Textual pro-
gramming methods are offline programming methods that
use a textual programming language to create a robot pro-
gram. Graphical programming methods are also offline
programming methods, but they are using a CAD interface
instead of a textual programming language to specify robot
motions. The keyword programming by demonstration de-
scribes an online programming technique where the pro-
grammer teaches the robot by showing it the task once or
several times while the robot observes the demonstration
by means of sensors.
Pan et al. review current research progress on program-
ming methods for industrial robots in [3]. They distin-
guish three major approaches: online programming, offline
programming and programming using augmented reality.
The online programming part deals with two programming
methods, namely the operator assisted online programming
and the sensor guided online programming. The operator
assisted online programming techniques are all very similar
to the playback programming approach, i.e. they all have
in common, that one operator programs the robots either
by direct guiding it or by using a teach pendant. In contrast
to that, in sensor guided online programming, the operator
does not guide the robot directly. Instead, it uses sensory
information to generate the robot program. One example
for that method is, that the programmer draws the desired
path with a marker onto the work piece and the robot ma-
nipulator automatically follows the drawn path with its tool
center point. The offline programming part shows the nec-
essary steps to create an offline programming system and
reviews afterwards already existing offline programming
systems, both, generic ones and from robot manufactur-
ers. Finally, the programming using augmented reality is
discussed by showing different research projects that take
this approach. Augmented reality is a method to extend
a real world scene image by displaying computer gener-

ated 3D models in it. In the field of robot programming,
it is used to achieve a new form of offline programming
by displaying the virtual environment around the real work
piece. Thus the work piece does not have to be modeled
in the virtual environment. Another scenario to use aug-
mented reality in robot programming is, that a model of the
robot is displayed in the real world environment and then
the combined real world and computer generated informa-
tion is used to program the robot.
Another overview over robot programming systems is
given by Biggs in [4]. The survey divides robot program-
ming into automatic programming, manual programming
and software architectures. Automatic programming de-
scribes the methods where the programmer has no direct
control on the generated robot program, like programming
by demonstration with a teach pendant, by directly guiding
the robot or by teaching the robot with gestures, voice or
vision. However, manual programming includes all meth-
ods where the programmer has to enter the behavior of the
robot using e.g. textual programming or graphical pro-
gramming. The last part, software architecture, is part of
all programming systems to form the underlying structure
of the system.
The playback programming method itself is described by
Lozano-Perez [5] . He uses the terms “teaching by show-
ing” and “guiding”, which can be used synonymously to
playback programming in our case. Other synonyms for
playback programming are “lead-through programming”
or “walk-through programming”. The paper [5] describes
the simplest form of playback programming, which is guid-
ing the robot and recording the joint angles, so that the
movement can be reproduced afterwards. It also mentions
extensions to the playback programming method, called
“extended guiding”. For this, the playback programming
is combined with the possibility to use different reference
coordinate systems. The movement is recorded relatively
to one coordinate system and it could be played back in a
different coordinate system afterwards. This can be used
to process identical work pieces which do not necessarily
need to have the same spatial orientation and position for
every iteration of the task.
An example for playback programming can be found in
the EU project SMErobot [6], which shows how to intu-
itively program a robot by using the playback programming
method. The video shows the ease of programming a weld-
ing robot to fulfill a certain task. A worker without experi-
ence in robotics can program the welding system, because
he just has to move the robot to the correct positions with-
out having to write control code.
Ang et al. present a walk-through programmed robot for
welding shipyards in [7]. This approach works without the
help of a teaching pendant by just moving the robot in the
desired direction. The procedure is specialized in weld-
ing in shipyards, it does not allow the post processing of
the recorded trajectory and it is also designed for only one
robot.
A system for welding and adhering is described by Meyer
et al. in [8]. The term "programming by demonstration"



in this paper is equivalent to our term "playback program-
ming". The procedure uses the guiding method to teach
the desired trajectory and afterwards post processes the tra-
jectory, so that the resulting trajectory is adjusted to the
work piece. The post processing part is split up into two
parts, an automatic part and a manual part. The automatic
part compresses the trajectory representation by generating
splines. This results in a smoothing of the trajectory where
the user is able to set the parameters for the splines. In
contrast, the manual part allows the user to directly manip-
ulate the smoothed trajectory by moving the positions of
the points within the simulation window using drag-and-
drop functionality. It also uses a voice command system
that allows the user to control the robot system with short
voice commands and a personal digital assistant to visu-
alize the environment and the movement of the robot and
also to simplify the input of parameters for the program-
ming method. Drawbacks are, that the system is limited
to one robot manipulator and it lacks the visualization of
the trajectory in a timeline representation. The trajectory is
just shown in a simulation window. Furthermore, this ap-
proach does not support multi-arm robot systems and there-
fore does not have any synchronization mechanism imple-
mented.
Park et al. describe in [9] the development of a dual arm
robot manipulator and a teaching system. The teaching
system allows the user to directly teach the arms of the
robot by moving them, which is similar to our playback
programming. It is possible to teach both at the same time,
or to teach them separately, that leads to the ability to teach
coordinated and uncoordinated tasks with the help of this
teaching system. Drawbacks of this approach are, that the
user is not able to edit the generated trajectories and that
there is no special synchronization function implemented.
The approach just plays back the recorded trajectories in
exactly the same way as they were taught.
After dealing with robot programming in general and play-
back programming in particular, we now review previous
work concerning programming of multi-arm robots and
their synchronization.
Connoly describes in [10] the Motoman dual-arm robots.
Besides talking about the advantages of two-arm robots in
an industrial environment, the article focuses on how to
program them. There is either the possibility to use textual
programming with the help of a simulation application to
verify the created program, or the possibility to use graph-
ical programming. The graphical programming approach
in this work uses predefined operations that the user can
arrange in a sequence of operations to create the robot pro-
gram. Pick-up or set-down positions are specified by man-
ually moving the robot to the designated positions. The
paper also talks about the possibility for real-time synchro-
nization, but this remains unspecified.
Gan et al. present in [11] an offline programming sys-
tems for multi-robot cooperation systems. Additionally,
current offline programming technologies are reviewed and
the status of cooperative functions and motions used by the
robot manufacturers are introduced. After the presentation

of principles of robot path planning for cooperative mo-
tions, the developed offline programming system is shown.
To achieve a synchronization between the robots, the pa-
per classifies different cooperative motions, namely con-
current cooperation, coupled synchronous cooperation and
combined synchronous cooperation. Concurrent coopera-
tion is a motion where all robots have the same start time,
but where no position or orientation constraints exist be-
tween the robots. In addition to the same start time, all
robots execute identical motions in a coupled synchronous
cooperation. Hence there is no relative motion between
the different end-effector frames. Finally, combined syn-
chronous cooperation is a motion, where all robots have the
same start time and a slave robot executes an arbitrary mo-
tion relative to the end-effector frame of the master robot
while it follows the movement of the master robot. Gan’s
approach uses a temporal synchronization at the beginning
of each motion and afterwards a local synchronization be-
tween the end-effector frames of the robot manipulators.
Makris et al. describes an intuitive way to program dual-
arm robots with the help of the human language and ges-
tures in [12]. This technique decomposes complex opera-
tions into a sequence of simple operations such as grasp,
approach, etc. The parameters needed to fulfill those sim-
pler operations are entered via a user interface, voice com-
mands or gestures. The movement between the two arms
is synchronized by adding dual-arm operations to the sim-
ple operations like bi-grasp or bi-approach. In addition to
the human language to program the robot, the operator can
also use gestures to initiate the execution of approach or ro-
tate tasks by stretching his arm into predefined directions.
The predefined dual-arm operations in this approach lead
to a limited form of local synchronization, because the mo-
tions of the robots are only synchronized when using these
special tasks.
The next aspect of our paper deals with the visualization of
the recorded robot trajectories.
The video clip at [13] shows the use of bar charts to visu-
alize a movement of robots with the help of SolidWorks, a
3D computer-aided design (CAD) and computer-aided en-
gineering (CAE) software developed by Dassault Systèmes
[14]. It uses one bar per element that is involved in the
movement. That way, it displays the movement of each
joint and of each conveyor separately. One global timeline
is used, so that the user can spot at what time which com-
ponents are moving within the simulation. The chart shows
a bar if the related element is moving and it displays no bar
in case it stands still. The amount of bar charts gets bigger
with every moving element, which leads to a unclearer vi-
sualization of the motion, because there are too many bars
one has to follow.
To conclude the first part, one can say, that there is sev-
eral work about playback programming and multi-robot
programming, but hardly anything that combines playback
programming with an editing mechanism or multi-robot
programming with playback programming. And there is
no work about mutli-robot playback programming in com-
bination with an editing and synchronizing mechanism to



Figure 2 The three possibilities to program a multi-robot
system by means of the playback programming paradigm.
Top: parallel programming. Bottom left: sequential pro-
gramming without playing back remaining robots. Bottom
right: sequential programming while playing back already
recorded trajectories.

post process the generated trajectories. That is, what we
want to introduce in this paper and what is done through-
out the next sections.

3 Programming Paradigm
The first part of this section explains the extension of the
playback programming technique to multiple robot ma-
nipulators, afterwards, the representation of the trajecto-
ries, how they may be edited and how the synchronization
mechanism works is shown.

3.1 Multi-robot playback programming
Playback programming for one robot manipulator is easy
to handle and nearly self-explaining. The difficulty is to
extend this playback programming technique to more than
one robot manipulator. When extending the playback pro-
gramming method to multiple robots, several problems
emerge. The major problem is, how to coordinate the
movement of the robot manipulators and especially how
to allow the user some kind of rudimentary synchroniza-
tion of the movements during the programming. The most
important thing when it comes to synchronizing the robots
is, that the user knows the relative position of each robot
at all times. To achieve this, there is either the possibil-
ity to guide them concurrently through the desired trajec-
tory (all at the same time), or to guide them sequential (one
roboter after another). The latter option can be split up into
two parts, one where all robots, that are currently not pro-
grammed, stand still, and another one, where all already
programmed robots play back their trajectories simultane-
ous to the guiding. All in all, there are three options to
program multi-robot systems, which are shown in Figure
2.
In the following, we take a look at the the effort needed to
program a system with n robot manipulators: The first op-

tion is to program all robots at the same time, but then there
is the problem, that it needs one operator per robot manip-
ulator. So for n robot manipulators to program, one needs n
persons to program the system. Furthermore, all involved
operators need to know exactly what the final robot pro-
gram should look like, none of the operators should make
a mistake. Besides that, a positive aspect of the parallel
programming approach is, that the users know the relative
position of the robots to each other at all times.
The second option to program a multi-robot system by
means of playback programming is, to program the robots
sequentially, but in contrast to the last programming
method, to not play back the already recorded trajecto-
ries when recording a new trajectory. This can be used,
when the different robots have to fulfill independent tasks
and therefore do not have to cooperate. This approach just
needs one person to program the whole system. The prob-
lem with this approach is, that one rarely knows how the
robots are located relatively to each other and therefore
one cannot securely avoid collisions or teach collaborative
tasks.
The last option is to program one robot manipulator after
one another and play back already programmed trajectories
while programming a new robot. This option combines the
positive aspects of both previous options. With this option,
the programmer knows at every time how the robot ma-
nipulators are located relatively to each other and therefore
also have the advantage of programming all robot manipu-
lators at the same time. Furthermore, the amount of persons
to program the system is one, so it is held very low com-
pared to programming all robot manipulators at once. A
disadvantage of this approach is, that other robot manipu-
lators are moving while the operator programs one manip-
ulator. Therefore, other moving robots can be missed by
the operator.

3.2 Internal and visual representation of
trajectories

To achieve an easy manipulability, the internal represen-
tation of the trajectories is important. Internally, we use
a layered structure to store different representations of the
trajectories (Layer V , Layer I and Layer R). These rep-
resentations can losslessly be transformed into each other.
Therefore, all are equivalent. Layer V is used for the graph-
ical representation in our programming system, layer I for
the synchronization and editing tasks and layer R contains
a representation that can be interpreted and executed by the
robot controller. If one layer is manipulated, the other lay-
ers are automatically updated, so that all three layers con-
tain the same information at any time.
Furthermore, the visual representation is an important as-
pect to allow the user an easy and intuitive manipulation
and to provide him a quick overview on the trajectories.
In the new programming paradigm, we chose to use bar
charts similar to Gantt diagrams to represent the recorded
trajectories (similar to video editing software). In a com-
mon time scale, there is one timeline per robot manipulator



which contains the representation of the trajectory. To give
the user additional information, we designed the chart in a
way that one can see, whether the robot manipulator moves
at a certain point in time or whether it stands still. This is
achieved by showing no bar when the manipulator stands
still and by showing a bar when it is moving. Besides that,
the bars can have different colors, depending on how the
trajectory that belongs to the bar, was created.
An example for the visual representation used in our pro-
gramming system is shown in Figure 3. We used the fol-
lowing colors for the bar: It is colored in blue if it was
recorded regularly. In case it was calculated as a transition
movement, the bar is colored in black. It is colored in red,
if it is not possible to play back the underlying trajectory
with the constraints set in the settings. In addition to that,
the gripper commands like open the gripper or close the
gripper are depicted in these bar charts as well. A green
up-arrow stands for opening the gripper, a red down-arrow
for closing it. Furthermore, the synchronization intervals
(see Section 3.4) are also visually represented within our
bar charts. A part of the trajectory that is executed syn-
chronously is displayed with a grey background.
With all these graphical illustrations of the trajectory, it is
easier for the user to get a quick overview on the move-
ment of the robot manipulators without actually following
the physical movement of the manipulators. Additionally,
the visual layer may be supplemented by a graphical simu-
lation of the robot movement.

3.3 Editing of trajectories
Playback programming solely is not capable of creating
complex robot programs, because the whole program needs
to be programmed from scratch if the programmer makes
one single mistake. Therefore, we developed an editing
mechanism to edit already recorded trajectories in our pro-
gramming system by copy, paste, cut and delete. With the
help of this editing mechanism, small mistakes can easily
be removed, and a single action can arbitrarily be repeated,
as often as it is needed for the final program. Addition-
ally, the multiple movements may be rearranged in a new
order. The user selects a part of the visualized trajectory
per drag-and-drop and afterwards chooses, what should be
done with the selected part. One can choose between copy,
cut and delete for a selected part of the trajectory. The
three options do exactly what is expected from them. Copy
copies the selected part to the clipboard, delete deletes the
selected part from the Gantt chart, and cut first copies it
to the clipboard and afterwards deletes it. Parts that were
copied to the clipboard can be inserted at an arbitrary point
in the trajectory of the same robot by selecting one point
in the timeline and using the paste function to insert the
copied part at this position.
One problem that emerges when deleting parts of the tra-
jectory or inserting a new part into the trajectory is, that the
robot manipulator needs to perform a transition movement
at the start and end (bar edges) of the removed or inserted
subtrajectory, because usually a discontinuity accrues at the
edges of the insertion or deletion. There are different op-

Figure 3 Example visual representation of the trajectory.
Blue: recorded. Black: automatically generated transi-
tion movement. Red: not able to play back with current
parameters. Green up arrow: open gripper. Red down ar-
row: close gripper. Grey rectangle behind timeline: syn-
chronization interval. No visible block: robot manipulator
stands still.

tions to automatically create such a movement. One possi-
bility is, to calculate a direct movement by using the con-
straints specified in the programming system, like maxi-
mum velocity and maximum acceleration. Another option
is, to create a collision-free movement by using path plan-
ning and an environment model. It is also possible to let the
user record a transition movement by means of playback
programming with the help of the compliant robot by ad-
justing its impedance, so that the robot can easier be moved
in the direction of the target point than in the opposite di-
rection. There are certainly further ways to create such a
transition movement, but in the end, it is important, that the
resulting trajectory is valid and executable.
In our prototypical implementation, we chose to calculate
the transition movement by creating a direct movement be-
tween both positions by using the maximum velocity and
maximum acceleration specified in the settings of our pro-
gramming system. In that case, we do not perform any col-
lision test, but the generated transition movement ensures,
that the whole trajectory remains valid.

3.4 Synchronizing of trajectories
Finally, our programming paradigm contains a synchroniz-
ing mechanism that allows the user to establish a temporal
synchronization between the multiple robot components,
so that certain movements are executed synchronously.
This feature is important if tasks have to be coordinated,
for example one robot manipulator holds a work piece and
has to pass it to another robot manipulator, then the first
one is not allowed to open its gripper before the second
one closed its gripper. Another example is, that two robot
manipulators have to grasp the same work piece and have
to place it somewhere else, then the movement also needs
to be executed synchronously, so that the two robot manip-
ulators work as a parallel kinematics for a certain period of
time. Both can be achieved with the help of the synchro-
nization mechanism introduced in the following.
In the approach taken here, a synchronization interval is
defined by its start and endpoint on the timeline. These
interval limits concurrently refer to more than one robot



component. To visualize the intervals for the user, squared
brackets or a grey background rectangle may be displayed
within the Gantt diagram. Inside the intervals, the recorded
trajectories of the involved robot components are played
back exactly synchronous. The edges of a synchronization
interval can coincide at one point in time to form a synchro-
nization point. At a synchronization point, the involved
robot components have to stop executing the trajectories
until all synchronized robot components have reached that
point. Afterwards, the robot components continue execut-
ing the trajectories independently from each other. This
behavior is similar to the concept of a barrier in parallel
computing.
With the above definition of synchronization intervals and
synchronization points, it is reasonable to restrict the edges
of intervals and points to a position in the timeline, where
the associated robot components stand still. This con-
straint is needed to protect the robot components from dam-
age, because if one component has to wait at an edge of
a synchronization point/interval, for another robot com-
ponent and it would be allowed to insert synchronization
points/intervals within the trajectory, where the associated
component is moving, then the robot component has to re-
duce its velocity to zero in no time. This may lead to a
large force, which can cause damage to the robot compo-
nent. Usually, this constraint still covers all needed syn-
chronization intervals, because typically every robot ma-
nipulator stands still before and after opening or closing the
gripper and at the beginning and the end of the movement.

4 Experimental Results
This section gives an overview on how to use our pro-
totypical implementation of the introduced programming
paradigm. It also shows which scenarios are realizable and
how to program an example task. At the end of the section,
the limits of the current implementation are shown.

4.1 Robot setup
Figure 4 shows the setup that we use to test the imple-
mentation. For our testing environment, we use two Kuka
Lightweight Robot 4 [15] with seven degrees of freedom
and a payload of 7 kg each. Both robot manipulators use
the Kuka KRC2 controller and are connected to a computer
that is used to execute the robot programs. Our program-
ming system is able to run on any computer or laptop that
is connected to the same network as the two computers that
control the robot manipulators. In our case, we simply use
one of the computers that are connected to the robot manip-
ulators to run the programming environment. Each of the
robots is equipped with a gripper that allows us to perform
pick-and-place operations. One uses the 3-Finger Adaptive
Robot Gripper from Robotiq [16], the other one uses the
PG 70 2-Finger Parallel Gripper from Schunk [17]. The
whole setup consists of four robot components, namely the
two robot manipulators and the two grippers. Therefore
the visual representation consists of four timelines, one for

Figure 4 Robot setup with four robot components,
namely two robot manipulators and two grippers in front
of a big screen that is used to display the programming
system. The arrows indicate the task that should be exe-
cuted in section 4.2

each robot component.

4.2 Example application
This section shows, how to use the previously described
programming system with our setup. It also describes ex-
ample use cases for the system.
After starting all components of the setup, the robots are
automatically registered at our programming system. A
popup occurs and informs about the robot that is now avail-
able for programming purposes. In this popup, the user
has to select the gripper connected to the newly registered
robot manipulator and the position of the robot within the
simulation widget by entering x, y and z coordinates. After
completing this step, a new timeline is shown for the robot
with an empty trajectory. This step has to be repeated for
all robots that are part of the multi-robot system.
Once all robots are registered, the programming of the
robots may begin. In this example we assume a left and
a right robot. The task, that we want to show in detail is
grasping a work piece with the left robot, then handing it
over to the right one and afterwards placing this work piece
at a desired position. This task is shown in detail in Figure
4. To show the difference between synchronization points
and intervals, the passing of the work piece can be done in
two different ways. The first option is, that the work piece
is just handed over to the right robot manipulator and the
left one moves back to its starting position after opening
its gripper. The second option is, that after grasping the
workpiece with the right robot, both robots perform a syn-
chronous movement, similar to a parallel kinematic, while
the work piece is grasped with both grippers. After finish-
ing this motion, the left robot manipulator releases the work
piece and moves back to its starting position, whereas the
right robot manipulator finishes its trajectory by placing the
work piece at the designated deposition spot. Here, one can
see, that the first option needs a synchronization point that
is located between closing the gripper of the right robot ma-
nipulator and opening the gripper of the left one. The sec-



ond option needs a synchronization interval, because the
motion between closing the gripper of the right robot ma-
nipulator and opening the gripper of the left one needs to
be executed synchronously, otherwise the work piece or the
robot manipulators may be damaged.
To start programming the whole system, we first have to
decide, which of the two options we want to implement.
Depending on this decision, we choose the way to program
the robots.
When choosing the first option, the appropriate way to pro-
gram the whole system is, that we use the option to program
the robots sequentially one after one another and play back
the previously recorded sequences of the robots, that al-
ready have been recorded, as it is shown in the bottom right
picture of Figure 2. First, we start recording the left robot
manipulator and move it from its starting position to the
position where it should grab the work piece. On the way
to the work piece, the gripper needs to be opened. When
the work piece is reached, we need to close the gripper and
afterwards move the manipulator with the work piece held
by the gripper to the position, where we want to pass the
work piece to the second robot manipulator. After reaching
this position, we open the gripper and move the robot ma-
nipulator back to its starting position and stop the record-
ing of the first robot. After the recording is stopped, a
visual representation of the recorded trajectory is shown
in the timeline of the first robot manipulator. Now, we
insert a synchronization point right before the gripper re-
leases the work piece, so that, when we record the second
robot manipulator, we have enough time to grab the work
piece before the first one releases it. The next step is to
record the second robot manipulator, which is in our case
the right one. We choose the option to record the robot
manipulator while the other robot manipulators play back
their previously recorded trajectories. So, while we start
moving the second robot manipulator from its starting po-
sition to the position where the passing of the work piece
takes place, the first robot manipulator plays back its tra-
jectory until it reaches the synchronization point. At this
point, the first robot manipulator waits for the second one
until it has grabbed the work piece in the passing area and
until the robot programmer has confirmed the synchroniza-
tion point. Then, the first one releases the work piece and
moves back to its starting position, whereas the second one
needs to be moved to the position where it should place
the work piece. When reaching the deposition spot, the
gripper of the second robot manipulator is opened and the
work piece is placed at the desired position. Afterwards,
the second robot manipulator has to be moved back to its
starting position and then, the recording of the second robot
manipulator can be terminated. Now, the timelines of the
robot manipulators show the visual representation of the
recorded trajectories, including the gripper movements and
the synchronization point. These are all steps to program
the multi-arm robot to hand over a work piece from one
robot to the other one. Now, the whole program can be
played back as often as it is desired and the robot manipu-
lators will move the work piece from the starting position

Figure 5 Further scenarios to use the programming
paradigm in. Top left: Place a work piece with a robot
manipulator in a box that is held by a second robot manip-
ulator. Top right: Lay work pieces with two robot manip-
ulators sequentially into a box in the middle. Bottom left:
Place a work piece with the first robot manipulator in the
middle, grab it with the second one and put it aside. Bot-
tom right: Hang a work piece with one robot manipulator
on a hook that is held with the second robot manipulator
(In our case, the hook is the gripper of the second robot
manipulator).

to the end position of the whole movement.
When choosing to implement the second option, which
contains a synchronous movement with both robots grasp-
ing the work piece, the option to implement all robots at
the same time, as it is shown in the top picture of Figure
2, is the best to choose. In our case, this option requires
two operators to program the system, because both robot
manipulators need to be programmed simultaneously and
therefore one person is needed for each robot manipulator.
The previously described movement is now programmed
in a parallel way instead of the sequential programming
in the paragraph before. After the recording is finished,
the programming system displays a visual representation of
the trajectories of both robot manipulators in each of their
timelines. One of the programmers now just has to insert
a synchronization interval that starts right after the second
robot manipulator grabs the work piece and ends right be-
fore the first robot manipulator releases the work piece. By
inserting this, it is ensured, that the synchronous motion
always stays the same, even if parts of the remaining tra-
jectories are edited with copy, paste or delete.
But there are also other possible scenarios where to use the
new programming system in. Four of them are shown in
Figure 5. The top left picture shows a motion, where the
left robot manipulator grabs a work piece and places it in-
side a box that is held by the right one. In this example,
a synchronization point has to be used to ensure that the
left robot manipulator releases the work piece only when
the second one is already at the correct position with the
box. The top right picture displays a movement, where
both robot manipulators place work pieces in a box that
stands in between them. Here it is important, that a syn-



chronization point is used to ensure, that only one robot
robot manipulator is at the box at any time, otherwise they
will collide. A motion where the left robot manipulator
places a work piece between the two manipulators and the
right robot manipulator picks this work piece up and places
it at a designated deposition spot is shown in the bottom
left picture. Here, it is also important to use a synchroniza-
tion point to assure, that not both robot manipulators are
at the position between them at the same time, since they
are going to collide otherwise. The last example given in
Figure 5 is a motion, where one robot manipulator hangs
up a work piece on a hook that is held by the other one. In
this picture, we use one finger of the gripper as the hook to
demonstrate it. These are just a few examples to show how
flexible our newly developed programming system is.

4.3 Limits
The current implementation of the programming system
has its limits when the tolerance of the task, that should be
executed, is not big enough. This is due to the impedance
mode that we use to play back the recorded trajectories.
Therefore, tasks like putting a peg into a hole with small
tolerance are not feasible with the current implementation,
because it cannot be assured, that the played back move-
ment is perfectly identical with the recorded one. The
movements of two executions can slightly differ from each
other, which would lead to failure if the tolerance of the
task is smaller than the difference between the recorded and
the played back movement.

5 Conclusion
To summarize, one can state, that we extended the multi-
robot playback programming approach by an editing mech-
anism, that has a special visual representation similar to
a Gantt diagram, a graphical editing function and a syn-
chronization function. This is an important step towards
bringing robot systems to small and medium sized enter-
prises, because no expert is needed anymore to program
these systems. The whole paradigm is implemented in a
prototypical way and was submitted as patent application
at the German Patent and Trademark Office [18].

6 Literature
[1] D. Ardayfio. Fundamentals of Robotics. Mechan-

ical Engineering. Marcel Dekker, Inc., 1987. 978-
0824774400.

[2] Martin Hägele, Klas Nilsson, and J. Norberto Pires.
Industrial Robots. In Bruno Siciliano and Oussama
Khatib, editors, Springer Handbook of Robotics.
Springer, 2008. 978-3-540-23957-4.

[3] Zengxi Pan et al. Recent progress on programming
methods for industrial robots. Robotics and Computer
Integrated Manufacturing, 28(2):87–94, 2012.

[4] Geoffrey Biggs and Bruce Macdonald. A survey of
robot programming systems. In Proceedings of the

Australasian Conference on Robotics and Automa-
tion, CSIRO, page 27, 2003.

[5] Thomas Lozano-Perez. Robot Programming. Pro-
ceedings of the IEEE, 71(7):821–841, 1983.

[6] SMErobot. Intuitive Programming by Demonstra-
tion: Welding. 2009. http://www.smerobot.

org/15\_final\_workshop/download/

full%20resolution/D3_Programming_by_

demonstration_1024x576_2000kBit.mov, last
visit: 16.03.2016.

[7] Marcelo H. Ang Jr., Wei Lin, Ser-Yong Lim. A
walk-through programmed robot for welding in ship-
yards. Industrial Robot: An International Journal,
26(5):377–388, 1999.

[8] Christian Meyer, Rebecca Hollmann, Christopher
Parlitz, and Martin Hägele. Programmieren durch
Vormachen für Assistenzsysteme - Schweiß- und Kle-
bearbeiten intuitiv programmieren. it – Information
Technology, 49(4):238–246, 2007.

[9] ChanHun Park, KyoungTaik Park, Dong Il Park, and
Jin-Ho Kyung. Dual arm robot manipulator and its
easy teaching system. In Assembly and Manufactur-
ing, 2009. ISAM 2009. IEEE International Sympo-
sium on, pages 242–247, 2009.

[10] Christine Connoly. Motoman markets co-operative
and humanoid industrial robots. Industrial Robot: An
International Journal, 36(5):417–420, 2009.

[11] Y. Gan, X. Dai and D. Li. Off-Line Programming
Techniques for Multirobot Cooperation Systems. In-
ternational Journal of Advanced Robotic Systems, 10,
2013.

[12] Sotiris Makris, Panagiota Tsarouchi, Dragoljub Sur-
dilovic, and Jörg Krüger. Intuitive dual arm robot
programming for assembly operations. CIRP Annals
- Manufacturing Technology, 63(1):13 – 16, 2014.

[13] Javelin Technologies Inc. SolidWorks Tutorial:
How to Animate a 6 DOF (degrees of freedom)
Robot. https://www.youtube.com/watch?v=

QY4T51KkzJI, last visit: 16.03.2016.
[14] Dassault Systèmes. SolidWorks. http://www.

solidworks.com/, last visit: 16.03.2016.
[15] KUKA AG. KUKA LWR 4 data sheet. http://

www.kukaconnect.com/wp-content/uploads/

2012/07/KUKA_LBR4plus_ENLISCH.pdf, last
visit: 16.03.2016.

[16] Robotiq Inc. Robotiq 3-Finger Adaptive Grip-
per data sheet. http://robotiq.com/wp-

content/uploads/2014/08/Robotiq-3-

Finger-Adaptive-Gripper-Specifications-

ES.pdf, last visit: 16.03.2016.
[17] Schunk GmbH & Co. KG. Schunk 2-Finger Paral-

lel Gripper data sheet. http://www.schunk.com/

schunk_files/attachments/PG_70_EN.pdf, last
visit: 16.03.2016.

[18] Universität Bayreuth. Robotersteuerung, September
2015. Deutsche Patentanmeldung Nr. DE 10 2015
116 086.2.


