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Abstract. Recent advances in safe human-robot coexistence make col-
laboration of humans and robots in achieving common goals feasible. We
propose a concept that treats human and robot agents as equal partners
in executing a task specified by a shared task model. Equality between
agents offers high flexibility, as e.g. the team composition may change ar-
bitrarily without interrupting the working progress. The main challenge
in achieving flexible teaming is coordinating the robot with operations
executed by human partners. We contribute an approach to this problem
that is based on observing pre- and postconditions of operations using a
robot-mounted camera system. The coordination mechanism is embed-
ded into a framework that allows domain experts to create, test, and
dispatch new task models to collaborative execution. The approach is
validated by experimental tasks composed of pick-and-place operations.

Keywords: human-robot collaboration, equal-partners teamwork, human-
robot coordination, task modelling

1 Introduction

Traditional robot systems are designed to repeatedly perform the same task for
a long period of time. The safety of human workers in industrial setups is often
ensured by fences that prevent them from entering the robot workspace. Recent
advances in the field of sensing enable safe human-robot coexistence without
these physical barriers (e.g. by fast reconstruction of the robot workspace [26]
and reactive motion planning [5] or tactile sensors [2]). We envision a hybrid
assembly cell that follows the paradigm of symbiotic assembly [3] and thus uses
the precision and strength of robots as well as the cognitive skills unique to
humans to work together on achieving a common goal. By symbiotic combination
of intelligent robotics and human knowledge and experience, systems that offer
the flexibility required for applying robots in small batch production, handicraft
workshops or small laboratories can be designed. We therefore propose a method
that combines execution of robot operations contributing to goal achievement
with operations to acquire sensor data needed for synchronizing with human
actions. This mechanism is embedded into a system allowing domain experts to
model and execute tasks in human-robot collaboration.



2 Dominik Riedelbauch, Tobias Werner, Dominik Henrich

2 Related Work

We structure work related to human-robot common goal achievement based on
task models according to the degree of flexibility they offer to the participating
agents during task execution. Least flexibility is offered by systems that perform
a fixed assignment of operations within a task to agents in advance of the
execution process. In [10], methods from classical assembly planning are adapted
to build a hierarchical framework for optimal task allocation and execution in
human-robot collaborative assembly. The HRI/OS [4] uses a centralized execu-
tive to delegate tasks to humans and robots. Groups of operations can also be
allocated to agents by assigning a role to each of them [13][21].

The next level in our taxonomy is formed by approaches where either a
human or robot dominates the process, while the counterpart within the
team follows orders or adapts. Control can be given to the robot, which plans,
assigns and explains parts of the task to a human partner [1] [20]. The task
allocation is negotiated in [7], where a robot asks the human for permission
before performing an operation. Other approaches regard the robot as a tool
that assists humans by performing assistive actions [6][12][16].

We regard systems with a focus on decision authority for all agents as
the most flexible. The Chaski executive [24] enables dynamic execution of tasks
formulated as Temporal Constraint Networks (TCNs) by just-in-time assignment
of operations to agents. Each agent decides for the next operation on the fly based
on the decisions taken and communicated by others, resulting in an execution
process that fulfils all time constraints encoded in the TCN. Similar to [24],
the approach of [17] uses precompiled versions of Temporal Planning Networks
under Uncertainty for integrated plan recognition and dynamic execution.

Our hypothesis is that a robot system should possess the properties listed
below to achieve symbiotic collaboration. These properties also allow the inte-
gration of our approach into the above taxonomy. An exchangeable task model
should be the main input, preferably one similar to those used in assembly plan-
ning (e.g. precedence graphs, AND/OR-Graphs [8]) so that existing planning
algorithms can be reused for adding knowledge to the system. The task model
is shared between humans and robots to approximate a shared mental model
[11]. Studies on human teaming show, that this increases team work effective-
ness [18][19]. It may be necessary for human agents to handle interrupts in small
workshops, e.g to serve entering clients. If the system allows for a dynamic team
setup, meaning that the number of humans and robots can arbitrarily change,
the working progress will not be stopped in such cases. This can not be achieved
by a pre-computed schedule, as task allocation needs to vary depending on the
current team composition. Thus, requesting flexible teams requires dynamic plan
execution, where agents decide about their next steps on the fly [24]. Combining
flexible teams and agents with strongly asymmetrical capabilities would likely
stop the progress when highly skilled agents leave. We therefore focus on tasks
composed of operations that can be executed by either human or robot, possibly
within differing amounts of time, and refer to this as equal partners collabo-
ration. Our understanding of equal partnership is based on [24], where equal
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partners teamwork means, ”that each member of the team has equal authority
to make decisions when executing the plan”. Through this paradigm, intuition
of humans about their own capabilities and preferences is utilized to achieve a
workflow that is convenient for workers, e.g. regarding ergonomics. We explicitly
focus small-scale scenarios, where flexibility is favored over time optimal task
allocation.

As our coordination mechanism is designed to satisfy the above criteria, we
sort it into the category of approaches with decision authority for all agents
in our related work taxonomy. While [24] and [17] focus on fulfilling timing
constraints, we explicitly enable flexible team composition. In [24], the decisions
are taken based on other agents’ communication, and [17] receives estimates of
the world state from an external component. In contrast, our contribution plans
sensor operations in addition to task operations to gather information needed
for robots to select their next actions just-in-time.

3 Coordinating Flexible Human-Robot Teams

Our approach is based on elementary operation templates O = {o1, o2, ..., o|O|}
that the robot is able to execute. Every operation template o ∈ O needs pa-
rameters taken from the set Po of valid parameter combinations to o. E.g., a
pick-and-place operation may need start and goal position of an affected object.
A pair ō = (o, p), p ∈ Po is named an operation instance. O partitions into two
subsets OS and OT . OS is a set of sensor operation templates that are used to
acquire sensor data, e.g. moving a camera and capturing an image. The task op-
eration templates OT are used to form shared task models. A shared task model
T = {ō1, ō2, ..., ō|T |} is composed of several operation instances whose tem-
plates are taken from OT . The elements of T may be part of some superordinate
structure like the graph defined by precedence relations [8]. An exemplary model
of a palletizing task as used in our experiments is depicted in Fig. 1.

The coordination mechanism bases upon the observation, that elementary
operations usually need some preconditions to be satisfied before they can be
executed. E.g., a pick-and-place operation requires the affected object to exist
within the workspace. Preconditions we are considering are not limited to re-
sources, as the presence of humans in the workspace might result in additional
requirements. E.g., if a task includes a welding operation, robot agents need
to ensure that the safety door of the welding system is closed. As soon as an
operation was successful, it produces observable effects manifesting in fulfilled
postconditions. E.g., the moved object will be at it’s new position. More formally,
we define the sets Vo of pre- and No of postcondition templates for every template
o ∈ OT . A condition instance c̄ = (c, ō) combines a condition template with the
operation instance ō it has to be evaluated for. Every operation ōi = (oi, pi)
within a task T has a set of preconditions V (ōi) that contains an instance for
every template in Voi . The postconditions N(ōi) are defined respectively.

A set of fulfilled pre- or postconditions allows to decide whether the cor-
responding operation may be started or has already been completed. Hence,
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Fig. 1. Tasks can be modelled as precedence graphs that convert a start state into
the desired goal state by a suitable composition of task operations. Each operation is
annotated with pre- and postconditions needed for coordinating humans and robots.

perceiving the state of conditions provides a way to decide whether an opera-
tion is executable. We model the process of condition evaluation as a function
P that abstracts the details of perception. P takes an arbitrary set of condition
instances and returns true, if all of them are fulfilled, otherwise false. Internally,
P may trigger sensor operations to gather suitable data for the evaluation. Given
P, readiness R and success S of an operation instance ōi are defined by

R(ōi) = P(V (ōi)) S(ōi) = P(N(ōi)).

If and only if S(ōi) = true, then ōi has already been done. Respectively, if and
only if R(ōi) = true, all preconditions of ōi are fulfilled. An operation instance
with R(ō) = true and S(ō) = false is named active. Correct task execution is
guaranteed by only executing active operations.

4 Prototype System

In the following, we describe components of our prototype system based on the
above coordination mechanism in detail. The main modules are depicted in Fig.
2. The workflow consists of three steps: First, the task model is created using a
graphical editor (Fig. 3, left). The editor offers functionality to add task objects
(blue boxes) and operations (gray boxes) working on them. Required operation
parameters are input through dialog windows. A task structure is created by con-
necting operations using precedence graph edges. The results of task modelling
can be checked by observing the robot performing the task within a simulation
(Fig. 3, right). Erroneous operations or parameters can be corrected by returning
to the editor. The precedence graph undergoes an automatic preprocessing step
that supplements each operation with suitable pre- and postcondition instances.
Then, the graph is stored as an XML file for later usage and can be passed to a
module for collaborative execution. Given a specific set of sensors and actuators,
this module encapsulates an algorithm to determine an efficient order of condi-
tion validation steps and execution of operations, such that the task is carried
out correctly. Details of our current implementation of the execution module are
described in Sections 4.1, 4.3 and 4.2.



Modelling and Executing Tasks in Flexible Human-Robot Teams 5

Task Modelling

Offline Testing

Automatic

Preprocessing

Collaborative 

Execution
XML

Fig. 2. The system workflow has three steps: Task models are created by repeated
modelling and offline testing. A preprocessing step generates required conditions. This
results in an XML task representation serving as input to the execution module.

4.1 Hardware, Supported Operations and Conditions

We use a KUKA LBR IV with a Robotiq 3-Finger gripper. Worker safety is en-
sured by using the robot in compliant mode and at moderate speed. Though our
approach allows integrating arbitrary sensors, we focus on cameras for condition
evaluation. In theory, the approach described in Section 3 could be implemented
by equipping the robot cell with cameras overseeing the whole workspace at any
time, and repeatedly evaluating all conditions e.g. through object recognition
and localization. The set of active operations would then always be available for
the system to select it’s next step. We intend to manipulate small objects within
a workspace, where several humans and robots might be moving. Thus, a high
level of occlusion may be expected when using fixed cameras, rendering them
impractical. Therefore, the robot is equipped with an IDS uEye UI-1220SE-C-
HQ eye-in-hand camera, enabling it to look at specific positions for condition
evaluation. Besides the problem of occlusions, this also reduces the amount of
hardware within the workspace, making the installation less complex and costly.

Our set of operation templates OT enables manipulation tasks through op-
erations to transfer objects from fixed start to goal positions and apply a stamp
to them. In this context, condition templates to evaluate, whether an object of
a certain type is present at a given position or not, and whether it is stamped
or not, are needed. The only required sensor operation oS moves the robot to
a given position and triggers the camera. The perception function P maps each
input condition instance to an instance of oS . Condition evaluation is realized
through object recognition applied to the resulting image, specifically by classi-
fying objects according to their color. Our approach can intuitively be extended
to more complex scenarios by adding hardware (e.g. a tool changer), operations
(e.g sensor-guided skills [25]), sensors and evaluation algorithms (e.g. active ma-
nipulation for recognition of objects [22] and material properties [28]). However,
such special implementations are out of the scope of this conceptual paper.

4.2 Execution Module Software Design

The execution module is structured as a multi-agent system [9]. A coordination
agent executes the algorithm to achieve correct task execution through task and
sensor operations as described in Section 4.3. To this end, it requests evalua-
tion of R and S from the perception agent, which maps the conditions to sensor
operations and performs image processing. Task operations as well as sensor
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Fig. 3. The prototype system provides a graphical editor for modelling new tasks (left).
The execution of tasks by a robot can be observed in a simulation environment (right)
to validate correct parametrization of elementary operations.

operations are dispatched to the hardware agent that transforms abstract oper-
ations into concrete hardware commands.

The execution module realizes all agents through the ENACT software frame-
work [27]. This framework follows the popular programming paradigm of mini-
mized coupling and maximized cohesion (see [14]). To this end, ENACT offers
exchangeable agents and couples these through abstract data types. This en-
ables quick porting of the execution module to different hardware. For instance,
changing the robot type is intuitively done by implementing and using another
hardware agent. The same holds for new sensors and the perception agent.

4.3 Execution Algorithm for Robot-Mounted Cameras

Cameras attached to the robot can only view parts of the workspace at a time.
The challenge lies in finding an order of condition evaluation and execution of
operations that reduces the number of sensor operations, while still ensuring cor-
rect task execution. This can be achieved by tracking the task progress to extract
operations and conditions currently relevant. We therefore integrate operations
into precedence graphs (Fig. 1). The knowledge a robot has about the progress
is encoded in two sets I1 and I2. I1 denotes operations whose predecessors in
the graph have successfully been executed. Thus, elements of I1 are candidates
for testing whether they are active. I1 is initialized with all operations directly
connected to the start node. Operations with preconditions that have been evalu-
ated negatively and consequently are assumed to be carried out by another agent
at the moment are held in I2. Initially, I2 is empty. The execution algorithm is
visualized in Fig. 4. As long as I1 or I2 contain any elements, the task is not com-
pleted and the algorithm keeps running. In the Execution Phase (dark grey), an
element ō from I1 is selected first. Currently, the selection is biased towards fol-
lowing branches within the precedence graph, meaning that completing subtasks
is preferred. Further concepts like a capability index [23] may be integrated to
e.g. prefer operations with a high automation potential. If the postconditions of
ō are fulfilled (S(ō) = true), all successors of ō whose other predecessors already
have been completed can be added to I1. Otherwise, preconditions are checked
by determining R(ō). If they are fulfilled, ō is dispatched to the execution agent.
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Fig. 4. Our algorithm for human-robot collaboration has two phases. In the Execu-
tion Phase (dark grey), the system looks for active operations and executes them. If
operations with unfulfilled preconditions are detect, they are stored for further process-
ing in the Monitoring Phase (light grey) that tries to detect progress and may move
operations back to the Execution Phase for a retry.

We currently assume, that no errors occur during execution. This assumption
can be relaxed using robust operation implementations that support rollback on
errors [15]. If preconditions are not fulfilled, ō is assumed to be in progress and
moved to I2 for later clarification. The Monitoring Phase is entered as soon as
there are no tasks left in I1 - the system has to synchronize with operations
executed by humans during the Execution Phase. To this end, the elements of
I2 are iterated by repeatedly processing the first element I2.first() of I2. If the
postconditions of an ō ∈ I2 are fulfilled, the successors of ō are up next and can
be moved into I1 for the next Execution Phase. In addition, postconditions of
the successors of ō are checked. This enables the system to ”catch up” and detect
completed operations without having spotted their unfulfilled preconditions in
the Execution Phase. This initial realization is based on the assumption, that
humans participating in the collaboration are cooperative and will carry out the
task correctly due to the task model. For pick-and-place operations, this means
that an object that is not detected at it’s start position will reappear there or
will be moved to it’s target eventually.

5 Experimental Validation

Exemplary tasks as used in our experimental validation are shown in Fig. 5.
The experiments are targeting the evaluation of the equal-partners collabora-
tion mode using our coordination mechanism. Therefore, we are using simply
shaped, colored objects to abstract from the problems of grasp planning and
object recognition. We used the GUI (Fig. 3) to create and test task models
simulating assemblies (1), palletizing tasks (2) and processes involving tools like
a stamp by combining the pick-and-place operations described in Section 4.1.
Task 2 emulates palletizing bottles (red blocks) and sealing them with lids (white
blocks). The complete model of Task 2 is shown in Fig. 1. Some steps during
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Fig. 5. Our experiments consist of setups simulating assembly (1), scalable palletizing
tasks (2) and processes involving tools in addition to operating resources (3). Crucial
steps during an execution of Task 2, showing how the robot detects human interaction
and proceeds working, are depicted in the lower part of the figure.

an execution process are shown in the lower row of Fig. 5: The human picks up
a lid, while the robot negatively evaluates the postcondition for the pick-and-
place operation afflicting the same object (a). The robot moves on to check the
precondition of this operation (b). As it is not fulfilled, the execution algorithm
continues with another operation contained in the list of elements I1 that are up
next according to their precedence relations. In the sample case, the robot looks
for the next bottle at it’s target position (c). As it is not present, the precondi-
tion is checked moving to the start position and trying to locate it there. This
evaluation step is successful, allowing the robot to perform the operation (d).

6 Conclusion and Future Work

We presented an approach to equal-partners human-robot collaboration that
enables coordinating teams of flexible composition. The approach is based on
evaluating pre- and postconditions of operations to detect human actions. It
combines dynamic execution of robot operations contributing to goal achieve-
ment with operations to acquire sensor data. We integrated it into a framework
enabling domain experts to create and test shared task models using a Graphical
User Interface. This system can be adapted to tasks composed of arbitrary ele-
mentary operations by adding suitable sensors, actors and condition evaluation
algorithms. The feasibility of the approach is shown by experimental execution
of pick-and-place tasks. The tasks are formulated as precedence graphs and may
be carried out by a team of humans and a robot with a camera attached.

Currently, the implementation does not make use of the fact, that one cam-
era image might provide information about the state of several conditions. This
results in unnecessary robot motion, as the system does not remember the previ-
ously seen and performs a sensor operation for every evaluation request. However,
it does not suffice to extract and store maximum information from one image.
Due to unpredictable human actions, the state of conditions may change with
time. In our future work, we will integrate a world model emulating the process
of remembering and forgetting to deal with this problem of data aging.
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