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Abstract. In this chapter, the quantitative numerical simulation of the behavior of 
deformable linear objects, such as hoses, wires and leaf springs is studied. We first 
give a short review of the physical approach and the basic solution principle. Then, 
we give a more detailed description of some key aspects: We introduce a novel 
approach concerning dynamics based on an algorithm very similar to the one used 
for (quasi-) static computation. Then, we look at the plastic workpiece deformation, 
involving a modified computation algorithm and a special representation of the 
workpiece shape. Then, we give alternative solutions for two key aspects of the 
algorithm, and investigate the problem of performing the workpiece simulation 
efficiently, i.e., with desired precision in a short time. In the end, we introduce the 
inverse modeling problem which must be solved when the gripper trajectory for a 
given task shall be generated. 

1. Introduction 

In this chapter, we consider the quantitative, numerical simulation of the behav-
ior of a deformable, linear object (DLO) handled by a robot manipulator. In 
addition to the development of special-purpose grippers and the handling based on 
sensor information, this problem has been addressed in several works. Zheng et al. 
perform an off-line computation of the gripper trajectory in order to insert a flexible 
beam into a hole and succeed in performing the task without the additional usage of 
sensors [1]. Hirai et al. develop an algorithm for the 2D computation of elastically 
deformable thin parts based on the principle of minimal potential energy [2]. For 
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DLOs, Wakamatsu et al. extend this approach to 3D-computation [3] and to the 
consideration of dynamics based on Hamilton’s principle [4]. 

These works demonstrate that simulating the behavior of DLOs numerically is 
possible. However, in practice, we need to consider some additional items. 

• While dynamics needs to be considered in some cases, this is not necessary in 
many other cases. Therefore, it is desirable to use an algorithm which allows a 
changing from static to dynamic computation with little additional effort. Yet, 
this is not possible when directly employing Hamilton’s principle. 

• In many practical applications, the workpiece is not only deformed elastically, 
but also plastically. However, the occurrence of plastic deformation is not being 
considered in the state of the art. Besides the physical effect itself, we find that 
an appropriate internal representation of the workpiece shape is necessary when 
considering plastic deformation. 

• When performing simulation on a workpiece, it is generally desirable to perform 
the computation with sufficient precision in a short time, i.e., to do it in an 
efficient way. Therefore, we consider different alternatives for some key aspects 
of the computation algorithm, which are of major influence on the computation 
time. Additionally, we investigate the influence of some basic computation 
parameters on both computation time and precision of the results. 

• Besides the selection of appropriate computation parameters, parallel processing 
is an obvious way to reduce the computation time. Thus, we investigate different 
possibilities of parallizing the shape computation and discuss their advantages 
and limits. 

• One major application field of the simulation of deformable objects is the off-
line generation of gripper trajectories for a given (assembly) task. That is, for 
each time step of the assembly process, the task defines certain boundary con-
ditions which must be fulfilled by the workpiece shape. The goal is to compute a 
gripper trajectory that fulfills these boundary conditions. Because this problem 
is just an inverse to the computation of the workpiece shape for given boundary 
conditions, we call it the “Inverse Simulation Problem”. In the last part of this 
section, this kind of task is discussed. 

2. Principal Approach 

2.1 Physical Principle 

In this chapter, we give a short review of the physical approach used for the 
simulation of DLOs as well as the basic computation principle. 

According to the fundamental physical principle of minimal potential energy, 
dynamic systems assume a minimum of their total potential energy W in any stable 
state. This holds true not only for systems of discrete elements, e.g., lumped masses 
and springs, but also for a deformable continuum like DLOs. Based on this 



principle, the shape of a deformable object can be computed rather easily, if the 
boundary conditions are known. Neglecting linear extension, potential energy due 
to gravity, bending and torsion must be considered. Thus, the following optimiza-
tion problem has to be solved. 
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In Eqn. 1, L is the length of the workpiece, s ∈ [0, L] is the curve length meas-
ured along the workpiece. W’grav, W’bend and W’tor are the potential energy caused by 
gravity, bending and twisting (per length) respectively. For each point of the 
workpiece, they are given as follows: 
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Here, ρ and A are the density and the cross section area, g is the acceleration 
vector due to gravity, and z(s) the coordinate of the workpiece point along g. 

Being Rbend and Rtor the (constant) bending and torsional rigidity, and κ(s) and 
τ(s) the local curvature and twisting, the respective potentials are 
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2.2 Computation 

When computing the workpiece shape, the goal is to determine those functions 
W’grav(s), W’bend(s), and W’tor(s) that fulfill the condition given in Eqn. 1. In order to 
perform this computation, the following steps are performed: 

• First, a vector q(s) is determined which fulfills the following requirements: 

• q(s) describes the workpiece shape (Cartesian coordinates x(s) of each work-
piece points) unequivocally 
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• The total potential energy W’(s) per length (having the portions W’grav, W’bend, 
and W’twist) can be expressed as a function of q(s) 
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• For a three-dimensional computation, q(s) has three components: 
q(s) = [q1(s), q2(s), q3(s)]T. Thus, Eqn. 1 is transformed into 
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and determining the object shape means to compute the components qi(s) of 
vector q(s) in order to satisfy Eqn. 3. This is a “calculus of variations” problem, 
described by a set of partial differential equations (Eulerian equations). Because 
an analytical solution for these equations can not bee found in most cases, we 
use the well-known approximation method introduced by Ritz [5]. 



• In this method, the single components of q(s) are expanded into a series with Nc 
terms. 
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Here, Qj(s) are the basis functions of the series and ci, j are the according coef-
ficients. Thus, q(s) is represented by a vector c having N = 3Nc components. By 
this step, the problem of computing a vector q(s) of functions is reduced to the 
problem of computing the vector c of coefficients, and Eqn. 1 is finally trans-
formed into 

 min),()(
0

→= ∫
L

dssfW cc  (5). 

• Since this equation can not be solved analytically as well, the integral in Eqn. 5 
is computed by numerical integration and the resulting discrete minimization 
problem is solved by numerical optimization in Multidimensions. 

For static computations, this approach is straight forward. In [2, 3], it is used for 
computing the static shape of DLOs. 

3. Consideration of Special Aspects 

3.1 Dynamics 

When regarding a robot system manipulating a deformable workpiece, the goal 
is generally not to compute a single workpiece shape with given boundary condi-
tions, rather than to compute the shape of the object at each point of the gripper 
trajectory. Wakamatsu et al. [4] point out that the resulting object shape is highly 
sensitive to the velocity of the gripper motion. If this velocity is sufficiently small 
(vGripper → 0), the workpiece can be regarded as resting in each simulation step. 
Inertial forces (causing, e.g., workpiece oscillations) are neglected. This behavior is 
called quasi-static. 

When the DLO is manipulated fast, the inertia forces caused by the object ac-
celeration can not be neglected. Therefore, the shape in step i depends on the results 
of the position and velocity in step i–1 and the acceleration between step i–1 and 
step i. This behavior is called dynamic. 

The principle of minimal potential energy (Eqn. 1) holds true only for static or 
quasi-static computations. An extension towards the consideration of dynamics 
leads to Hamilton's principle. With T being the kinetic energy, Eqn. 1 is replaced by 
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A formulation equivalent to Eqn. 6a is given by the Euler-Lagrange equations 
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Wakamatsu et al. [4] present a method that computes the shape of DLOs dynami-
cally based by solving Eqn. 6b. 

Hamilton’s principle is a straight forward method when considering dynamics, 
but it requires a significantly extended approach compared to the static computa-
tion. However, since dynamic computation (which is rather time consuming com-
pared to static computations) is not required in many cases, it is not advantageous. 
Therefore, we propose a novel approach that allows to perform static and dynamic 
computations using the same principle. 

We first consider an isolated mass element ∆m of the workpiece. Given xi, 
i ∈ [1..3] as its Cartesian coordinates, we obtain (because of 0/ ≡∂∂ ixT  and 

0/ ≡∂∂ ixW � ) the well-know equation for the motion of a mass element in a po-
tential field from Eqn. 6b 

 
i

i x

W
xm

∂
∂−=∆ ��  (7a), 
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Additionally, we find with 
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By combining this relation with Eqn. 4, we obtain 1x��  as 
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This relation can be inserted into Eqn. 7b for the motion of ∆m in potential field 
W. 
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The left side of this equation is equal to the gradient of 
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with respect to x. Thus, to solve Eqn. 9, we have to deal with the optimization 
problem 

 min)( →xU  (11). 

The position x which satisfying Eqn. 11 is the desired position x1 of the mass 
element at time t0 + ∆t. Note that the acceleration in time interval ∆t is assumed to 
be constant here. This is equivalent to ∆t → 0. Thus, ∆t must be sufficiently small 
for the numerical computation. 

As formulated in Eqn. 1, the static position of the DLO can be determined by 
minimizing its potential energy W. This holds true for a single lumped mass ∆m, 
too. Therefore, computing the position x of a lumped mass dynamically is reduced 
to solving the minimization problem for U(x) given in Eqn. 11, instead of W(x). The 
only difference between U and W is the additional term 
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in U. This relation holds true not only for a single lumped mass, but also for a 
number of N elements moving in a potential field. For considering a continuum, a 
border crossing N → ∞ must be carried out. Doing this,  
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is obtained from Eqn. 12. W’dyn takes the workpiece dynamics per length into ac-
count.3 Therefore, the position x of each workpiece point at time t = t0+∆t can be 
computed from the known position x0 and velocity v0 for t = t0 by solving 
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Switching from quasi-static to dynamic computation can now be done by simply 
adding the term W’dyn to the integrand. 

3.2 Plastic Deformation 

3.2.1 Considering Plastic Deformation 

So far, we have assumed the workpiece deformation to be totally elastic. How-
ever, in many practical applications, the occurrences of considerable plastic defor-
mation are in presence. Because of the workpiece behavior depends on many 
factors, the exact consideration is rather difficult, even if only linear stress without 
bending or twisting is assumed. The most important influence factors are: 

• direction of force (tensile or compression load) 

• duration of force application 
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• velocity of force increase and decrease 

Additionally, the behavior is generally different for linear stress, bending and 
twisting. However, an exact consideration is not necessary in many cases, and a 
rather coarse approximation is sufficient.4 Thus, we use the following assumptions 
for significantly simplifying the problem. 

The workpiece behavior is assumed to be elastic-ideal plastic [6], i.e., the 
stress-strain relation is given by Figure 1 (left), causing a deformation behavior 
according to Figure 1 (right). Starting in the stress-free state, the internal stress σ(ε) 
increases linearly (Hook’s law, Phase 1). Besides a certain yield strain εE, the stress 
remains constant for increasing strain (Phase 2). For a subsequent force relief, the 
stress decreases on a parallel to the original Hook’s straight line (Phase 3) with 
strain εp remaining after complete stress release. This behavior implicates especially 
that the stress-strain relation is independent of the deformation history, which does 
generally not hold true in reality. 
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Figure 1: Left: Stress-strain diagram for elastic-perfectly plastic material behavior (σ: 
stress, ε: strain, σE: yield stress, εE: yield strain). Right: stress-strain-cycle for tensile load 

(εp: residual strain). 

The idealized consideration of plastic deformation according to Figure 1 holds 
true for a linear (tensile) load. For bending and twisting a similar behavior can be 
assumed. In these cases, strain ε must be replaced by curvature κ or torsion τ, 
respectively. For the consideration of bending, the following additional simplifi-
cation is used. 

For bending loads, the amount of strain is different for the single fibres, de-
pending on their distance from the neutral axis. Thus, for a circular workpiece of 
radius R, the deformation has to be considered separated for all distances r ∈ [0, R] 
from the neutral axis. As simplification, we assume the curvature κ to be identical 
for the total cross section, with plastic deformation occurring for κ being greater 
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than the threshold curvature κE. This simplification can be derived directly from the 
assumption of a one-dimensional object of negligible cross-section.5 

3.2.2 Modification of the Computation Algorithm 

The simulation of plastic deformation requires the following modifications in 
the computation algorithm. 

For computing the potential energy due to bending and twisting, the propor-
tional relations Wbend ≅ κ2 and Wtor ≅ τ2 (Eqn. 2) are not valid. Instead, the relation 
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must be used for computing the bending energy (and, correspondingly, the torsional 
energy), with )~(κσ  given by the stress-strain-diagram. 

The occurrence of plastic deformation implies a change in the stress-free work-
piece shape. Thus, the stress-free workpiece shape used for the computation in 
simulation step i is given by the total plastic deformation of the previous simulation 
steps 0, 1, ..., i-1. The additional deformation computed in step i contains two por-
tions. Its plastic portion (according to the stress-strain-relation) must be added to 
the plastic deformation computed in the previous steps, its elastic portion of step i is 
ignored in the subsequent simulation steps. 

Thus, the computation algorithm for step i is as follows: 
  

1 D_New := 0; 
Optimum := false; 

2 repeat 
3  D := D_plastici-1 + D_New; 
4  Wgrav := W_grav(D); 
5  Wbend := W_bend(D_New); 
6  Wtor := W_tor(D_New); 
7  W := Wgrav + Wbend + Wtor; 
8  if Minimum(W) then 
9   Optimum := true 

10  else D_New := D_New + ∆D; 
11 until Optimum; 
12 D_plastici := D_plastici-1 + PlasticPortion(D_New); 

  
In this algorithm, the vector D represents the workpiece deformation due to 

bending and twisting6, and D_plastic is its plastic portion according to the stress-
strain-relation. D_New is the (additional) deformation computed in simulation step i 
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internal stress within the workpiece. 
6 For the adding of deformations, please refer to Section 3.3.2. 



and ∆D is the variation of D_New in each iteration of the numerical optimization. 
The optimization itself is represented by the repeat ... until-loop. 

In each step of the numerical optimization, only D_New is used for computing 
the energy due to bending and twisting, while both D_New and the plastic defor-
mation of the previous simulation steps are used for computing the potential due to 
gravity. This is due to the fact that the energy required for plastical bending and 
twisting is ‘lost’ irreversibly and, thus, does not have to be considered for the future 
simulation steps. However, the stress-free workpiece shape (and, thus, the gravity 
potential) is influenced by the previous plastic deformation. 

3.3 Workpiece Representation 

3.3.1 Representation by Curvature and Torsion 

In line 3 and line 12 of the algorithm given in Section 3.2.2, different defor-
mation portions have to be added. The addition of deformations causes some re-
strictions to the internal representation of the workpiece shape. 

According to Section 2, the workpiece shape is represented by a vector q(s) of 
three functions qi which must be suited for computing both the Cartesian position of 
each workpiece point and the potential energy. However, we did not give any 
further information on what kind of functions should be used. 

One approach is to directly use the Cartesian coordinates x(s) = [x(s), y(s), z(s)]T 
of each workpiece point. However, it is found that computing the potential energies 
due to bending and twisting is rather complicated. Therefore, this representation is 
not desirable. 

Another approach is to describe the accompanying trihedron (i.e., a “local” 
Cartesian coordinate system consisting of tangent vector t(s) and two normal vec-
tors n, b), {t, n, b} for each point s ∈ [0, L] of the DLO with respect to a global 
Cartesian coordinate system. With this representation, the global coordinates of 
each point on the workpiece can be computed easily by just integrating the tangent 
vector over s, and there exists a rather simple relation between these vectors7 and 
the local amount of curvature and torsion. This method is used by Wakamatsu et al. 
[3, 4], describing the orientation of the accompanying trihedron by three Eulerian 
angles ϕ, θ, ψ. Thus, the vector of functions representing the workpiece shape is 
q(s) = [ ϕ(s), θ(s), ψ(s)]T. 

The main drawback of Eulerian angles (or, similarly, roll, pitch and yaw angles) 
is that curvature and torsion have impact not only on one, but on all of them. Thus, 
the relation between workpiece deformation (given by curvature and torsion) on the 
one hand, and Eulerian angels on the other hand, is not invertable. In conclusion, 
given a set of Eulerian angles (as functions of s), it is not possible to compute 
curvature and torsion, and given two sets of Eulerian angles, it is not possible to add 
the corresponding deformations. 
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This problem will not occur as long as only elastic deformation is regarded. But 
according to the algorithm given in Section 3.2.1, considering plastic deformation 
requires the addition of deformations (line 3 and line 12). Thus, a representation by 
Eulerian angles is not possible. 

To avoid this problem, we choose a different approach, in which curvature and 
torsion are directly used as internal representation of the DLO. Being 
{t(s), n(s), b(s)} the accompanying trihedron at position s, we use the following 
functions qd(s), qκ(s) and qτ(s) with q(s) = [ qd(s), qκ(s), qτ(s)]T to compute the 
accompanying trihedron at position s+∆s. 

qd(s) represents the local direction of curvature, while qκ is the local amount of 
curvature. In order to describe the object bending from point s to point s+∆s on the 
DLO, the accompanying trihedron is rotated by the (infinitesimal) angle 

dssqdw )(κκ =  

about the axis which is formed by rotating one of the normal vectors by qd about 
tangent vector t.8 Figure 2 (top) shows a DLO section with the accompanying tri-
hedron and the rotation axis. The result of this rotation is a new trihedron 
{b’(s), n’(s), t’(s)}, as shown in Figure 2 (bottom). 

qτ(s) is the local amount of torsion. Torsion is performed by rotating the trihe-
dron {b’(s), n’(s), t’(s)} by the angle 

dssqsdw )()( ττ =  

about the t’-axis.9 As result of this second rotation, the accompanying trihedron 
{t(s+ds) = t'(s), n(s+ds), b(s+ds)} at position s+ds is obtained. 

3.3.2 Adding Deformations 

With the method derived above, adding deformations according to Section 3.2.2 
is rather simple. When adding two deformation portions, (I) and (II), each of them 
has a value for qd, qκ, and qτ. 

Because twisting is always performed around the tangent vector (i.e., the rota-
tion vector is identical for both portions), the rotations can be simply added 

 dsqqdw )( II,I, τττ +=  (14a). 

For the curvature, the directions of both portions are generally different. Here, 
the corresponding rotation vectors dwκ, I and dwκ, II are added.10 These vectors lay 
in the plane given by n(s), b(s), with the absolute values dwκ, I and dwκ, II. The di-
rections of curvature are given by qd,I and qd,II. According to Figure 3, direction qd 
and absolute value dwκ of the resulting curvature are given by 
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9 qκ(s) and qτ(s) are the local amount of curvature and torsion at position s. 
10 Adding the rotation vectors is permissible because both rotation angles are infinitesimal. 
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Figure 2:  Expression of DLO curvature by its direction qd, and amount, dwκ = qκds. Top: 
Rotation of trihedron {t(s), n(s), b(s)}. Bottom: Resulting trihedron {t’(s), b’(s), n’(s)}. 

3.3.3 Transformation into Global Coordinates 

The vector q(s) given above is the internal representation of the workpiece 
shape for solving the minimization problem given in Eqn. 1. However, the final 
goal is to compute the coordinates of each point on the workpiece in a global Car-
tesian coordinate system. For this purpose (and for computing the gravity potential 
in Eqn. 2a), a transformation that transforms the internal representation q(s) into the 
Cartesian coordinates x(s) for each point on the DLO is necessary. 

Generally, x(s) is given by 

 ∫=
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with as the unit tangent vector of the DLO at s~  with respect to the global Cartesian 
system.11 
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Figure 3:  Adding of rotation vectors dwκ I and dwκ, II, both lying in the b-n-plane of the 
accompanying trihedron at DLO position s 

According to Section 3.3.1, the accompanying trihedron at position s+ds on the 
DLO is derived from the accompanying trihedron at position s by performing two 
rotations, with the first one representing bending and the second one representing 
twisting. For computing Globalt(s), it is helpful to draw up the transformation matrix 
sTs+ds, with 

)()( dssdss dssdssss +⋅=+ ++ tTt , 

i.e., to express the orientation of the tangent vector at s+ds with respect to the 
accompanying trihedron at s.12 

For this purpose, the rotation representing the bending of the DLO is further 
divided into three rotations: 
1. First, the accompanying trihedron {t, n, b} at s is rotated by qd about t, aligning 

n with the axis of rotation in Figure 2 (top). The resulting trihedron is 
{tI ≡ t, nI, bI}. 

2. Second, the trihedron obtained in step 1 is rotated by dwκ about nI. The resulting 
trihedron is {tII, nII ≡ nI, bII}. 

3. Finally, the trihedron obtained in step 2 is rotated by –qd about tII. The resulting 
trihedron is {t’ ≡ tII, n’, b’}, as shown in Figure 2 (bottom). 

By additionally taking torsion (rotation around t’) into consideration, we finally 
find 

                                                           
11 In the following, a leading subscript to a vector gives the coordinate system in which the 

vector is expressed. 
12 Please note that st(s) ≡ [1, 0, 0]T. 
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R(a, α) is the rotation matrix which transforms 2x into 1x with coordinate system 
(2) being rotated with respect to system (1) by α about axis a. In the case of 
Eqn. 16, all rotations are performed about elementary vectors of the trihedra. Thus, 
the single rotation matrices R are very simple. 

Based on Eqn. 16, the transformation GlobalTs of the accompanying polyhedron at 
s into global coordinates is defined recursively by 
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Together with Eqn. 15, the global coordinates of point s on the DLO are finally 
given by 
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Please note that Eqn. 17 is meaningful only for s > 0. Therefore, we define 
T(0),i.e., the DLO point held by the gripper, as the transformation matrix which 
transforms the accompanying trihedron of the gripper into global coordinates, 
expressed, e.g., by Eulerian angles. 

3.4 Series Expansion 

Since the number N = 3Nc of series coefficients that must be determined by the 
optimization algorithm has major influence on the computation time, the series 
expansion for the qi(s) should be a good approximation with few series terms. The 
more severely the workpiece is being deformed from its stress-free shape, the more 
complicated becomes this problem. Since the workpiece may generally take an 
arbitrary shape, it is not possible to find a series expansion that meets all possible 
situations. In [2, 3], Fourier series are proposed. As an alternative, we investigate 
the usage of Chebyshev polynomials which are often found to be a good choice for 
approximating unknown function analytically [7]. The polynomial of order j has the 
form13 

))arccos(cos()( xjxQ j = , 

and the series expansion for the qj is then given by Eqn. 4. In order to meet the 
definition range of the arccos-function, the curve length s ∈ [0 ... L] must be nor-
malized by 1/2 −= Lsx . If Fourier series are used, a similar normalization to the 
range [–π ... π] is required. 

3.5 Optimization Algorithm 

In order to solve the minimization problem in determining the set c of coeffi-
cients for the series expansion, any nonlinear optimization algorithm in Multidi-
mensions can be used. We implemented two algorithms of different complexity. 

                                                           
13 Alternatively, the terms Qj can be expressed by recursively defined polynomials. 



The first one is the downhill simplex (DS) algorithm invented by Nelder and 
Mead. Here, a simplex is the geometric figure consisting of N + 1 points (vertices) 
in N dimensions including their interconnecting line segments, faces, etc. For exam-
ple, in two dimensions a simplex is formed by a triangle. 

The basic principle of the DS algorithm for minimizing the function U(c) is seen 
as follows: At the beginning, an initial simplex consisting of the N+1 coefficient 
vectors c0, c1, ...cN, is chosen arbitrarily. Then, the minimum of U is computed as 
follows: In each iteration, the vector cworst with the highest function value U is 
modified according to diverse rules. In this process, the simplex is stepwise con-
tracted and moves downhill towards the minimum of U. 

Even though the downhill simplex algorithm is not very efficient, it has the 
following two advantages: First, it only evaluates the function U itself and does not 
need its (partial) derivatives. Second, it is easy to implement and is generally a good 
choice if the aim is “to get something working quickly” [7]. 

The second algorithm is the Davidon-Fletcher-Powell (DFP) algorithm as a 
standard variable metric method. Comparing to the DS algorithm, variable metric 
methods are more powerful. However, they require the evaluation not only of U, but 
also the vector of its first partial derivatives, U∇ , and the inverse matrix of its 
second partial derivatives, i.e., the inverse Hessian matrix [ ] 11 −− ∇= UH . Especially 

the computation of H-1 can be very time consuming. Therefore the DFP algorithm 
computes 1−H  in each optimization step approximately from 1−H  computed in the 
last step. 

Both the DS and the DFP algorithms are standard algorithms which are de-
scribed and discussed in more detail, e.g., by Press et al. [7]. 

4. Efficient Simulation 

In this section, we investigate the computation time and the accuracy of the 
simulation with dependence on optimization algorithm, series expansion, and the 
main parameters workpiece discretization, NL, and number of series terms, Nc. 
Based on this investigation, it is possible to do the simulation of DLOs efficiently, 
i.e., to compute the shape of the workpiece with sufficient precision in a (rather) 
short time. Since the simulation is based on the same principle approach as the 
simulation software described in [2, 3], we assume that most of the results presented 
here hold true for these works, too. 
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Figure 4: Two benchmarks A and B for investigating the computation precision 

4.1 Computation Precision 

In investigating the influence of the series expansion, the two benchmark 
problems shown in Figure 4 are used: 

First, a copper wire of length L = 1 m and diameter d = 1 mm is fixed at one end 
in a Cartesian world coordinate system at x = 0 m, z = 1 m with horizontal 
orientation and bends due to gravity (benchmark A). Second, an additional load of 
1 kg is mounted at the free end to increase the degree of bending (benchmark B). 14 

Figure 5 shows the maximum error ∆xmax of the computed shape as a function of 
the number of series terms for Chebyshev polynomials and Fourier series, re-
spectively. As reference, a computation with Nc, ref = 32 series terms is used. The 
number of elements for the discretization of the wire length is NL = 64. 

As expected, the computed shape converges with the reference shape for 
Nc → Nc, ref. The deviation increases with the degree of bending of the wire. How-
ever, the number of series terms required for obtaining high accuracy is consid-
erably lower for Chebychev terms. In this case, the maximum accuracy (given by 
the computational accuracy, dashed horizontal line in the figures) is obtained for 
Nc ≈ 10 even for sharp bendings. If Fourier series are used, the number of required 
coefficients is considerably higher. Thus, we suppose that Chebyshev polynomials 
converge faster for typical cases. 

                                                           
14  In reality, the deformation is mainly elastic for benchmark A while it is plastic for 

benchmark B. However, we consider the deformation to be purely elastic in both cases in 
order to have equal conditions. The plastic deformation is not relevant for the question 
considered here. 
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Figure 5: Maximal deviation ∆xmax between computed and reference workpiece shape as a 
function of the number Nc of series terms for Chebyshev polynomials (left) and Fourier 

series (right) 

Besides the number of series terms, the precision also depends on the discreti-
zation ∆s (given by object length L and number of curve elements NL) of the object 
in computing the energy integral given in Eqn. 1. For benchmark A described 
above, the maximal error is shown as a function of  NL in Figure 6 (for bench-
mark B, a similar result is obtained). The reference shape is computed with 
NL, ref = 960. In this example, Chebychev series with Nc = 16 terms are used for ap-
proximating the qi. With NL = 15, the maximal accuracy is obtained. A further in-
crease of NL does not improve the accuracy.15 

Please note that we assign one node to every discrete workpiece element. The 
maximum deviation ∆xmax considered here is the maximum deviation between the 
computed node positions and the node positions of the reference. For the numerical 
integration, we approximate the object between the nodes by circular arcs. 16 
Between the nodes, the  difference to the reference shape may be higher than shown 
in Figure 5 and  Figure 6. 

For both optimization algorithms, Figure 8 shows the computation time as a 
function of the number of curve elements NL with the number of series terms Nc = 8. 
In both cases, the computation time increases approximately linearly with NL. 
Comparing with the downhill simplex algorithm, the DFP algorithm requires more 
evaluations of the energy integral in each iteration. Therefore, even a small differ-

                                                           
15  The software stores all numbers as 64 Bit floating points (standard doubles for PCs). 
16 For curved objects, an approximation by circular arcs (i.e., elements of constant 

curvature) are better suited than linear segments (of curvature 0). The kind of 
approximation especially influences the center of gravity of each segment, and, thus, the 
potential due to gravity (Eqn. 2a). 



ence in the number of iterations has a significant impact on the total computation 
time. Thus, the computation time as a function of NL is less smooth for the DFP 
algorithm than for the downhill simplex algorithm.17 
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Figure 6: Maximal deviation ∆xmax between computed workpiece shape and reference as a 
function of the number NL of curve elements for benchmark A 

4.2 Computation Time 

The effort required for computing the shape of the workpiece is mainly deter-
mined by the combination of the following factors: Number of curve elements, NL, 
number of series terms, Nc, and optimization algorithm for computing the energy 
minimum according to Eqn. 1. 

For investigating the computational effort, benchmark C shown in Figure 7 is 
used: The copper wire described above is gripped at one end point with gripper 
position x = 0 m, z = 1 m. With the gripper orientation being initially horizontal, the 
gripper is rotated by 180° about the y-axis with a stepsize of 10° and back to the 
initial position. In each experiment, the total time for simulating the 36 object 
positions is measured. The computation is performed on a 133 MHz Pentium PC 
with 64 Mbytes RAM using LINUX as operating system. 

Figure 9 shows the measured computation time as a function of the number of 
series terms  Nc with object discretization NL = 32. Obviously, gradient methods as 
the DFP algorithm are especially powerful if the number of coefficients  to be de-
termined is large. However, in the previous section it is shown that approximately 
10 series terms are generally sufficient if q(s) is approximated by Chebychev poly-
nomials. Therefore, the downhill simplex algorithm is not only easier to implement 
but also faster in typical cases. 

                                                           
17  Please note that the computation time is not generally smaller for the downhill simplex 

algorithm. This also depends on the number Nc  of series terms. 
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Figure 7: Benchmark C for investigating the computation time 
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Figure 8: Computation time as a function of the number of curve elements NL for downhill 
simplex (DS) and Davidon-Fletcher-Powell (DFP) algorithm 

4.3 Parallel Computation 

The previous section shows that a short computation time can be obtained by an 
appropriate selection of computation parameters and optimization algorithm. If a 
further reduction of the computation time is required, e.g., for real-time computa-
tion in combination with sensor evaluation, parallel computation can be considered. 

In this context, we need to distinguish two different situations, which are dis-
cussed in the following.  

1. Different shapes of the workpiece are independent from each other (independent 
computation). 

2. The shape computed in each step depends on the shape computed in the previ-
ous step (dependent computation). 

We implemented a parallel version of the simulation software on a workstation 
cluster, consisting of 9 PCs, each with 133 MHz Intel Pentium processors and 128 



Mbytes memory. The parallel communication is established by an Ethernet based 
bus network (see [8] for details). 
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Figure 9: Computation time as a function of the number of series terms Nc for downhill sim-
plex (DS) and Davidon-Fletcher-Powell (DFP) algorithm 

4.3.4 Independent Computation 

For independent computation, at least the following two basic conditions must 
be met: The simulation is performed (quasi-)static and there is no plastic defor-
mation. Under these circumstances, the workpiece shape can be computed in par-
allel for different positions of the gripper trajectory (starting the optimization 
algorithm always with the same initial guess for q(s)). However, it is more favorable 
to use the result of a previous step as initial guess since the discrepancy to the actual 
shape is typically smaller in this case. As expected, the resulting speedup is almost 
linear, as shown in Figure 10 for the benchmark C given in Figure 7. 

However, if any interactions between workpiece and obstacles have to be con-
sidered, the computed object shapes may not be valid, even if the conditions given 
above are met. This problem is demonstrated in Figure 11 (left), with the following 
benchmark D. The object is moved downwards (into direction MD, direction of 
gravity) and collides with an obstacle. All steps in the simulation are computed 
independently from each other, the minimization algorithm is always started with an 
undeformed workpiece as initial guess. For the first four steps, the object shape is 
correctly simulated, but in the fifth step the object “jumps” to the lower side of the 
obstacle, which is obviously incorrect. This is caused by the fact that the optimiza-
tion algorithm seeks for the minimum energy which is next to the initial guess. 
Starting with an undeformed object, the algorithm always finds the global minimum 
in this example. 
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Figure 10: Measured speedup for independent computations using downhill simplex (DS) 
and Davidon-Fletcher-Powell (DFP) algorithm with NP being the number of processors (each 

experiment performed three times) 

The correct result is obtained if the object shape computed in step i–1 is taken 
as initial guess in step i, as shown in Figure 11 (right). In this case, the algorithm 
finds the local minimum which is next to the shape computed in the previous step. 
The parallel computation of several points of the trajectory is obviously not possi-
ble in this case. 
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Figure 11: Benchmark D: Obstacle interaction of a deformable linear object while being 
moved into direction MD for independent computation of all steps (Steps 1 to 9 upwards 

down). Left: false result for step 5 to 9. Right: correct result 

It is not always necessary to use the result of step i–1 as initial guess in step i in 
those cases. It is also possible to use a shape computed a few steps in the past. 
Thus, correct results can be achieved without completely loosing the advantage of 
parallel computation. However, the number of computations to be computed in 
parallel must be chosen carefully if interaction with obstacles is likely to occur. 



4.3.5 Dependent Computation 

If the object is deformed plastically while being handled by the robot, or if the 
simulation needs to be performed dynamically, the simulation of step i requires the 
results obtained in step i – 1 (for example the velocity of each mass element) as 
input data for the computation. Therefore, the approach given above is not feasible. 

Generally, it may be assumed that the final solution Qi in simulation step i (with 
tit ∆= ) can be computed fast, if the difference between the actual minimal energy 

and the initial guess used for the numerical optimization is small.18 Based on this 
idea, we can compute a good initial guess for the steps i+1, i+2, ..., while computing 
the correct result Qi for step i. 

Let us assume the case of performing a dynamic simulation and having two in-
dependent computation tasks T1 and T2. Given a known initial value Q0 (i.e., the 
position and velocity of each workpiece point) of the object at time t = 0, we use the 
following algorithm: 

Based on Q0, T1 and T2 compute simultaneously two shapes Q1, ∆t and Q2, 2∆t in 
simulation step i = 1. Q1, ∆t is computed with timestep ∆t, Q2 2∆t is computed with 
timestep 2∆t. While Q1, ∆t is the correct solution for t = ∆t, i.e., Q1, ∆t = Q1, Q2 2∆t is 
an approximation of Q2 at ( shape of the workpiece at t = 2∆t). It is only an ap-
proximation, since the correct computation of Q2 requires Q1 as input data. 

In simulation step i = 2, task T2 continues its computation for Q2, using Q2 2∆t as 
inital guess and Q1 as input data. The result, Q2, ∆t = Q2, is the correct solution for 
t = 2∆t. Simultaneously, T1 computes an approximation Q3, 2∆t for Q3, and so on. 

This approach can be easily extended to an arbitrary number of independent 
computation tasks. While one task computes the correct solution for tit ∆= (using 
the timestep ∆t), the other tasks compute approximations for 

{ }...,)2(,)1( titit ∆+∆+= . 
However, the assumption that a good initial guess results in a short computation 

time for the energy minimum is not always true, but depends on the optimization 
algorithm. On the one hand, the downhill simplex algorithm requires 3Nc + 1 inde-
pendent guesses for each of the 3Nc parameters. Having just one good (maybe 
almost optimal) guess from the previous steps does not significantly simplify the 
problem. Accordingly, the possible speedup is rather low. 

Gradient-based algorithms, such as DFP, on the other hand, come close to the 
minimum rather fast even if the initial guess is bad, but it requires many iterations to 
finally determine the minimum with the desired accuracy. Therefore, the influence 
of a good initial guess is rather small, resulting in a low speedup. However, if the 
guess computed in step i–1 is the actual shape of the workpiece, the DFP algorithm 
terminates immediately. This is the case if there is no plastic deformation in a step 
or if the acceleration of all mass elements is constant in time, respectively. Here, the 
speedup is lower than for independent computation, but also linear. 

                                                           
18 Qi(s) consists of the functions representing the workpiece shape q1(s), q2(s), q3(s), and 

the (Cartesian) velocity v(s) of each workpiece point in step i. 



Figure 12 shows the measured speedup for a dynamic computation of the 
benchmark C as shown in Figure 7 for both minimization algorithms. Due to the 
characteristics of the downhill simplex algorithm described above, the speedup is 
almost negligible. For the DFP algorithm, a maximum speedup of about two is 
obtained for three computation tasks. If the number of tasks is further increased, the 
speedup decreases due to the following reasons: First, the more computation tasks 
we use, the more guesses we compute for future simulation steps. However, if a 
guess for step i+k is computed in step i, the significance of the guess decreases with 
increasing k. Therefore, the additional benefit of the tasks becomes smaller from 
task to task. Second, the effort required for communication increases with the 
number of computation tasks. 
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Figure 12: Measured speedup for dynamic (dependent) computation using downhill simplex 
(DS) and Davidon-Fletcher-Powell (DFP) algorithm with NP being the number of processors 

(each experiment performed three times) 

Comparing with the resulting speedup, it is found that the effort for the parallel 
computation is too high in the case of dependent computations. Some additional 
possibilities for parallelizing sub-tasks, e.g., the computation of the energy integral, 
have been considered, but have not been implemented because we expected 
speedup to be poor. 

5. Inverse Simulation 

5.1 Approach 

So far, we have discussed the problem of simulating the behavior of the work-
piece if the gripper trajectory (and possibly other boundary conditions like obsta-
cles ) are given. We call such problems “Direct Simulation Problems”. They occur, 
e.g., when different handling strategies are compared or when the impact of the 
material parameters is studied. 

However, if we think of using a simulation system for robot programming (i.e., 
generating the gripper trajectory for a given task), the problem is just inverse: Given 
some boundary conditions concerning the position and shape of the workpiece, the 



gripper trajectory shall be computed. We call this kind of problems “Inverse 
Simulation Problems”. Till now, it has not been investigated systematically. 

The simplest example is the threading of a DLO through a cut-out, e.g., in a 
sheet metal. The optimal solution for this task is a gripper trajectory which meets 
the following conditions for the compete threading process, guaranteeing maximal 
tolerance to all kinds of uncertainties or distortions: 

• The DLO pierces the sheet metal plane at the center point PGoal of the cut-out, 
and 

• the orientation of the DLO at PGoal is aligned with the normal nGoal of the sheet 
metal. 

To solve this problem, we recall the solution to the direct simulation problem, as 
described above. To do this, we introduce a penalty function UPenalty, describing the 
deviation between given boundary conditions and actual DLO shape. By changing 
the position PGripper and orientation nGripper of the gripper, UPenalty is iteratively 
minimized. This approach leads to the following algorithm. 

  
1 PGripper := PGripper, 0;  {Initial guess for  gripper position & orientation} 

nGripper := nGripper, 0;  
2 repeat  {Main loop for inverse simulation problem}  
3  Solved := false; 
4  Deviation := UPenalty(Q, PGoal, nGoal); 
5  if Deviation = 0 then  {solved} 

   Solved := true 
  else {not solved}    
   PGripper := PGripper + ∆PGripper;  {varying gripper position  

  nGripper := nGripper + ∆nGripper;    and orientation}  
6 until Solved;   

  

In this algorithm, Q is the shape of the workpiece, given by the vectors of all 
line elements, ∆PGripper and ∆nGripper are the change of the gripper position and 
orientation in each iteration. 

In this approach, we use two interlaced optimization processes. The “inner” one 
for computing the DLO shape for a given gripper position (direct simulation 
problem), and the “outer” one for determining the gripper position which solves the 
inverse problem. With this approach, it is possible to consider any kind of boundary 
conditions by an appropriate selection of UPenalty. 

5.2 Solution for Important Special Cases 

However, there are important special cases in which the problem can be solved 
much easier. As long as no interaction between workpiece and environment has to 
be considered, the shape of the DLO is only affected by the orientation of the grip-
per with respect to gravity, but it is independent of the absolute gripper position. 



Therefore, the following strategy can be used for solving the inverse simulation 
problem: 

Given PGoal, nGoal and the line element n ∈ [0, 1, ..., NL–1] of the DLO which 
shall pierce the cutout, PGripper is fixed at an arbitrary position, e.g., the origin of the 
global coordinate system, and nGripper is varied until the DLO tangent is aligned with 
nGoal. With Pn' being the position of DLO element n, the gripper must then be 
displaced to 

’GoalGripper nPPP −=  

in order to finally solve the problem. With this approach, the algorithm given above 
is applied only to determine the gripper orientation, while the gripper position can 
be computed directly. As long as the curve describing the shape of the DLO lies 
within a plane (which holds approximately true in many cases), the problem does 
not have to be regarded in three dimensions, but is two-dimensional. In this case, 
only one angle θ is required for determining the gripper orientation. Thus, the 
“outer” optimization problem in the algorithm given above is an one-dimensional 
optimization for θ. Being tn the tangent vector of the DLO in point n, a quadratic 
penalty function 

2
GoalPenalty ))(arccos( ntncU =  

is found to be suited for the optimization, with c being an adjustment constant. 

The left column of Figure 13 shows simulation examples for the threading of 
flexible beams with different bending rigidity through a cut-out with the normal of 
the sheet metal plane being perpendicular to gravity. The increase of bending due to 
gravity for decreasing bending rigidity (from top to bottom) is obvious. 

Please note that in Zheng et al. [1], the task of inserting a flexible beam into a 
bore hole of approximately equal diameter is regarded. In that case, the gripper 
trajectory is found to be equivalent to the deflection curve of the bending beam. 
However, this is no general solution for the inverse simulation problem. For the task 
described in [1], the already inserted portion of the beam does not have to be con-
sidered any longer, because its weight is compensated by the walls of the bore hole. 
In other tasks, e.g., the threading task considered here, the complete beam is 
deflected by gravity while the task is performed. The relation between the gripper 
trajectory for the threading task and the insertion into a bore hole is shown in the 
right column of Figure 13. In each figure, the upper curve represents the DLO shape 
for the beginning of the threading process, i.e., the free end of the DLO being at 
position PGoal, having the orientation nGoal. For the insertion task described by 
Zheng et al., this curve defines the complete gripper trajectory. In the contrary, the 
lower curves in the figures give the gripper trajectory for the threading tasks shown 
in the left column. Obviously, the trajectory is different for both tasks, though both 
PGripper and nGripper are identical in the beginning.  
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Figure 13: Threading of a bending wire of length L = 1 m through a cut-out with center 
xGoal = 0 m, zGoal = 1 m for different bending rigidities (decreasing from top to bottom). 

Figures left: Wire shape during the threading process. Figures right: Initial wire shape (upper 
curve) and gripper trajectory with gripper orientation indicated by the short lines (lower 

curve). 

In the task of threading through a cut-out with a given orientation, the required 
position and orientation of the gripper are defined unequivocally for each point of 
its trajectory. Instead of giving the position and orientation of one point as con-
straints, it is also possible to give two goal positions P1 and P2 without orientation. 
An example for this kind of task is the threading through two cut-outs. In this case, 
it is desired to guide the DLO simultaneously through the centers of both cut-outs. 
Again, it is not necessary to determine both position and orientation by means of 



numerical optimization, but the gripper displacement can be computed directly. An 
example is shown in Figure 15. 
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Figure 14: Example for inverse simulation with two desired goal positions P1 and P2: 
Threading through two cut-outs 

5.3 Outlook 

Comparing with the general algorithm described above, the computation can be 
simplified in the cases discussed here because the workpiece shape is independent 
from the gripper position. This holds true as long as the DLO is deformed only by 
gravity and no direct contact between DLO and environment occurs. If this 
condition is not fulfilled, the situation becomes more complex. 

As example, Figure 15 shows the numerical simulation of an experiment de-
scribed by Henrich et al. [9]: The DLO is in contact with an obstacle and is being 
deformed by the contact force. The gripper is moved on a trajectory which itera-
tively reduces the DLO length between gripper and contact point, while the DLO 
orientation nGoal is kept constant.19 

However, another experiment described in [9] using the same setup states that 
for an arbitrary contact point along the DLO length and a given DLO orientation in 
the contact point, a gripper trajectory exists which 

• retains the contact during the motion, and 

                                                           
19 In this example, the gripper trajectory is given by a straight line, connecting the initial 

gripper position and the contact point. The gripper orientation is constant [9]. 



• ensures that neither the contact point along the DLO length nor the orientation 
of the DLO in the contact point is altered. 

This means that for any given contact point along the DLO and given orientation 
at the contact point, the solution of the inverse problem is not unambiguous, but the 
number of solutions is infinite. This is demonstrated in the example shown in Figure 
16 for a horizontal orientation nGoal of the DLO in the contact point. 
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Figure 15: Example for inverse modeling problem if contact between workpiece and envi-
ronment must be considered. The DLO length between gripper and contact point PGoal is 

iteratively reduced while the orientation in PGoal is kept constant. 
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Figure 16: Different solutions for the inverse modeling problem with contact between 
workpiece and obstacle. All of the gripper positions shown here (and all points on the 

trajectory connecting them) are valid solutions for the inverse simulation problem. 

Because it is generally not clear what solution the algorithm given above will 
find, it is required to add additional boundary conditions in such cases, which 
guarantee an unequivocal solution. The problem of solving the inverse simulation 
problem with contact between workpiece and environment is currently being 
investigated. 
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