
In: Journal of Electronic Imaging, Volume 25, Issue 4, 7 July 2016
.

Ober-Gecks2016
.Efficient GPU-based Voxel Carving for Surveillance

Antje Ober-Gecksa,*, Marius Zwickera, Dominik Henricha

aUniversity of Bayreuth, Institute for Computer Science, Chair for Applied Computer Science III, Bayreuth,
Germany, 95440

Abstract. In this paper a GPU-based implementation of a space carving method for the reconstruction of the photo
hull is presented. In particular, the generalized voxel coloring with item buffer (GVC-IB) approach is transferred to
the GPU. The fast computation on the GPU is realized by an incrementally calculated standard deviation within the
likelihood ratio test, which is applied as color consistency criterion. A fast and efficient computation of complete
voxel-pixel projections is provided using volume rendering methods. This generates a speedup of the iterative carving
procedure while considering all given pixel color information. Different volume rendering methods such as texture
mapping and raycasting are examined. The termination of the voxel carving procedure is controlled through an anytime
concept. The photo hull algorithm is examined for its applicability to real-world surveillance scenarios as online
reconstruction method. For this reason, additionally a GPU-based redesign of a visual hull algorithm is provided, that
utilizes geometric knowledge about known static occluders of the scene in order to create a conservative and complete
visual hull that includes all given objects. This visual hull approximation serves as input for the photo hull algorithm.

Keywords: voxel carving, space carving, photo hull, conservative visual hull, occlusions, online reconstruction, GPU,
surveillance.

*Antje Ober-Gecks, antje.ober-gecks@uni-bayreuth.de

1 Introduction

The capturing of real-world objects with the aid of sensors and the creation of computer-based 3D

models is a well-established task and becomes increasingly more important with a growing range

of applications. The main purposes of modeling 3D objects’ geometries and photo-realistic surface

properties are the visualization of information, the support in computer-aided 3D planning and de-

signing as well as the acquisition of knowledge from the environment. The manual creation of such

models (by hand) is expensive and time-consuming, thus an automatic capturing often is desired.

Our application of interest is the reconstruction of (industrial) work cells. We want to determine the

occupied space for robot tasks like path planning and collision detection. Also we aim at tracking

humans in order to robustly capture their localization and pose in the surveillance volume, e.g. to

derive knowledge about their behavior that might be helpful in human-robot cooperations. Current

1

sensors can only capture objects partially. Thus, several views of an object are required to gain

sufficient information about its geometry and surface properties to be reconstructed. 3D recon-

struction algorithms process captured sensor data and perform a sensor data fusion. There are two

principles to implement this. One way is to use a single sensor and produce several images subse-

quently from different views of the object. The other way is to use a network of several sensors that

work in parallel and capture data simultaneously, from different views and positions in space. The

latter is more adequate for online reconstruction purposes with strong limitations to the run-time.

The choice of sensor technology is a matter of the application as well as advantages and disadvan-

tages concerning resolution, cost, measurement principle (passive or active) and other properties.

For instance, active sensors such as laser scanners, sonar, structured light (e.g. the original Kinect

sensor1), time-of-flight cameras or PMD cameras have a susceptibility towards reflective (metallic)

surfaces. Other factors such as interference, absorption, sensing range, energy consumption, etc.

also have to be considered. Thus passive sensors might still be preferred, as in our work. Our

system consists of multiple calibrated and synchronized color cameras, which monitor a common

surveillance volume. The calibration2 is easily accomplished by capturing light points at different

locations in the dark surveillance volume that were used as input for the calibration method to

produce a linear system that is over determined. An approximative solution (of extrinsic and in-

trinsic parameters) is provided by an iterative error minimizing process. A mapping to our known

world coordinate system is conducted with known points of a special registration object. This also

produces a correct scaling parameter for the camera positions.

The surveillance volume contains known obstacles such as tables and racks, as shown in Figure

(Fig.) 1, which are modeled as triangle meshes. Humans moving inside the surveillance volume

are a priori unknown and called objects. The goal is a 3D online reconstruction of the scene, espe-

2

Fig 1 Work cell with unknown objects (humans) and known static obstacles (colored violet) that cause occlusions.

cially of the objects, to obtain a good approximation of the objects’ geometries as well as a good

colorization of their surfaces. In this work, we provide two algorithms for the accelerated compu-

tation of a visual hull and a photo hull under consideration of occlusions caused by obstacles. A

shorter form of these algorithms has been published lately,3 but this work provides an improved

and more precise presentation with additional images.

1.1 Overview

We present two GPU algorithms for an accelerated reconstruction of a photo hull and a visual hull

that incorporates all available pixel information to gain high exactness in computation with little

loss of information. For this reason more quality can be expected concerning the reconstruction

results than with several other existing methods. Moreover, knowledge about obstacles is included,

so that the algorithms can be applied as online reconstruction method for surveillance scenes with

occlusions. The visual hull serves as input for the photo hull. It provides an initial upper bound of

the reconstruction volume and thus enables a better run-time for computing the photo hull. At every

time step t, the visual hull is reconstructed from silhouette images that result from segmenting all

camera images with a background subtraction method. A segmentation also is required for the

3

photo hull reconstruction as the equally colored walls of the work cell (see Fig. 1) lead to a

premature termination of the algorithm otherwise (due to undesirable color consistencies). We

apply a specific exact and conservative concept for a visual hull that handles the occlusions of the

obstacles from the scene so that the reconstruction contains the objects completely. We published

this concept in a former work.4 In Section (Sec.) 3.1.4 our new algorithm of that visual hull is

provided for a faster computation on the GPU.

For reconstructing an online photo hull, in Sec. 3.2 we present an adapted algorithm of the

so called generalized voxel coloring with item buffer (GVC-IB).5 To enable the transfer of the

GVC-IB method to the GPU convenient modifications are applied, e.g. the incorporation of an

incremental computation of the color consistency criterion as well as the usage of the anytime

concept6 in order to enforce a termination of the algorithm after a defined computation time T .

One main issue that demands the utility of the GPU for both reconstruction methods is the fast and

efficient computation of the complete voxel-pixel projections. With a higher number of cameras at

high resolution, the online computation of the projections is too slow and an offline computation

cannot be stored in the host’s memory (at present). Therefore, different rendering techniques

(texture mapping, raycasting) are examined. Furthermore, the computation time for the complete

processing pipeline is analyzed as well as the quality of the resulting photo hull. The experimental

evaluation, described in Sec. 4, is conducted with image sequences from a real-world work cell

and from a simulation. Our algorithms are provided in Sec. 3. The results are summarized in Sec.

5. The following Sec. 2 gives an overview of related work.

4

(a) (b)

Fig 2 Shape-from-Silhouette principle7 (visual hull): (a) Shown is a non-convex object (dark grey) in 3D space and two
silhouette images from the object with different viewpoints. (b) The reconstruction resulting from a back-projection
of the silhouettes does not provide all details of the original shape. Additional cuboids (light grey) are reconstructed.

2 State of the Art

2.1 Visual Hull

Shape-from-Silhouette methods (SfS) are commonly used for the geometric approximation of ob-

jects in 3D space. These methods use silhouette images with different views as input and accom-

plish for each image a back-projection of the silhouette resulting in a 3D visual cone. Each visual

cone has an unlimited depth and provides only the knowledge that the object of interest must be lo-

cated somewhere inside (given a complete silhouette). The geometric approximation of the object

is obtained by intersecting the visual cones of several camera views (called volume intersection).

The idea of the SfS approach was already published in 1974.8 Laurentini introduced the term

visual hull.9 Overall, the SfS approaches of the visual hull are easy and fast to compute, but do

have their limitations, as shown in Fig. 2. Not all non-convex objects can be reconstructed with

sufficient quality even with a high amount of cameras. Details about the reconstructability of

different object geometries can be found in the works of Laurentini.7, 10 For the computation of

the visual hull, different representations and data structures are applied. Surface-based methods,

e.g. polyhedrons have been investigated11–13 as well as volume-based methods like voxels14, 15 and

conexels.16 Polyhedrons, e.g. triangle meshes, require a more complex contour extraction step

5

Fig 3 Influence of occluders on background subtraction: (a) Reference image of scene with occluders. (b) Image of
the scene with occluders and object of interest (human). (c) Output from a background subtraction method: binary
silhouette image. As parts of the human are occluded, the silhouette is not complete and will lead to an erroneous
reconstruction.

for the images, e.g. with help of search algorithms. In comparison, volume-based methods use

segmentation algorithms for the automatic creation of binary silhouette images, where all silhouette

pixels can be back-projected into 3D space separately, exhibiting implicit parallelism. For this

reason and a variety of other advantages like easy access, storage and management we use voxel

data in our reconstruction algorithms.

Typically, background subtraction algorithms (also known as change detection17) are applied

for the segmentation of (moving) objects in sequences of images (see Figure 3). The principle of

such methods is, that for each camera one or several images are taken in order to create a represen-

tative reference image or background model from the scene, that does not contain objects of inter-

est. In the monitoring mode of the system all new camera images are compared to that reference.

When unknown objects occur in the scene their appearance usually differs from the reference, so

that a segmentation of the objects can be accomplished. Problematic for the reconstruction of the

visual hull are erroneous silhouette images, which can easily occur with a background subtraction

method. Noise and shadows might lead to larger silhouettes and therewith to more coarse visual

hulls. On the other hand, clipped silhouettes can arise from similar appearances of objects and

6

Fig 4 Concepts of occlusion handling for the visual hull: (a) Incomplete visual hull caused by clipped silhouette
images from background subtraction due to occluding obstacles. (b) Occlusion Masks:15 Silhouette information of
known static occluders is added to the output of the background subtraction. All parts of the objects are located within
the visual hull, but also more additional empty volumes are reconstructed (called pseudo objects or ghost volumes).
(c) Less ghost volumes are reconstructed by using 3D geometry information of the static occluders in order to create
depth images that are combined with the silhouette images from the background subtraction.

backgrounds in the images or due to occlusions in the scene. The latter is caused by static obsta-

cles present during reference creation. Thus, objects of interest might be partially or completely

occluded for some or all the cameras, which leads to clipped silhouette images as shown in Fig. 3

and for this reason to incomplete visual hulls, that might not fully include the objects of interest

(see Fig. 4 (a)).

Different approaches exist to handle the discussed occlusion problem. One method15 uses

occlusion masks (binary masks in the image space of the static occluders), which are added to the

output silhouettes from the background subtraction as shown in Fig. 4 (b). During reconstruction

the pixels from the silhouette and the occlusion mask are back-projected such that all resulting pixel

cones form the visual cone of one camera view. Binary occlusion masks can be created manually

or with help of an iterative learning method.18, 19 In previous works we generated occlusion masks

from dynamic known obstacles like a robot, by rendering the robots geometry online into the

camera images with help of the known robot configuration. This can be used for image-based

7

collision detection20 or distance computation21, 22 in surveillance scenes.

Occlusion masks ensure that all objects in the scene are located inside the visual hull (given

ideal silhouettes for the visible part of the objects), but they also lead to additional empty volumes

that are reconstructed as well, shown in Fig. 4 (b). Such volumes are called pseudo objects or ghost

volumes in literature. We published another solution.4 Geometric models of all obstacles in the

scene are used to create for each camera a depth image, which determines the free space up to the

surfaces of the obstacles similar to a range sensor. This enables a better geometric approximation

than with the occlusion masks, as shown in Fig. 4 (c). More other solutions exist, e.g. Reference

(Ref.)23 However, we apply our approach from Ref.,4 which incorporates the maximum knowledge

about the geometry of known obstacles and offers at the same time a conservative reconstruction

of the visual hull.

2.2 Photo Hull

In comparison to the SfS methods (visual hull), the reconstruction of a photo hull is based on

an alternative reconstruction principle, namely the color reconstruction.24 This principle also is

known as space carving14 or voxel carving. The color information of the images controls the

reconstruction process and is directly assigned to the voxels in 3D space, which results in a colored

voxel representation of the object’s geometry. The process of reconstruction starts with a fully

occupied voxel space. Visible voxels are carved iteratively until the object’s surface is reached.

A voxel is visible in a pixel if no other occupied voxel is in front of that voxel from the camera’s

point of view. The visibility of a voxel might change with every carved voxel in the voxelspace and

thus has to be determined again in each iteration (visibility test). The decision for carving a visible

voxel is based on the concept of color consistency. A voxel is consistent if the respecting pixels of

8

Camera
sees
blue

Camera
sees
blue

green blue red

Camera
sees
red

Camera
sees
green

green blue red

(a) (b)

Fig 5 Principle of the color consistency test shown for two cameras and a voxel (small black circle):25 (a) The two
cameras capture the same color (blue). Thus it is assumed that the voxel must lie on the surface of the reconstructed
object. The voxel is not carved. (b) The two cameras capture different colors in the voxel (red and green). It is assumed
that the voxel is not part of the object’s surface. The voxel is carved (marked transparent).

all cameras for which it is visible have the same color, otherwise it is carved. The color consistency

test is shown in Fig. 5. An overview of different consistency criteria, e.g. the maximum norm, can

be found in Ref.26 The reconstruction result is supposed to reproduce the original images when

projected into the cameras (criteria of photo integrity). The photo hull might produce a tighter (and

thus possibly better) reconstruction of the object’s geometry than the visual hull (shown in Fig. 6).

A drawback is that the photo integrity can be fulfilled for different object geometries at the same

time, which results in ambiguities in the reconstruction, shown in Fig. 6 (a) and (b). More cameras

might help in solving this ambiguity problem, but it also strongly depends on the color properties of

the object as well as the applied color consistency criterion and the related thresholds. Concerning

the lighting condition of the scene, typically a Lambertian reflection is assumed (diffuse lighting),

which means that the color of a surface appears similar from different viewpoints (approaches exist

that relax this assumption).

The bottleneck of voxel carving is the required visibility test in each iteration, which is time

consuming, so that long time voxel carving was deemed inapplicable in real-time scenarios due to

frame rates of several minutes.26 However, modern graphics hardware promises new possibilities

9

red

red green

blue red

red green

blue

(a) (b) (c)

Fig 6 Reconstruction of a photo hull and ambiguity:14 The photo integrity can be fulfilled for different objects. Both
photo hulls from (a) and (b) generate the same images and lead to an ambiguity. Nevertheless, the photo hull might
provide a better geometrical approximation than the visual hull, shown in (c).

for accelerating the photo hull computation as provided by Ref.27 and focused in this paper. Differ-

ent concepts of voxel carving distinguish in the determination of the visibility. A naive and simple

algorithm with high computation cost is proposed in Ref.25 This cost can strongly be reduced by

introducing a limitation to the camera positions, called ordinal visibility constraint,24 shown in Fig.

7 (a). All cameras have to be placed behind a parting plane so that the voxels can be processed in

a fixed order in one iteration. Disadvantageous is the incomplete reconstruction due to insufficient

perspectives. In comparison, algorithms of the partial visibility space carving (PVSC) and full vis-

ibility space carving (FVSC)26 apply a sweep subsequently along all three coordinate axes of the

voxelspace in positive and negative directions, beginning from the external borders, as shown in

Fig. 7 (b). Only the active cameras of the current sweep plane are incorporated in the consistency

test. An exact computation with arbitrary camera placement is provided with the generalized voxel

coloring (GVC).5 The algorithm is shown in Algorithm 3.7. The visibility of the voxels is managed

with help of a surface voxel list (SVL), shown in Fig. 8. The GVC-IB approach projects in each

iteration all voxels of the SVL into the cameras and saves the closest and thus visible voxel for

each pixel in an item buffer (IB). The consistency of each voxel from the SVL is determined by

10

y

x

z

(a) (b)

Fig 7 Voxel visibility: (a) Camera configurations with top down view rotating around the object fulfill the Ordinal-
Visibility-Constraint.24 No explicit visibility test is required and the voxelspace can be processed in one iteration. (b)
The visibility of the voxels is determined in the PVSC and FVSC algorithms by sweeping the voxelspace along its
axes in six directions in each iteration.

the use of the assigned pixels from the item buffer. Whenever a voxel from the SVL is carved, it is

replaced by its uncarved neighbors. This is repeated until all voxels in the SVL are consistent. A

disadvantage is that the voxels of the SVL permanently have to be projected into the cameras. An

improvement of the computation time can be achieved by using sorted linked lists as in the gener-

alized voxel coloring - layered depth images method (GVC-LDI),5 but the algorithmic complexity

and the memory usage are increasing.

(Hardware) Acceleration: In Ref.28 the use of texture mapping for fast voxel-pixel projec-

tions is suggested. Also, a coarse-to-fine approach e.g. with octree structures as well as temporal

coherence for image sequences is recommended. Plenty approaches have been developed to ac-

celerate the processing of the visual hull and the photo hull that often follow these fundamental

ideas (partially also the presented references). For instance, a current octree-based visual hull is

proposed in Ref.29 In Ref.30 a texture mapping is applied in combination with an octree and a

multiple-sweep-space-carving similar to the PVSC approach for creating a photo hull. Another

photo hull approach uses raycasting to reduce the computation time of voxel-pixel projections.31

20 to 30 cameras were used and computation times of 700 seconds could be reached with the for-

11

1 2 2

Voxelspace Item Buffer

1 2

Voxelspace LDI

2 1

(a) (b)

Fig 8 Voxel visibility:5 Illustration of the data structures for the surface visibility list applied in the GVC algorithms
(a) Item-Buffer and (b) Layered-Depth-Images.

mer hardware. Many other approaches provide solutions that focus on the rendering of new virtual

perspectives (e.g. by applying the ordinal visibility constraint) without the execution of an explicit

reconstruction (which is our concern). One method that comes close to our work is provided in

Ref.27 A modern graphics board is used to compute segmented images, the visual hull (via vertex

shader), and the photo hull (via fragment shader). A multi-sweep approach that employs a raycast-

ing step with early-ray-termination as well as an heuristic approach is applied for determining the

visibility of the voxels, whereas only the voxel center is projected to the images. For a voxelspace

of size 94× 94× 113 and eight FireWire cameras with a resolution of 1024× 768 a frame rate of

33 fps is achieved.

So far, to our knowledge, the existing (accelerated) approaches lack at minimum in one of the

following aspects: 1. Explicit consideration of occluding obstacles. This is required when applying

a background subtraction for scenes with obstacles. 2. Projection of the complete voxel volumes to

the images, instead of using the voxel center27 or another simplification.15 This is required to gain

a higher quality of the reconstruction. 3. Computation of exact voxel visibilities. This is required

for the use of arbitrary camera placements in voxel carving. In our approach (Sec. 3) we combine

existing concepts (partially from own former works) and provide GPU algorithms that consider all

of these aspects.

12

3 Our Approach

In this Section we describe our GPU algorithms for a visual hull and a photo hull which overcome

the mentioned drawbacks of the former approaches. For the explicit consideration of occluding

obstacles we adapted our special visual hull algorithm4 and redesigned it for hardware acceleration

on the GPU, described in Sec. 3.1.3. We previously4 used a look-up table holding the voxel-pixel

correspondences of complete voxel volumes similar to Ref.15 In comparison, we apply a GPU-

supported rendering method (e.g. raycasting) in this work in order to be able to process higher

resolutions of the voxelspace and the images. For reconstructing a photo hull (GVC-IB voxel

carving5) on the GPU, we apply a rendering in combination with a transfer function in order to

compute exact voxel visibilities. As consistency criterion we use the likelihood ratio test (LRT),24

because we achieved the best reconstruction quality with it, compared to the ASDT, histogram and

maximum norm,26 in a benchmark test. We make possible the computation of the LRT on the GPU

by applying an incremental computation of the standard deviation. This permits (in combination

with the rendering) a fast parallelization of the incremental photo hull on the GPU. Furthermore, we

integrate the anytime concept6 to allow the termination of the algorithm after a defined maximum

computation time T .

For hardware acceleration we use the OpenGL standard. More details on our approach and the

results can be found in Ref.32 A pseudocode of our reconstruction pipeline is shown in Algorithm

(Alg.) 3.1. All pseudocodes are self-explanatory, so that only few references to those are given in

the text. For better understanding we start with the CPU algorithms before presenting the GPU-

based implementations of the visual hull and the photo hull. An experimental evaluation of those

as well as a comparison of different rendering techniques is provided in the subsequent Sec. 4.

13

Algorithm 3.1 Main Function for an accelerated reconstruction of a photo hull
1: procedure MAINFUNCTION(V , Vocc, Vfree, C, O, τ , T)
2: COPYTOGPU(V , C, O, τ , T)
3: Idep ← CREATEDEPTHIMAGESFROMOBSTACLES(C, O) . project obstacles into cameras
4: I ref

col ← CAPTUREIMAGES(C) . capture set of reference images on host
5: while SYSTEMSTOP = false do . do for every time frame
6: Icol ← CAPTUREIMAGES(C) . capture current camera images on host
7: Ibin ← BACKGROUNDSUBTRACTION(Icol, I ref

col) . compute silhouette images on host
8: COPYTOGPU(Icol, Ibin)
9: VVH ← VISUALHULLCONSERVATIVE(V , Vocc, Vfree, C, Ibin, Idep) . visual hull

10: VPH ← PARALLELGVC-IB(VVH, C, Idep, τ , T ,) . refine to photo hull
11: COPYTOHOST(VPH) . pull back from GPU to host
12: use reconstructed photo hull in further processing steps
13: end while
14: end procedure

3.1 Visual Hull

3.1.1 Standard Visual Hull

In general, our reconstruction runs at discrete steps t over a time interval tend − tstart. However, our

computations are not incremental over time. Thus, we improve clarity of the following discussion

by only considering a single step t. There is no loss of generality, and an additional time index

intuitively integrates into subsequent formulas. Our surveillance volume, a subvolume [0, 1]3 ⊂

R3, is discretized by dividing each dimension into a number of equally spaced intervals. This

results in a grid, called voxelspace, where each grid cell (a cube or a cuboid) is a voxel. We define

V = {v1, . . . , v|V |} as a finite set of |V | ∈ N voxels vi. Let λ : V → R3 be a function that

returns the center point rvi = λ(vi) of each voxel. For monitoring the surveillance volume, let

C = {c1, . . . , c|C|} be a finite set of |C| ∈ N calibrated and synchronized color cameras cj . The

function ω : c → R3 returns the position of a camera’s focal point rcj = ω(cj). We assume

a pinhole projection and ignore effects of distortion in the following explanations, though we

considered such effects in processing the images from our real-world scenario. Moreover, for a

14

better illustration of our algorithms we omit some implementation details and assume that each

voxel of the voxelspace can be seen from all cameras. Each camera contains a number of sensor

elements, called pixels, defined as a finite set Pcj = {p1, . . . , p|Pcj |} of |Pcj | ∈ N pixels pk ∈ Pcj ,

where the set of all pixels in all cameras is referred to as P = ∪cj∈CPcj . At each time step a camera

cj provides for each pixel discrete data as a map image{col,bin,dep},cj : Pcj → D{col,bin,dep}, where

Dcol = [1, 2m]3 ∈ N3 (color image with m bit color resolution in three channels), Dbin = {0, 1}

(binary image) and Ddep = R (depth image).

Given the color images Icol = {imagecol,c1 , . . . , imagecol,c|C|} of all cameras of the multi-

camera system, a background subtraction is applied that returns a number of segmented binary

silhouette images Ibin = {imagebin,c1 , . . . , imagebin,c|C|}. The background subtraction method

requires a limited number of reference color images, that are captured at a certain time tref, while

no objects of interest are present in the scene. We refer to this step using a set of images I ref
col. We

use a background subtraction method from the OpenCV library33 and accomplish the segmentation

on the host. This can be replaced by any other method (which might be more complex and possibly

adaptive) that is suitable for the reconstruction conditions of the specific environment, e.g. with

changing lighting conditions. After background subtraction, the resulting value of each pk ∈

Pcj is given either as imagebin,cj(pk) = 0 if pk is classified as background or imagebin,cj(pk) =

1 if pk is classified as foreground. The segmented binary silhouette images are used as input

for reconstructing a visual hull. The visual hull (VH) is a set of voxels with VVH ⊂ V that is

reconstructed from a priori unknown humans (objects) in the surveillance volume. Let Φvi,cj ⊂ Pcj

be the set of projection pixels of a voxel vi in camera cj , and Φvi = ∪cj∈C(Φvi,cj). The visual hull

15

is composed of all those voxels vi ∈ V for which the Formula (Form.) (1) holds.

∀cj ∈ C : ∀pk ∈ Φvi,cj : imagebin,cj(pk) = 1 (1)

Given the pixel sets Φvi,cj for all voxels, the visual hull can be determined by set operators in

terms of boolean expressions. A simple algorithm for computing the standard visual hull is shown

in Alg. 3.2. A voxel that is carved is discarded. It is empty (free) and not visible anymore.

Algorithm 3.2 Algorithm for a standard visual hull
1: procedure STANDARDVISUALHULL(V , C, Ibin)
2: VVH ← V . initialize visual hull with full voxelspace
3: for all vi ∈ VVH do . for each voxel
4: for all cj ∈ C do . for each camera
5: Φvi,cj ← PROJECTVOXELTOCAM(vi)
6: for all pk ∈ Φvi,cj do . for each projection pixel of voxel
7: if GETIMAGEVALUE(pk, Ibin, cj) = 0 then . if pixel is background
8: VVH ← VVH \ {v} . carve voxel
9: end if

10: end for
11: end for
12: end for
13: return VVH . return set of uncarved voxels
14: end procedure

3.1.2 Visual Hull with Occluding Obstacles

For the standard visual hull, projections of objects are assumed to be completely included in the

silhouettes of the |C| segmented images Ibin,cj . This is true (given ideal silhouette images) if the

capturing of reference images was accomplished for an empty surveillance volume. As opposed to

this, static obstacles like tables that are present in advance are not part of the silhouettes and thus are

not reconstructed. Moreover they might occlude partially or completely the objects so that clipped

silhouettes arise. In result Form. (1) is false negative and it is not guaranteed that the remaining

16

visual hull contains the complete objects. We provide a solution of this problem in.4 Knowledge of

a priori known static and dynamic occluding obstacles is integrated into the reconstruction process.

In this paper we focus on known static obstacles only. Given O = {o1, . . . , o|O|} as a finite set of

|O| ∈ N a priori known obstacles oq in the surveillance volume, we assume that all those obstacles

are geometrically modeled (in our work as triangle meshes). With help of those models, we create

depth images Idep = {imagedep,c1 , . . . , imagedep,c|C|} in an offline step on the GPU for all cameras

(with the same pixel resolution as the other images). A depth image encodes the maximum free

range of each pixel pk in Pcj . If the pixel pk sees no obstacle, the assigned depth pixel value is

infinite. In the reconstruction process all pixels of a projected voxel are tested for visibility given

their depth values. Only pixels having a free sight to the voxel are permitted to contribute to the

decision of carving (occupation).

Given the position rcj ∈ R3 of the camera cj , the center of a voxel rvi ∈ R3 and a constant

dv ∈ R describing half of the length of the diagonal of a voxel (to be conservative), the Form. (1)

can be extended such that, for all voxels of the visual hull vi ∈ VVH holds:

∀pk ∈ Φvi,cj : (imagebin,cj(pk) = 1) ∨ (|rvi − rcj |+ dv ≥ imagedep,cj(pk)) (2)

Accordingly, all objects and all obstacles are part of the visual hull. The magnitude of the dif-

ference of the position vectors is calculated via L2-Norm and thus corresponds to the distance

between both positions. The algorithm in Fig. 3.2 needs to be adjusted so that Line 7 implements:

(|rvi − rcj |+ dv < imagedep,cj(pk)) ∧ (imagebin,cj(pk) = 0) (3)

17

3.1.3 Conservative Visual Hull with Occluding Obstacles

The Formulas (1) and (2) do not account for discretization errors of the voxelspace approximation,

which have an impact on the boundary of the visual hull. Only one projection pixel pk ∈ Φvi,cj of

a camera with value imagebin,cj(pk) = 0 (background) suffices to carve a voxel, though all other

projection pixels might have the value imagebin,cj(pk) = 1 (foreground). In result, the boundary

of the visual hull is formed by voxels that completely project to silhouette pixels in all cameras.

However, to ensure that all parts of objects and obstacles are enclosed by the visual hull, the

following conservative formulation is required. A voxel is only carved if all projection pixels Φvi,cj

of at least one camera are classified as background, whereas no occluded or foreground pixels are

allowed (Form. (4)).

∃cj ∈ C : ∀pk ∈ Φvi,cj : (imagebin,cj(pk) = 0) ∧ (|rvi − rcj |+ dv < imagedep,cj(pk)) (4)

On the other hand, one foreground or one occluded pixel in each camera is sufficient to keep

the voxel in the reconstruction (Form. (5)).

∀cj ∈ C : ∃pk ∈ Φvi,cj : (imagebin,cj(pk) = 1) ∨ (|rvi − rcj |+ dv ≥ imagedep,cj(pk)) (5)

A respective algorithm is shown in Alg. 3.3.

3.1.4 Conservative Visual Hull with Occluding Obstacles on the GPU

After having shown the conservative visual hull with occluding obstacles we present our corre-

sponding implementation on the GPU, shown in Algorithms 3.4 and 3.5.

18

Algorithm 3.3 Algorithm for a conservative visual hull with occlusion handling
1: procedure CONSERVATIVEVISUALHULL(V , C, Ibin, Idep)
2: VVH ← V . initialize visual hull with all voxels from voxelspace
3: for all vi ∈ VVH do . for each voxel
4: for all cj ∈ C do . for each camera
5: flag foreground← nil . a flag with three values is required
6: flag occludedPixelExist← false
7: Φvi,cj ← PROJECTVOXELTOCAM(vi)
8: for all pk ∈ Φvi,cj do . for each projection pixel of the voxel
9: if |rvi − rcj |+ dv < GETIMAGEVALUE(pk, Idep, cj) then . if voxel is visible

10: if GETIMAGEVALUE(pk, Ibin, cj) = 1 then . if pixel is foreground
11: flag foreground← true
12: end if
13: if flag foreground = nil then . if first projection pixel in cj is background
14: flag foreground← false
15: end if
16: else . voxel is not visible in pixel
17: flag occludedPixelExist← true
18: end if
19: end for
20: if (flag foreground = false) ∧ (flag occludedPixelExist = false) then
21: VVH ← VVH \ {vi} . carve voxel
22: end if
23: end for
24: end for
25: return VVH

26: end procedure

All segmented images Ibin and other required data are transferred to the GPU. Each camera is

assigned an ID, given with id : C → {1, . . . , |C|} where id(cj) = j. The computation takes place

sequentially for one camera after the other, sorted by ascending id(cj), but parallel for all pixels.

The process executed for each pixel and each voxel is shown in Alg. 3.5. Each pixel handles all

voxels that are included by its backprojection cone in a sequential way. This is accomplished by

an iterative rendering.

19

Algorithm 3.4 Algorithm for a conservative visual hull with occlusion handling on the GPU
1: procedure VISUALHULLCONSERVATIVE(V , Vocc, Vfree, C, Ibin, Idep)
2: for from l← ID(c)= 1 to ID(c)= |C| step 1 do . sequentially with ascending camera id
3: parallel for all pk ∈ Pcj do . parallel for all pixels
4: vi ← GETFIRSTVOXELPROJECTINGTOPIXEL(pk, V) . render closest voxel
5: while vi ∈ V do
6: vocc ← GETVOXELOCC(vi), vfree ← GETVOXELFREE(vi)
7: PROCESSVOXELINPIXEL(vocc, vfree, pk, cj, Ibin, Idep)
8: vi ← GETNEXTVOXELPROJECTINGTOPIXEL(vi, pk, V)
9: end while

10: end parallel for
11: end for
12: VVH ← ANALYZEVOXELVALUES(Vocc,Vfree) . gather all occupied voxels
13: return VVH

14: end procedure

Algorithm 3.5 Algorithm for processing each pixel in parallel
1: procedure PROCESSVOXELINPIXEL(vocc, vfree, pk, cj, Ibin, Idep)
2: if VALUE(vocc) ≥ VALUE(vfree) ∨ VALUE(vfree) = ID(cj) then
3: if (GETIMAGEVALUE(pk, Ibin, cj) = 1 ∨ . if pixel is foreground
4: |rvi − rcj |+ dv ≥ GETIMAGEVALUE(pk, Idep, cj)) then . if voxel is occluded
5: VALUE(vocc) = ID(cj)
6: else . if voxel is visible and pixel is background
7: VALUE(vfree) = ID(cj)
8: end if
9: end if

10: end procedure

We create two equal sized voxelspaces Vfree and Vocc that have the properties of the original

voxelspace. Each voxel is initialized with 0 and holds a single camera ID after processing. This

ID is obtained by the functions valuez : V → {0} ∪ {1, . . . , |C|} over the iteration steps z, where

value value0(vi) = 0 and value of iteration z + 1 derives as shown in pseudocode Alg. 3.5.

Basically, every voxel gets for each projection pixel an entry of at least one camera ID in either

Vfree or Vocc. The pixel-parallelism is ensured by the special construction of the condition in Alg.

3.5, Line 2. Possible mixes of read and write operations on the voxel space do not matter, because

after the processing of a camera (the outer loop), a memory barrier is employed, that ensures

20

value(vocc) < value(vfree)
Camera id(cj) = |C| or a previous processed camera contains only free pixels. One camera that
sees the voxel completely as free is sufficient to carve the voxel. Thus the voxel is free.
value(vocc) ≥ value(vfree)
At least one occupied or occluded pixel was recorded for the last camera id(cj) = |C|. This
indicates that no previous camera sees the voxel completely as free. The voxel is occupied.

Table 1 Final values of each voxel in Vfree and Vocc and the resulting voxel occupation.

synchronization. All pixels that are part of an object’s silhouette or that are not able to see the

voxel due to occlusions generate an entry in Vocc (Alg. 3.5, Line 5). All the other projection pixels

generate an entry in Vfree. To carve a voxel (mark as free), it sufficies that the voxel is complety

background and not occluded in all projection pixels of one camera. The condition of Line 2 in Alg.

3.5 is constructed so that it is never true for the following cameras, after being fulfilled once for

a camera. The final visual hull corresponds to all voxels classified as occupied. The classification

of each voxel can be captured by comparing its entrys of Vocc and Vfree in a postprocessing step, as

shown in Table 1 (see also Alg. 3.5, Line 12).

Hitherto, objects and occluding obstacles are part of the visual hull. However, currently we

consider scenarios with static obstacles, whereby parts of the visual hull remain constant for every

time step t of the image sequence. For the subsequent computation of the photo hull we decided to

ignore the constant parts (which might be computed once in an offline step) and concentrate on the

reconstruction of the changing environment (humans). The static parts can be added to the online

reconstruction result in a postprocessing step. For this reason a modified algorithm is shown in

Alg. 3.6. The difference is that occluded pixels are now ignored completely (Lines 2 and 3). The

resulting values of the two voxelspaces Vfree or Vocc have to be interpreted as shown in Table 2.

21

Algorithm 3.6 Algorithm for a conservative visual hull with occlusion handling on the GPU. Static
Obstacles are not reconstructed.

1: procedure PROCESSVOXELINPIXEL(vi, pk, cj , Ibin, Idep)
2: if |rvi − rcj |+ dv ≥ GETIMAGEVALUE(pk, Idep, cj) then
3: return
4: end if
5: if VALUE(vocc) ≥ VALUE(vfree) ∨ VALUE(vfree) = ID(cj) then
6: if GETIMAGEVALUE(pk, Ibin) = 1 then
7: VALUE(vocc) = ID(cj)
8: else
9: VALUE(vfree) = ID(cj)

10: end if
11: end if
12: end procedure

value(vocc) < value(vfree)
Camera id(cj) = |C| or a previous camera contains only free pixels besides possibly occluded
pixels. At least one camera sees the voxel completely as free. This is sufficient to carve the voxel.
Thus the voxel is free.
(value(vocc) ≥ value(vfree)) ∧ (value(vocc) > 0)
At least one occupied pixel was recorded for the last camera id(cj) = |C|. This indicates that no
previous camera sees the voxel as free. The voxel is occupied.
(value(vocc) = 0) ∧ (value(vfree) = 0)
The voxel is occluded in all corresponding projection pixels of all cameras. The voxel is free.

Table 2 Final values of each voxel in Vfree and Vocc and the resulting voxel occupation. Static obstacles are not
reconstructed.

3.2 Photo Hull

Our GPU algorithm for reconstructing a photo hull can be found in Alg. 3.8. It is derived from the

generalized voxel coloring with item buffer (GVC-IB approach) of Ref.,5 which will be presented

before discussing the details of our adaptation.

The algorithm of the GVC-IB approach is shown in Alg. 3.7 and works as follows. At the

beginning of each iteration the surface voxels are determined and stored in the dynamic surface

visibility list (SVL) as shown in Fig. 8 (a), Sec.2.2. In the first iteration the SVL contains all outer

voxels of the voxelspace or the outer voxels of the visual hull if used as input data.

22

Algorithm 3.7 Algorithm of the GVC-IB5 with likelihood ratio test (LRT) as consistency criterion
1: procedure GVC-IB(V , Icol, τ)
2: VPH ← V
3: L← DETERMINESVL(VPH) . determine initial surface visibility list (SVL)
4: repeat
5: for all vi ∈ L do . for all voxels of the SVL
6: Ψvi ← VISIBILITY(vi) . gather projection pixels that view a voxel
7: µvi ← COMPUTEMEANCOLOR(Ψvi , Icol)
8: val← COMPUTELRT(µvi ,Ψvi) . compute value for color consistency test
9: if val < τ then . color is consistent

10: COLOR(vi)← µvi . maintain voxel and add pixel color to voxel
11: else . color is not consistent
12: VPH ← VPH \ {vi} . carve voxel
13: L← UPDATESVL(L) . remove voxel from SVL and add its neighbours
14: end if
15: end for
16: until no voxel is carved
17: return VPH

18: end procedure

For each surface voxel from the list, the color consistency test is conducted to decide whether

the voxel is located on an object’s surface. This is assumed to be true if all pixels in which the voxel

is visible have the same color. The voxel remains uncarved in this case (classified as occupied),

otherwise the voxel is carved and replaced in the SVL by the next potential surface voxels. The

pixels for that a voxel is visible are determined via a visibility test (in this work an adaptation of a

SVL and image item-buffers, as shown in Fig. 8). As implementation of a visibility test we define

the function visibility : V → 2P where visibility(vi) of a voxel vi is the set Ψvi ⊂ Φvi of all

pixels that have a free sight to that voxel and thus capture the voxel’s color.

The SVL of the GVC-IB is applied in order to reduce the amount of voxel projections. How-

ever, an implementation of such a dynamic list on the GPU is hard to realize and allows elements

only to be inserted or deleted in a sequential way. Thus, we replace the SVL and utilize an effi-

cient GPU rendering technique, discussed in Sec. 4.1. Therewith in each iteration all the currently

23

occupied voxels VPH of the voxelspace V are projected into the cameras, while applying a visi-

bility transfer function to each voxel (Form. (6)), similar to the volume rendering used in other

application fields.

Let idx : V → N3 be a function that returns a tupel of indices (idx(vi)
(1), idx(vi)

(2), idx(vi)
(3))

for the grid position of a voxel vi and let imagevis,cj : Pcj → N3 × {0, 1} be a map of a pixel to

virtual pixel data for each camera cj . Then, we have the visibility images (VI) of all cameras of

the multi-camera system as Ivis = {imagevis,c1 , . . . , imagevis,c|C|}. The value of each pixel in a

visibility image is given by a function transferpk : V → N3 × {0, 1} that maps a voxel’s indices

to the color channels of the image and adds an occupation value of {0,1}, indicating that a voxel is

occupied (= 1) or free (= 0) (we store this value in the alpha channel of the image). The resulting

value of each pk is given with the transfer function as following:

transferpk(vi) =



(idx(vi)
(1), idx(vi)

(2), idx(vi)
(3), 1) if vi ∈ VPH ∧ pk ∈ Φvi,cj ∧

|rvi − rcj |+ dv < imagedep,cj(pk)

(0, 0, 0, 0) else

(6)

As our visual hull contains objects but no obstacles, additionally we have to consider the occlusions

in Form. (6) by applying the information of the depth images similar to the usage in the visual hull

algorithm. The rendering in each pixel terminates after drawing the first visible occupied voxel.

This is realized as shown for a raycasting in Alg. 3.9. After rendering in each iteration, the resulting

color values of each pixel pk encode the coordinates of the closest visible voxel (Alg. 3.8, Line 8).

This equals the projection of the SVL into the cameras. In our case the initial occupation of each

voxel is determined by the computed visual hull from the previous step (Alg. 3.8, Line 4).

24

Algorithm 3.8 Algorithm for the accelerated GVC-IB on the GPU
1: procedure PARALLELGVC-IB(VVH, C, Icol, Idep, τ , T)
2: VPH ← VVH

3: for all vi ∈ VPH do
4: OCCUPATION(vi, true) . initialize all input voxels as occupied
5: end for
6: s← TIME . get current time
7: while TIME −s < T do . reconstruct for defined duration (anytime concept)
8: Ivis ← RENDERVISIBILITYIMAGES(VPH, Idep) . render closest occupied voxels
9: for all cj ∈ C do . for all cameras

10: parallel for all pk ∈ Pcj do . for all pixels in visibility image
11: vi ← GETIMAGEVALUE(pk, Ivis, cj) . get voxel that is visible in pixel
12: µn

vi
← UPDATEMEANCOLOR(vi, Icol, cj , pk) . update color mean

13: σn
vi
← UPDATESTANDARDDEVIATION(vi, µn

vi
) . update standard deviation

14: if ((n− 1)/n) · (n · (σvi)2) < τ then . if color is consistent
15: SETCOLOR(vi, µn

vi
) . set new voxel color

16: else . color is not consistent
17: OCCUPATION(vi, false) . carve voxel by setting its state to not occupied
18: end if
19: end parallel for
20: end for
21: end while
22: VPH ← ANALYZEVOXELVALUES(VPH) . gather all occupied voxels
23: end procedure

Each carved voxel (Alg. 3.8, Line 17) gets an entry of being not occupied (free), so that it

will not be rendered in the next iteration anymore. The result of the rendering in each iteration

is stored in so called visibility images (VI). By having encoded the current visible voxel in each

pixel, a parallel processing of the pixels is reasonable for the consistency test in each carving

iteration. The likelihood ratio test (LRT) is applied as consistency criterion, because we achieved

the best qualitative results in a benchmark test. The LRT employs the standard deviation σvi ∈ R3.

Uncarved (occupied) voxels are colored with the average value µvi ∈ R3 that are assigned to each

voxel, given the projection pixels Ψvi of all cameras for that the voxel is visible. The color of each

pixel pk ∈ Ψvi is defined as uk = imagecol,cj(pk). The mean value of the pixel colors µvi that

25

belong to a voxel and the associated standard deviation σvi is calculated incrementally to avoid

dynamic data structures, too.

Algorithm 3.9 Algorithm for rendering the visibility images with a raycasting
1: procedure RENDERVISIBILITYIMAGES(V , VVH, C, Idep, Ivis)
2: for all cj ∈ C do
3: parallel for all pk ∈ Pcj do
4: color ← 0
5: Vray ← GETVOXELSALONGRAY(pk, V)
6: while color = 0 do . stop after rendering the first occupied voxel
7: vi ← GETNEXTVOXEL(Vray)
8: color ← GETVALUEFROMTRANSFERFUNCTION(vi, pk, cj , VPH, Idep)
9: end while

10: SETIMAGEVALUE(pk, Ivis, cj , color) . pixel contains next possible surface voxel
11: end parallel for
12: end for
13: end procedure

The original definition of the mean value requires all n = |Ψvi | elements uk in advance.

µvi =
1

n

n∑
k=1

uk (7)

This can be replaced by the following incremental Equation:

µn
vi

=
1

n
(un − µn−1

vi
) + µn−1

vi
(8)

The original definition of the standard deviation is:

σn
vi

=

√√√√ 1

n

n∑
k=1

(uk − µvi)
2 (9)

26

Its incremental equivalent can be expressed as in:34

n · (σn
vi

)2 = (n− 1) · (σn−1
vi

)2 + n · (n− 1) · (µn
vi
− µn−1

vi
)2 (10)

We define the functions f : R → R and g : R → R. As can be seen from the Formula, the

computation of n · (σn
vi

)2 requires the evaluation of a monotonic expression following the form

of f(n) = f(n − 1) + X , X > 0. Similarly, the function g(n) = 1 − 1/n = (n − 1)/n is

monotonic when n > 0. The product of these two functions g(n) · f(n) will be monotonic as well.

A combination of Form. (10) with the definition for the consistency test lrt : R → R, which is

given as lrt = (n − 1) · (σvi)2, yields a function following the form of g(n) · f(n). As such, lrt

can be computed incrementally using the following term, which is monotonously increasing in n:

lrt(n) =

(
n− 1

n

)
·

(
n · (σn

vi
)2

)
(11)

Due to this adaptation, the consistency test can now be accomplished parallel for all pixels in each

iteration. Whenever lrt(n) > τ , the voxel can be carved immediately as it can not become smaller

anymore due to its monotony. Solely the update of µvi and n · (σvi)2 requires a common access. As

a repeated carving does not influence the result, a synchronization only is required for accessing

the values of the same voxel, which is realized by the use of spin-locks. Due to the high amount

of pixels a parallel processing is guaranteed anyhow. A further challenge is the loop condition

“until no voxel is carved” of the GVC-IB (Fig. 3.7, Line 16) because this requires a feedback of

the graphics board that currently only can be realized with a trick.35 Moreover the computation

time of the photo hull varys depending on the content of the scene. Thus we require a bound for the

27

maximal computation time. Therefore we apply the concept of an anytime algorithm6 to the photo

hull. After initialization, such algorithms can be interrupted at any time while providing a correct

result. The quality of the result improves as function of the time. We define an upper bound of

processing time in which at minimum one iteration can be accomplished, so that a colored visual

hull is guaranteed in worst case and a refined photo hull is provided in the best case. It should be

noted that the obtainable quality of the photo hull is limited mainly due to the properties of the

reconstructed objects as well as the experimental setup (e.g. number and perspectives of cameras).

4 Results

All experiments were accomplished with a graphics board of type AMD Radeon HD 7970 with

3GB RAM. The proprietary AMD driver “fglrx” (Catalyst) in version 12.104 was employed and the

operating system was OpenSUSE 12.3. The processor was of type AMD FX-8350 Octocore, with

4 GHz clock and 32GB RAM. Due to the intensive utilization of the graphics board the number of

cores is irrelevant. We chose a fix camera resolution of 640× 480 pixels for all experiments.

4.1 Analysis of the Rendering Methods

As we have already stated, a fast and efficient computation of the complete voxel-pixel projections

that are required in the presented algorithms can be realized by employing a GPU-based rendering

method. We render the voxelspace in the camera views by considering the camera properties (focal

point, distortion etc.) so that each pixel encodes in its RGB values the coordinates of the visible

voxel. Two groups of approaches for efficient rendering methods are available, namely texture

mapping and raycasting. Texture mapping36, 37 utilizes the ability of graphic boards for surface

texturing. It interprets volumes to be rendered, e.g. the voxelspace, as a pack of images (layers),

28

(a) (b)

Fig 9 Texture mapping: orientation of the layers with respect to the rendering view.36 (a) The rendering view is aligned
parallel to the layers. (b) The rendering view is rather orthogonal to the layers and produces more artefacts.

that are rendered individually. For a fast computation the complete layers are rendered instead of

single voxels. The layers are projected as texture to locally shifted polygons. When activating

blending or an explicit discarding (not required in this work), layers that are farther away become

visible in pixels that are empty or semitransparent. For the viewer a spatial image impression

is originated. The therefor used layers are called proxy geometry. The work mainly comprises

mapping of textures and blending of layers. The quality strongly depends on the distance between

the layers as well as the orientation of the layers with respect to the rendering view, as shown in

Fig. 9. Larger distances lead to aliasing effects and wrong voxel-pixel mappings. To avoid aliasing

effects we insert layers parallel to each coordinate axis as shown in Fig. 10.

In comparison, the standard raycasting determines the visible voxel in each pixel by following

the back-projected ”viewing ray” until an occupied voxel is intersected (ray marching). The ray is

sampled at discrete points with an equal step size. Different optimizations exist for accelerations,

e.g. empty-space-skipping.38 Aliasing effects caused by the discrete ray marching are avoided

by the optimization of Amanatides.39 The intersections of the ray with the voxels are analytical

computed. The transitions of the ray from one voxel to the other is provided without a loss of

processing speed. We compare the texture mapping with the standard raycasting, the Amanatides

29

Fig 10 Exact texture mapping for a voxelspace. From left to right: occupied voxels, rendering in directions: +y, -y, -x,
+x, final image of the voxels

raycasting as well as an OpenCL compute shader implementation of the Amanatides algorithm.

For analyzing the computation time of these rendering approaches, we created a test case (in-

dependent of the reconstruction methods) in which different voxelspaces were projected to the

camera images. The voxelspace resolution was varied from 1003 to 3503 in steps of 503. We varied

the occupation of the voxelspaces from 1 % to 100% by randomly placing spheres and counting

the filled voxels until the desired occupation was achieved.

Fig. 11 shows one result that is characteristic for all results. Beginning with unsegmented

images (continuous lines): The texture mapping is worst in all cases. Although it employs most

the given hardware functions for vertices, there is much overhead while projecting layers that are

not visible into the cameras. The standard raycasting approach with fix step size as well as the

optimization of Amanatides39 produce similar results. The cost for calculating the intersection

points of the viewing rays with the voxels (for reducing the number of steps) are opposed to the

cost of more required iterations in the standard raycasting.

Obviously, the frame rates increase with higher voxel occupations for all methods. This is

caused by in average shorter ray marching distances up to the intersection with an occupied voxel.

The frame rates significantly improved when using the compute shader implementation of the

Amanatides method. This means that the usage of the full OpenGL pipeline in the vertex- and

fragment-shader based raycasting methods is not reasonable due to the arising overhead.

30

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Sp
ee

d
(fp

s)

Voxelspace Occupation (%)

Image 640x480, Voxelspace 150x150x150

Amanatides
Compute
Raycast

TextureMap

Amanatides(Masked)
Compute(Masked)
Raycast(Masked)

TextureMap(Masked)

Fig 11 Computation times of different rendering methods for a varying occupation of the voxelspace.

For each method and parameter combination the influence of segmented silhouette images is

examined (dotted lines) as such are used for the reconstruction of the visual hull. The silhouette

creation time is not included in the measurements. As expected, all raycasting methods benefit

from the resulting skipping of pixels that are located outside the silhouette. This leads additionally

to a decreasing computation time for little voxelspace occupations with almost no pixels to process.

The efficiency of the texture mapping cannot be increased, because all layers have to be rendered

regardless.

We evaluated the quality of the rendering methods by comparing the results with a naive ren-

dering that renders for each single voxel 12 triangles in the image. Although this method is less

efficient than the others, it can be handled as ground truth, since it does not apply numerical ap-

proximations and returns results of best quality, which we also verified on the CPU for voxelspaces

of low resolution. We measured the absolute number of wrong pixels and the average deviation for

the actual voxel positions encoded in the pixel from the target voxels. The Manhattan distance is

caculated between each pair of coordinates from actual voxel and target voxel.

31

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
um

be
r o

f w
ro

ng
 P

ix
el

s
(a

bs
ol

ut
e)

Voxelspace Occupation (%)

Image 640x480, Voxelspace 200x200x200

Amanatides

Raycast

TextureMap

Fig 12 Absolute number of wrong pixels compared to a naive rendering.

An example measurement for a voxelspace of size 2003 is shown in Fig. 12 and 13. As the

compute shader implementation of the Amanatides does not yield a difference in the quality, the

graph is identical to Amanatides and thus not shown in the Figures. Also the usage of segmented

silhouette images has no influence on the quality and is not examined in this experiment.

The standard raycasting method produces the worst results. The voxel rendering is imprecise

for 2.4 percent of all pixels. Even a ray marching step width of 1/5th of the shortest voxel edge

results in numerous wrong assignments of voxels to pixels with an average of 8 voxels (Fig. 13).

This can influence the carving decision in the photo hull algorithm as the photo consistency test

might be accomplished with wrong colors for these voxels. The Amanatides rendering achieves the

best results with just 0.08 % wrong pixels (Fig. 12). The error can be neglected. An improvement

of more than factor 10 in comparison to the raycasting can be expected. Also, the average deviation

of 2...3 voxels is significantly lower for the Amanatides algorithm (Fig. 13) as for the raycasting.

The texture mapping is a little worse than the Amanatides algorithms in the overall number of

wrong assignments (not visible by eye), because it is completely conducted on the graphics board,

32

 0

 5

 10

 15

 20

 25

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

D
is

ta
nc

e
of

 w
ro

ng
 v

ox
el

s
(a

ve
ra

ge
)

Voxelspace Occupation (%)

Image 640x480, Voxelspace 200x200x200

Amanatides

Raycast

TextureMap

Fig 13 Average Manhattan distance between rendered actual voxels and target voxels.

which is optimized in speed and not in accuracy. The average deviation is similar to the Amanatides

algorithms.

In summary, the compute shader implementation of the Amanatides method achieved the best

results in both computation time (rendering of 2000 images per second) and quality. Hence, this

rendering method was applied in the following experiments.

4.2 Analysis of the Photo Hull

The complete reconstruction pipeline was tested with image sequences of a real work cell as shown

with seven calibrated2 cameras of resolution 640× 480 of type “Unibrain Fire-i400” and aperture

angle of 120 degrees. Each camera is connected with a separate front-end processor that captures

the frames and transfers the images via gigabit network to a main processor, which accomplishes

the reconstruction. Image sequences with up to 4260 frames have been examined. All frames were

used to produce the average results shown in the following Figures. Two or three persons with

colored overalls (for better background subtraction) are moving in the cell that contains several

33

Fig 14 Color images and silhouette images from background subtraction. Shown is our work cell with three different
camera views. The results of the background subtraction are not always ideal.

occluding static obstacles, e.g. a robot, as shown in Fig. 14, which are modeled in 3D with

triangle meshes and used to create depth images that are integrated in the reconstruction process for

occlusion handling. The spatial extent of the voxelspace is chosen such that the work cell is filled

completely, but walls, ceiling and cameras are not touched and thus not modeled. Additionally we

examined the reconstruction results with a perfect ground truth and undistorted images given by

a simulation of the work cell with one person moving around. First, we determined a fix upper

bound of 800 ms for computing the photo hull in some tests. That bound was selected because

after elapsing that time, only little amount of voxels were carved, so that a further improvement

of the reconstruction quality was negligible. Afterwards we examined the number of iterations

that could be accomplished for the given limitation in processing time by varying the voxelspace

resolutions (1003 up to 3003) with a step size of 503 and the number of cameras. The results are

shown in Fig. 15.

By increasing the number of cameras by 75 percent (4 up to 7), the number of iterations re-

duced from 650 to 500, which are 23 percent less iterations. On the other hand, an enhancement

34

Fig 15 Iterations of the photo hull for: (a) a varying number of cameras and (b) different voxelspace resolutions.

of the voxelspace resolution from 2003 to 2503 voxels results in a reduction of the number of itera-

tions from 350 to 250 (28 percent). Surprisingly, the influence of the number of cameras is similar

to the resolution of the voxelspace for the selected parameters, though the calculation of the photo

consistency is done iteratively per image and should mainly depend on the number of cameras. A

large part of the computation time (up to 50% for 3003 voxels) is required for “preparation” and

“resetting” the data structures. This is shown in Fig. 16 for the chosen 800 ms processing time.

After each frame, the voxel data structures Vfree and Vocc have to be zeroed. Also, a reset is accom-

plished at the end of each iteration for the counter that is used for the incremental computation of

the consistency test (LRT). This is accomplished for every voxel, so that the number of cameras is

irrelevant, whereas an increase of the duration with the voxelspace resolution can be noticed from

35

0

200

400

600

800

1000

100 150 200 250 300

D
ur

at
io

n
(m

s)

Voxelspace Resolution (steps per axis)

preparation
rendering

reset

144.1 117.5 92.5 74.9 57.3

517.1
481.3

437.5
384.7

323.9

138.2
200.7

268.8
338.5

416.3

0

1

2

3

4

5

6

100 150 200 250 300

D
ur

at
io

n
(m

s)

Voxelspace Resolution (steps per axis)

rendering
reset

1.3 1.5 1.8 2.0 2.3
0.3

0.6

1.1

1.8

3.0

(a) (b)

Fig 16 Duration of the single computation steps of the photo hull given different voxelspace resolutions: (a) Average
results over all cameras and all iterations. (b) Average results over all cameras for a single iteration.

Fig. 16. The used OpenGL standard of version 4.2 did not enable a better way for handling the

preparation and reset accesses, but newer versions of OpenGL (version 4.440 or 4.5) should provide

a more efficient handling. The computation time for rendering and updating the consistency of the

single voxels also increases as expected with the voxelspace resolution (see “rendering” in Fig.

16). This correlation can be explained by the usage of the Amanatides raycasting as the step size

for determination of the intersection points of viewing rays and voxels is adapted to the voxel size

and thus to the voxelspace resolution.

Another experiment aimed in the applicability of the approach to our real-world work cell of

40 m3 with 7 cameras and a selected voxelspace resolution of 2003, with voxel side lengths of

21.5, 19 and 12 mm each. We wanted to find out the highest frame rate with acceptable result.

First, we determined the optimal threshold of τ = 7.5 for the LRT consistency test given 800 ms

processing time (see Fig. 17). to get the best quality. Afterwards we reduced the computation

time. As most voxels are carved within the first 200 ms, the slight refinements afterwards can be

omitted. The achievable computation times are shown in Table 3. The values were averaged over

36

Fig 17 Influence of the threshold for the LRT consistency test on the reconstruction quality. (a) Threshold is too low.
The reconstruction is incomplete. (b) Good Threshold. All important details are maintained. (c) Threshold is too high.
More Voxel are kept than necessary.

the first 200 frames for each sequence. A reconstruction performance of more than four frames per

seconds could be reached for our scenario. For our sequences, the number of persons did not lead

to a significant difference in computation time.

Sequence Persons Visual Hull Photo Hull Total

Iteration Total Time fps
Simulation 1 22 ms 8.2 ms 200 ms 222 ms 4,5

Real-world 1 2 29 ms 5.1 ms 200 ms 229 ms 4,3

Real-world 2 3 28 ms 8.1 ms 200 ms 228 ms 4,4

Table 3 Computation times for the visual hull and the photo hull averaged over the first 200 frames for each sequence.
The total processing time of the photo hull was limited to 200ms. An online reconstruction of more than 4 frames per
second (fps) can be expected for the given scenario.

Finally, we examined the quality of the photo hull. The photo integrity of Seitz and Dyer,24

which demands that the projection of the reconstruction into the cameras reproduces the original

images is mainly fulfilled, as shown in Fig. 18 and 19. Occluders are partially reconstructed, which

might be caused due to discretization errors, an imprecise camera calibration, imprecise modeled

obstacles or just artefacts from background subtraction. These effects occur less in the simulation

sequence, shown in Fig. 19.

37

Fig 18 Photo hull reconstruction of the real work cell: (a) Reconstruction results. (b) Input camera images with
silhouettes from background subtraction. (c) Analysis of the objects’ contours. Red pixels mark areas that are missing
in the reconstruction. Green pixels mark areas that are reconstructed falsely. Artefacts occur due to discretization
errors, an imprecise camera calibration and other distortions.

A further demand that is required for a high quality reconstruction of the photo hull,24 is the

broad viewpoint coverage of the camera sensors. Since we only apply 7 cameras, as expected, the

reconstruction results suffer on the cell borders and other areas, where only little sensoric covering

exists. This is shown in Fig. 20 (bottom). Nevertheless, the results in the center of the work cell

are sufficient for our purpose, as shown in 20 (top).

5 Conclusions

We examined a photo hull algorithm for the online reconstruction of humans in environments that

are characterized by the presence of occluding obstacles as well as a rather little amount of incor-

porated cameras. A new GPU implementation of the GVC-IB approach5 is presented. Therefore

an incremental calculation of the LRT consistency criterion is integrated. The termination of the

38

Fig 19 Photo hull reconstruction of the simulation sequence. Less distortions influence the reconstruction result.

algorithm is managed with the anytime concept of Ref.6 The input of the photo hull is a visual

hull reconstruction. For the GPU we redesigned our visual hull algorithm, presented in Ref.,4 that

can handle conservatively known occluding obstacles. We analyzed different rendering techniques

(texture mapping and raycasting approaches) for computing the required voxel-pixel projections.

Our compute shader implementation of the Amanatides algorithm39 yielded the best results con-

cerning computation time and quality. Thus, the OpenGL pipeline is partially dispensable. A com-

parative implementation in OpenCL would be interesting. We examined the computation times

depending on variations of the voxelspace resolution and amount of cameras.

A strong dependency on the amount of voxels was detected caused by expensive memory

accesses for the voxels required during data structure preparation. This might be improved with

newer OpenGL versions. We figured out that 200ms as upper bound for computing the photo hull

(about 50 iterations) is sufficient for our scenario. An overall frame rate of 4.4fps can be reached.

Furthermore, we examined the quality of the photo hull. The geometrical approximation of the

visual hull could not be visibly improved for the given scenario with only 7 cameras and occluding

obstacles. Nevertheless, the aimed colorization of the reconstruction fulfills the photo integrity

assumption. In future work, we want to evaluate our GPU-based photo hull in the context of a

large-scale robotics framework for real-time robotics applications.41

39

Fig 20 Further reconstruction results of our real-world scenario from different views (top). Reconstruction artefacts at
the cell borders, where the viewpoint coverage is insufficient (bottom).

References

1 Z. Zhang, “Microsoft kinect sensor and its effect,” IEEE Multimedia 19(2), 4–10 (2012).

2 T. Svoboda, D. Martinec, and T. Pajdla, “A convenient multicamera self-calibration for virtual

environments,” Presence: Teleoperators and Virtual Environments 14(4), 407–422 (2005).

3 A. Ober-Gecks, M. Zwicker, and D. Henrich, “Efficient gpu photo hull reconstruction for

surveillance,” in Proceedings of the International Conference on Distributed Smart Cameras,

ICDSC ’14, 21:1–21:8, ACM, (New York, NY, USA) (2014).

4 S. Kuhn and D. Henrich, “Multi-view reconstruction of unknown objects in the presence of

known occlusions,” in ISVC ’09 Proceedings of the 5th International Symposium on Advances

in Visual Computing: Part I, 784–795, Springer Verlag, Berlin (2009).

5 W. B. Culbertson, T. Malzbender, and G. Slabaugh, “Generalized voxel coloring,” in Vision

40

Algorithms: Theory and Practice, B. Triggs, A. Zisserman, and R. Szeliski, Eds., 1883, 100–

115, Springer Berlin Heidelberg (1999).

6 T. Dean and M. Boddy, “An analysis of time-dependent planning,” in Proceedings of the

seventh national conference on artificial intelligence, 49–54 (1988).

7 A. Laurentini, “The visual hull concept for silhouette-based image understanding,” IEEE

Transactions on Pattern Analysis and Machine Intelligence 16(2), 150–162 (1994).

8 B. G. Baumgart, “Geometric modeling for computer vision,” AIM-249, STA -CS-74-463, CS

Dept, Stanford U. (1974).

9 L. A., “The visual hull: A new tool for contour-based image understanding,” Proc. 7th Scan-

dinavian Conf. Image Analysis , 993–1002 (1991).

10 A. Laurentini, “How far 3d shapes can be understood from 2d silhouettes.,” IEEE Trans.

Pattern Anal. Mach. Intell. 17(2), 188–195 (1995).

11 J.-S. Franco and E. Boyer, “Efficient polyhedral modeling from silhouettes,” IEEE Transac-

tions on Pattern Analysis and Machine Intelligence 31(3), 414–427 (2009).

12 M. Fischer and D. Henrich, “Surveillance of robots using multiple colour or depth cam-

eras with distributed processing,” Third ACM/IEEE International Conference on Distributed

Smart Cameras (ICDSC 2009), Aug 30 (2009).

13 S. Lazebnik, Y. Furukawa, and J. Ponce, “Projective visual hulls,” Int. J. Comput. Vision 74,

137–165 (2007).

14 K. N. Kutulakos and S. M. Seitz, “A theory of shape by space carving,” International Journal

of Computer Vision 38(3), 199–218 (2000).

41

15 A. Ladikos, S. Benhimane, and N. Navab, “Efficient visual hull computation for real-time 3d

reconstruction using cuda.,” in CVPR Workshops, 1–8, IEEE (2008).

16 J. R. Casas and J. Salvador, “Image-based multi-view scene analysis using ’conexels’,” in

Proceedings of the HCSNet Workshop on Use of Vision in Human-computer Interaction -

Volume 56, VisHCI ’06, 19–28, Australian Computer Society, Inc., (Darlinghurst, Australia,

Australia) (2006).

17 R. J. Radke, S. Andra, O. Al-Kofahi, and B. Roysam, “Image change detection algorithms:

A systematic survey,” IEEE Transactions on Image Processing 14, 294–307 (2005).

18 L. Guan, J.-S. Franco, and M. Pollefeys, “3d object reconstruction with heterogeneous sensor

data,” 4th International Symposium on 3D Data Processing, Visualization and Transmission

(3DPVT), Atlanta, GA, USA 2 (2008).

19 M. A. Keck and J. W. Davis, “3d occlusion recovery using few cameras,” in 2008 IEEE

Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2008),

24-26 June 2008, Anchorage, Alaska, USA, (2008).

20 D. Ebert and D. Henrich, “Safe human-robot-cooperation: Image-based collision detection

for industrial robots,” IEEE/RSJ International Conference on Intelligent Robots and Systems,

Lausanne, September 30th-October 5th, 2002 (2002).

21 S. Kuhn, T. Gecks, and D. Henrich, “Velocity control for safe robot guidance based on fused

vision and force/torque data,” IEEE Conference on Multisensor Fusion and Integration for

Intelligent Systems, Heidelberg, Germany, September 03-06, 2006 (2006).

22 A. Ober and D. Henrich, “A safe fault tolerant multi-view approach for vision-based pro-

tective devices,” in Seventh IEEE International Conference on Advanced Video and Signal

42

Based Surveillance, AVSS 2010, Boston, MA, USA, August 29 - September 1, 2010, 17–25

(2010).

23 A. Schick and R. Stiefelhagen, “Real-time GPU-based voxel carving with systematic occlu-

sion handling,” in Pattern Recognition. 31st DAGM Symposium, Jena, Germany, September

9-11, 2009. Proceedings, 372–381 (2009).

24 S. M. Seitz and C. R. Dyer, “Photorealistic scene reconstruction by voxel coloring,” Interna-

tional Journal of Computer Vision 35(2), 151–173 (1999).

25 G. G. Slabaugh, W. B. Culbertson, T. Malzbender, and R. W. Schafer, “A survey of methods

for volumetric scene reconstruction from photographs,” in VG’01 Proceedings of the 2001

Eurographics conference on Volume Graphics, 81–101 (2001).

26 G. G. Slabaugh, W. B. Culbertson, T. Malzbender, M. R. Stevens, and R. W. Schafer, “Meth-

ods for volumetric reconstruction of visual scenes,” International Journal of Computer Vision

57(3), 179–199 (2004).

27 C. Nitschke, A Framework for Real-time 3D Reconstruction by Space Carving using Graph-

ics Hardware, Grin Verlag, München (2007).

28 A. Prock and C. Dyer, “Towards real-time voxel coloring,” in Proceedings of the DARPA

Image Understanding Workshop, 315–321 (1998).

29 T. Werner and D. Henrich, “Efficient and precise multi-camera reconstruction,” in Eighth

ACM/IEEE International Conference on Distributed Smart Cameras - ICDSC, November 4-

7, Venice, (2014).

30 M. Sainz, Bagherzadeh, Nader, and Susin, Antonio, “Hardware accelerated voxel carving,”

in 1st Ibero-American Symposium in Computer Graphics (SIACG 2002), 289–297 (2002).

43

31 O. Batchelor, R. Mukundan, and R. Green, “Ray casting for incremental voxel colouring,” in

New Zealand: International Conference on Image and Vision Computing - IVCNZ05, 206–

211 (2005).

32 M. Zwicker, “Erweiterung der Photohülle zur schnellen Onlinerekonstruktion auf moderner

Grafikhardware,” master thesis, University of Bayreuth, Bayreuth (2014).

33 “OpenCV open source computer vision.” http://opencv.org/. Accessed: 2016-04-21.

34 T. Finch, “Incremental calculation of weighted mean and variance,” University of Cambridge

(2009).

35 J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E. Lefohn, and T. J. Purcell,

“A survey of general-purpose computation on graphics hardware,” Computer Graphics Forum

26(1), 80–113 (2007).

36 M. Meissner, U. Hoffmann, and W. Strasser, “Volume rendering using OpenGL and exten-

sions,” in Visualization ’99. Proceedings, 207–526 (1999).

37 R. Fernando and NVIDIA Corporation, GPU gems: programming techniques, tips, and tricks

for real-time graphics, Addison-Wesley, Boston MA, 5. ed. (2004).

38 J. Kruger and R. Westermann, “Acceleration techniques for GPU-based volume rendering,”

IEEE Visualization Conference , 287–292 (2003).

39 J. Amanatides and A. Woo, “A fast voxel traversal algorithm for ray tracing,” in Proceedings

of EUROGRAPHICS, 87, 3–10 (1987).

40 M. Segal and K. Akeley, “OpenGL 4.3 core profile specification,” (2013).

41 T. Werner, M. Gradmann, D. Henrich, E. M. Orendt, M. Sand, and M. Spangenberg, “Enact:

44

http://opencv.org/

An efficient and extensible entity-actor framework for modular robotics software compo-

nents,” 47th International Symposium on Robotics (ISR) (2016).

List of Figures

1 Work cell with unknown objects (humans) and known static occluding obstacles

2 Shape-from-Silhouette principle (visual hull)

3 Influence of static occluders on background subtraction

4 Concepts of occlusion handling for the visual hull

5 Principle of the color consistency test

6 Reconstruction of a photo hull and ambiguity

7 Voxel visbility: Ordinal-Visibility-Constraint and voxelspace sweeping

8 Voxel visibility: surface visibility list of the GVC algorithms

9 Texture mapping: orientation of the layers with respect to the rendering view

10 Exact texture mapping for a voxelspace

11 Computation times of different rendering methods for a varying occupation of the

voxelspace

12 Absolute number of wrong pixels compared to a naive rendering

13 Average Manhattan distance between rendered actual voxels and target voxels

14 Images from work cell and background subtraction

15 Iterations of the photo hull for a varying number of cameras and different vox-

elspace resolutions

16 Duration of the single computation steps of the photo hull

45

17 Influence of the threshold for the LRT consistency test on the reconstruction quality

18 Results of the photo hull reconstruction of the real work cell

19 Results of the photo hull reconstruction of the simulation sequence

20 Examples of reconstruction results and reconstruction artefacts

List of Algorithms

3.1 Main function for an accelerated reconstruction of a photo hull 14

3.2 Algorithm for a standard visual hull . 16

3.3 Algorithm for a conservative visual hull with occlusion handling 19

3.4 Algorithm for a conservative visual hull with occlusion handling on the GPU . . . 20

3.5 Algorithm for processing each pixel in parallel 20

3.6 Algorithm for a conservative visual hull with occlusion handling on the GPU.

Static obstacles are not reconstructed . 22

3.7 Algorithm of the GVC-IB5 with likelihood ratio test (LRT) as consistency criterion 23

3.8 Algorithm for the accelerated GVC-IB on the GPU 25

3.9 Algorithm for rendering the visibility images with a raycasting 26

List of Tables

1 Final values of each voxel in Vfree and Vocc and the resulting voxel occupation

2 Final values of each voxel in Vfree and Vocc and the resulting voxel occupation.Static

obstacles are not reconstructed

3 Computation times for the visual hull and the photo hull

The Authors

46

Antje Ober-Gecks received her degree as Diploma engineer in media technology from Tech-

nical University of Ilmenau (Germany) in 2007. She took her studies with emphasis on computer

science and neuro-informatics. Since 2008, she is research assistent at the University of Bayreuth.

She is working on her doctoral thesis with the topic of person tracking under occlusions based on

3D reconstruction data. Her interests include pattern recognition, image processing and computer

graphics.

Marius Zwicker received the BS degree in applied computer science from the University of

Bayreuth (Germany) in 2011 and the MS degree in applied computer science from the same univer-

sity in 2013. He then joined Garmin Wuerzburg GmbH, the European research and development

center of Garmin Ltd. His interests include computer graphics and software architecture with a

focus on software defined video composition.

Prof. Dr. Dominik Henrich finished his Doctorate in 1994. From 1996 to 1999, he built

up a research group at the University of Karlsruhe (Germany). From 1999 to 2003, he headed

as professor a research group at the University of Kaiserslautern. Since 2003 he holds the chair

for Robotics and Embedded Systems at the University of Bayreuth. His research interests are e.g.

collision detection, motion planning, room surveillance, sensor-based manipulation and intuitive

robot programming.

47

	Introduction
	Overview

	State of the Art
	Visual Hull
	Photo Hull

	Our Approach
	Visual Hull
	Standard Visual Hull
	Visual Hull with Occluding Obstacles
	Conservative Visual Hull with Occluding Obstacles
	Conservative Visual Hull with Occluding Obstacles on the GPU

	Photo Hull

	Results
	Analysis of the Rendering Methods
	Analysis of the Photo Hull

	Conclusions

