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Abstract. Recent research in robotics aims at combining the abilities
of humans and robots through human-robot collaboration. Robots must
overcome additional challenges to handle dynamic environments within
shared workspaces. They especially must perceive objects and the work-
ing progress to synchronize with humans in shared tasks. Due to un-
predictable human interaction, local information about objects detected
by eye-in-hand cameras and stored within a world model falls in value
as soon as respective objects get out of sight. Our contribution is an
approach to making world models aware of human influences and thus
allowing robots to decide, whether information is still valid. To this end,
we annotate pieces of information with certainty values encoding how
trustworthy they are. Certainty is adapted over time according to addi-
tional knowledge about human presence within the workspace, provided
by a global sensor. Thus, we achieve human-awareness through fusion of
local and global sensor data. Our concept is validated through a proto-
type implementation and experiments that regard certainty of objects in
different scenarios of human presence.
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1 Introduction

Recent research in robotics aims at systems combining the abilities of humans
and robots through human-robot collaboration. Those systems provide the flexi-
bility needed to apply robots in small businesses, the service sector, and domestic
homes. However, robots must be able to perceive, construe and react to unpre-
dictably changing environments outside industrial work cells.

Application scenarios for human-robot collaboration often incorporate the
manipulation of objects that are small in relation to humans and robot ma-
nipulators moving within the workspace (Fig. 1, left). A high level of occlusion
may be expected when using cameras in fixed positions, rendering their usage
impractical. Consequently, eye-in-hand cameras are more suitable for maintain-
ing a world model of objects used within shared tasks. However, humans may
arbitrarily change the state of objects previously stored within the world model.
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Fig. 1. Human-robot collaboration scenarios often incorporate the manipulation of
objects that are small in relation to humans and robots (left). Data gathered with
eye-in-hand cameras falls in value, as humans may change the environment while the
robot looks away (right). Additional global sensors, e.g. a 2D LIDAR scanner (right,
below table) can be used to raise human-awareness in world models constructed from
local sensor data.

This makes local sensor data fall in value as soon as respective objects get out
of sight (Fig. 1, right). Although global sensors are not suitable for task-related
perception, they can be used to make world models aware of human influences.
Such human-awareness helps robots to decide whether data is outdated or can be
reused, e.g. for task planning. We contribute an approach to making world mod-
els human-aware through sensor fusion. Each object detected by local sensors is
annotated with an individual certainty value. This value encodes the confidence
in the correctness of object properties currently stored in the world model. Cer-
tainty is abated over time based on information about human presence within
the workspace, gathered through a global sensor.

We review related work in Section 2. Details concerning our approach are
reported in Section 3. The results of experiments with a robot-mounted, cali-
brated pair of color and depth camera as local sensors and a 2D LIDAR scanner
as a source of global information are presented in Section 4.

2 Related Work

The ability to detect humans is a prerequisite for realizing any human-aware
application. With application scenarios ranging from human-robot collaboration
over autonomous cars to smart devices and ubiquitous computing, research has
already proposed a wide variety of algorithms specifically designed to detect
humans in incoming sensor data.

Algorithms for human detection differ mainly in their input (e.g. color im-
ages [17], depth images [21], range scans [2]) and output (e.g. estimated location
[5], pose [13], or occupied volume [9]). In terms of output data, algorithms ad-
ditionally fall into one of two variants: Binary variants (e.g. [13]) yield a single
hypothesis per human, while probabilistic variants (e.g. [8]) offer one or more
hypotheses, each with an estimated certainty. Internally, both binary and prob-
abilistic variants for human detection work with an assortment of deterministic
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and probabilistic strategies, such as codebooks (e.g. [3]), neural networks (e.g.
[16]), particle filters (e.g. [10]), or Kalman filters (e.g. [15]). Additional features
include support for human tracking over time (e.g. [15]), intrinsic support for
sensor fusion (e.g. [9]), or gesture recognition (e.g [18]).

Most algorithms for human detection depend on a specific type of sensor.
In this context, two algorithms for human detection are particularly relevant to
our contribution: Both [2] and [14] use a 2D laser scanner at knee-height to de-
tect humans. The former approach derives a strong classifier for human legs by
applying AdaBoost on a variety of weak classifiers for 2D point sets. The latter
approach combines object tracking with 2D point clustering and heuristics to
estimate probabilities for human presence in individual 2D clusters. Opposed to
both approaches, our contribution desires to exploit the results of human detec-
tion to derive a human-aware certainty for objects within the robot workspace.

Once humans have been detected within sensor data, the remaining appli-
cation must consider detection results through an appropriate system reaction.
Reactions depend strongly on the application scenario. In the scenario of human-
robot collaboration, current research studies a variety of application scenarios,
including risk-minimized path planning (e.g. [7]), gesture-based robot program-
ming (e.g. [18]), and human-aware task planning (e.g. [1]). Our contribution does
not depend on a specific application scenario, but instead we attach certainty to
objects within a world model for use by arbitrary applications.

To intuitively integrate the results of human detection and the final system
reaction, a structured approach proposes benefits over ad-hoc solutions. Popular
structured approaches to software engineering for robot systems — robot sys-
tem architectures (e.g. ROS [11]), knowledge databases (e.g. RoboBrain [12]) or
geometric world models (e.g Octomap [20]) — have individual flaws in efficiency,
extensibility, or simplicity. Our contribution avoids these flaws by relying on the
alternative ENACT (ENtity-ACTor) world model [19], which has been designed
specifically to be efficient, extensible, and intuitive. In ENACT, a set of entities
E = {e1, ..., e|E|} models each relevant object of the physical world (e.g. the
robot, humans, workpieces) as an individual entity ei. Aspects aj from a set of
aspects A = {a1, ..., a|A|} govern entity attribute classes (e.g. pose, color, weight,
certainty). One or more world contexts W bind data to pairs of entity and as-
pect (ei, aj). Finally, threaded actors ak from a set of actors A = {a1, ..., a|A|}
perpetually update data within world contexts through a sophisticated locking
and synchronization mechanism. For instance, actors realize perception, sensor
fusion, path and task planning, or robot control.

3 Our Approach

The structure of our approach to fusing local and global sensor data for achiev-
ing a human-aware ENACT world model is depicted in Fig. 2. Local information
about objects is generated through an object recognition actor arecognition. This
actor processes images provided by the camera actor acamera and updates values
of aspects within the world context W , e.g. the object pose apose. The human de-
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Fig. 2. Our human-aware world model is realized using the ENACT framework. Ac-
tors provide camera images (acamera) and 2D LIDAR scans (alaser). Object recognition
(arecognition) is used to update aspect values within a world context W . The detection
actor (adetection) stores information about the position of humans in another context
Ht. Ht is used by the aging actor aaging to derive the current certainty for all entities.

tection actor adetection receives global sensor information and stores the position
of humans within the workspace in another world context Ht. The actual sensor
fusion is performed by the aging actor aaging. This actor determines a certainty
value Ct(e) for each entity e within W at time t and updates the respective value
of the certainty aspect acertainty. Certainty is decreased with time depending on
how comfortably an entity can be accessed by the humans currently present at
the workbench (Sections 3.1 and 3.2). Thus certainty encodes confidence in the
current values of the other aspects of e, similar to a probability of their cor-
rectness. A robot system that uses the human-aware world model can decide
to reuse previously extracted information with a high certainty value, and may
purge aspect values of entities with low certainty from the world context.

We favor a 2D LIDAR range scanner placed below the workbench that hu-
mans and robots work at as global sensor. This type of sensor is better suited
for our small scale collaboration scenarios, as it is less invasive and needs a
less complex setup routine than e.g. a multi camera system for human tracking.
Moreover, LIDAR data encodes information about the position of humans more
compactly than camera images. This way, the computing effort of adetection is
reduced from human tracking in large images to detection of leg silhouettes in
significantly smaller data sets. However, our approach can easily be adapted to
other global sensor systems by exchanging the actors alaser and adetection.

3.1 Formal Definition of Human-Aware Certainty

In formal terms, we are looking for some certainty function Ct : E → [0, 1]
that maps an entity to a certainty value at time t to realize aaging. Ct may use
two types of sensor data as input: The local data is given as a subset Vt ⊆ E
of those entities currently within the field of view of the eye-in-hand camera,
output by arecognition. The detection actor determines the human presence map
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Ht = {h1, h2, ..., h|Ht|} of points hi ∈ R2 in the sensor plane that belong to
silhouettes of humans. Based on this input, the certainty Ct(e) of entity e at
time t is calculated incrementally from Ct−1(e) by evaluating

Ct(e) =

1 if e ∈ Vt,
max (0, Ct−1(e)− λ ·Aacc(e,Ht)) if e /∈ Vt ∧ t > 0,
0 else

.

As long as an entity is seen by the camera (e ∈ Vt), certainty is 1. Entities
outside the field of view are aged by decrementing the value of the previous
time step. The decrement mainly depends on the accessibility Aacc : E × 2R

2 →
[0, 1]. Aacc can be understood as a measure for probability of some entity to be
modified under the current human presence. Entities that are within the sphere
of influence of many humans are highly accessible and thus need to age quickly.
On the other hand, an object that is far away from any human presence has
low accessibility, as there is no need to lose trust in its current state within the
world model. We additionally use a constant rate λ to control the impact of
accessibility on certainty. After some time, Ct(e) will drop to 0.

3.2 Realization and Implementation

Our formula to determine a human-aware certainty is based on the set of cur-
rently seen entities Vt, the current human presence Ht, and the accessibility Aacc

of an entity under influence of Ht. Our prototype implementation realizes these
parameters as follows: Visible objects and corresponding aspect values are ex-
tracted from point clouds by arecognition. However, the world context would not
be consistent if all recognized objects were stored immediately — if two subse-
quently captured point clouds show the same object instance, two entities would
exist in W for this instance. We achieve consistency by compressing the set of
aspect values belonging to an entity using a hash function fH . The hash quan-
tizes and then concatenates all aspect values to form a character string unique to
the current state of the entity. The recognition actor finally compares the hash
of newly detected objects with precomputed hashes of already known entities in
W , stored as an aspect ahash. If an entity of matching hash exists, the aspect
values of that entity are updated. Otherwise, a new entity is introduced.

We are using background subtraction to determine current human pres-
ence Ht. Let Dt(θ) be the LIDAR scan at time t, mapping each angle to
the measured distance. A reference scan R(θ) is acquired at t = 0. Based
on the assumption that no humans are present during the reference scanning
process, samples belonging to human leg silhouettes are characterized through
|Dt(θ) − R(θ)| > εsubtraction. The identified samples are converted into points
H ′t ∈ R2. We apply Euclidean clustering with threshold εcluster to H ′t for further
reduction of computation efforts in subsequent steps. The human presence map
Ht then consists of the centroids of the identified clusters. More sophisticated
approaches to human tracking in 2D LIDAR data can be integrated by replacing
the actor adetection (e.g. with [2] or [14], see Section 2).
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Finally, we need a specific definition of Aacc. Let Aind : R2 × R2 → [0, 1]
be the probability that a human at position hi ∈ R2 accesses some point p
within the workspace. For multiple humans as encoded in Ht, the probability
Apoint : R2 × 2R

2

that any of them will access p is given as

Apoint(p,Ht) = 1−
|Ht|∏
i=1

(1−Aind(p, hi)).

This expression is intuitively derived by applying rules for joint probabilities and
complementary events from probability theory, under the additional assumption
that all humans act independently from one another. Apoint can be interpreted
as a scalar field that maps each point of the LIDAR scanning plane to a value
describing how likely this point will be accessed for the current human presence.
The accumulated accessibility Aacc averages the accessibilities of all points pe
within an entity. Aacc is given as

Aacc(e,Ht) =

∫
Apoint(pe, Ht) dpe∫

1 dpe
.

In our current implementation, we reduce entities to their centroids, and thus
avoid the calculation effort of integrating over entity volumes.

As it is impossible to find a task-independent representation of Aind, we use

Aind(pe, hi) =

1 if d(pe, hi) ≤ Larm,
f(d(pe, hi)) if Larm < d(pe, hi) ≤ Larm + Ltorso,
0 else,

as an approximation, with Euclidean distance d of two points and a monotonously
falling function f : [Larm, Larm+Ltorso]→ [0, 1], e.g. f(x) = 1− 1

Ltorso
·(x−Larm).

This definition of Aind is motivated by human body dimensions. Some point pe
within a radius of the arm length Larm is highly accessible for a human at posi-
tion hi. With increasing distance, one needs to lean over the workbench, making
the access to objects less comfortable. Points with a distance greater than the
sum Larm +Ltorso of arm and torso length Ltorso can not be accessed at all. Val-
ues for the parameters Larm and Ltorso can be derived from industrial standards,
e.g. DIN 33402-2 [4] or ISO/TR 7250-2 [6].

4 Experimental Validation

Our experimental setup is shown in Fig. 1. We use a calibrated pair of an IDS
uEye UI-1220SE-C-HQ color camera and an Ensenso N10-308 depth camera to
collect point clouds for object recognition while a lightweight robot is moving. A
RPLIDAR A2 laser scanner is placed on knee-height below the workbench. Fig.
3 (left) partially shows a typical scan (black dots) of the sensor located at the
position marked with a gray hexagon. Two humans are detected due to their leg
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Fig. 3. Two humans (gray samples) detected by the LIDAR sensor (gray hexagon)
induce a field of high (red) to low (green) accessibility. The plot shows how the certainty
value of two entities (blue hexagons) develops in different scenarios of human presence.

silhouettes (gray samples). The humans induce a scalar field of high accessibility
(Apoint = 1, red) that drops to Apoint = 0 (green) with increasing distance.

The behavior of entities under the influence of human-aware certainty is
documented in Fig. 3 (right). We regard the certainty of two entities (blue in Fig.
3, left) e1 (right hexagon) and e2 (left hexagon) over time in different scenarios
of human presence. In Scenario 1, a human bypasses the workbench in positive
y direction, and returns on the same path. The certainty of e1 drops while the
human is near on the way forth and back, but remains constant while he is out of
grasping range. For Scenarios 2 and 3, a human approaches the workbench along
the x axis. The certainty of e1 starts dropping earlier (Scenario 2) and reaches a
lower absolute value, as e1 remains within the human handling area for longer
than e2 (Scenario 3). Certainty in Scenarios 1 to 3 reaches a constant, identical
gradient, as the distance between regarded entity and humans falls below Larm

in all three cases. In contrast to this, the certainty gradient of e2 in Scenario 4
does not reach this maximum while two humans arrive and stand at the table at
positions depicted in Fig. 3 (left) — e2 is not within a distance lower than Larm

to either of the humans. The certainty falloff is stronger between t1 and t2. This
is due to the fact that one human arrives late at time t1 and leaves early at t2.

5 Conclusion

In the preceding, we have contributed a novel approach that derives data cer-
tainty from human presence within the workspace. In particular, our approach
allows robot systems to become human-aware through the fusion of local and
global perception results. We have empirically validated our approach in an
example application, where we derived data certainty by fusing local object per-
ception results with human presence maps acquired through a global LIDAR
sensor. In future work, we aspire to integrate predictive, certainty-based task
planning into our example application. However, our contribution is not limited
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to this application, but intuitively extends to alternative scenarios and arbitrary
sensor configurations. Thus, in conclusion, our contribution carries significance
for a wide array of predictive and human-aware applications from the field of
human-robot collaboration.
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