
Efficient GPU Photo Hull Reconstruction for Surveillance

Antje Ober-Gecks
Angewandte Informatik III

Universität Bayreuth
Germany

antje.ober-gecks@uni-
bayreuth.de

Marius Zwicker
Angewandte Informatik III

Universität Bayreuth
Germany

marius.zwicker@mlba-
team.de

Dominik Henrich
Angewandte Informatik III

Universität Bayreuth
Germany

dominik.henrich@uni-
bayreuth.de

ABSTRACT
We present a GPU-based implementation of the photo hull
using the generalized voxel coloring with item buffer (GVC-
IB) approach with the aim of reconstructing humans online
in surveillance scenarios. To allow for a fast computation on
the GPU, an incremental calculated standard deviation is
used in the likelihood ratio test that is applied as color consis-
tency criterion. Concerning the necessary fast and efficient
computation of complete voxel-pixel projections, a number
of volume rendering methods is examined, such as texture
mapping and raycasting. The termination of the voxel carv-
ing during photo hull computation is realized by integrating
the anytime concept. The input of the voxel carving is a
visual hull reconstruction. An algorithm that provides an
exact and conservative occlusion handling is redesigned for
a fast computation on the GPU.

Keywords
voxel coloring, voxel carving, space carving, photo hull, con-
servative visual hull, occlusions, obstacles, reconstruction

1. INTRODUCTION
A common goal is the precise localization of humans in

complex environments such as smart homes and industrial
areas in order to guarantee the safety of humans, e.g. in
human-robot-cooperation. Active sensors such as laser scan-
ner, sonar, or recently the depth camera Kinect are used to
approximate the localization. However, color cameras still
might be preferred due to their passive information extrac-
tion from the scene as well as to their low cost.

Our system consists of multiple calibrated and synchro-
nized color cameras, which monitor a common surveillance
volume. This volume contains known obstacles such as ta-
bles and racks (Figure 1). The goal is to determine the
subvolume occupied by humans, called objects. Therefore
methods are employed that reconstruct online a 3D model
of the surveillance volume for further analysis. The result
is typically represented by voxel data. Although voxels are

.

Figure 1: Work cell with unknown objects (humans)
and known static obstacles (colored violet).

affected by discretization errors, they have a variety of ad-
vantages like easy access, storage, and management as well
as independent processability and little numerical problems
(e.g. in comparison to polyhedrons). A commonly used
method is the reconstruction of the visual hull (shape from
silhouette) [9]. This method uses segmented images to re-
construct the original geometry of objects by simply back-
projecting all segmented silhouette pixels and intersecting
the resulting cones. A disadavantage of the visual hull is that
only geometrical information is provided. Though a variety
of coloring methods for postprocessing exist, the best photo
realistic colorization can be expected by an alternative re-
construction method, namely the color reconstruction [16].
This method also is known as space carving [7] (or more gen-
eral voxel carving). The reconstruction result is called photo
hull. The color information is integrated into the reconstruc-
tion process in due consideration of actual voxel visibilities in
the images. Therewith the color information of the images is
directly assigned to different voxels in 3D space. The photo
hull has to fulfill the criteria of photo integrity, which means
the reconstruction result has to be such that the projection
into the camera images reproduces the original input images.
Adversely, long time the photo hull was improper to process
image sequences of real-time scenarios due to frame rates
of several minutes, e.g. in [18]. However, modern graph-
ics hardware promises new possibilities for accelerating the
photo hull computation as provided by [10].

In this paper we present a redraft of the generalized voxel
coloring with item buffer (GVC-IB) [3] for the usage as GPU
online reconstruction method, shown in Section 3.5. In order
to achieve better runtimes, the input of the voxel carving is
a reconstructed visual hull that processes the silhouette im-
ages of a background subtraction method at every time step
t. Furthermore, a segmentation of the objects is required for
our work cell as the equally colored walls lead to a premature

termination of the voxel carving otherwise. For this purpose
we selected a state of the art visual hull algorithm that can
handle occluding obstacles in the scenes and that realizes
an exact and conservative reconstruction [6]. We provide a
GPU-based adaptation of this method for a faster computa-
tion, provided in Section 3.4. One main issue that demands
the utility of the GPU for both reconstruction methods is
the fast and efficient computation of the complete voxel-
pixel projections. Therefore, different rendering techniques
(texture mapping, raycasting) are applied. An experimen-
tal evaluation of these approaches is described in Section 4.
Our contribution is summarized in Section 5. The following
Section 2 gives an overview of related work.

2. STATE OF THE ART
Visual Hull: As already stated, we require a visual hull

algorithm that can handle occluding obstacles in the scene.
Occlusions are an issue that might lead to clipped silhou-
ette images in the background subtraction step and thus re-
sult in an incomplete reconstruction. We found different ap-
proaches that handle occlusions. One method uses manually
created segmentations of the obstacles in the images (occlu-
sion masks) additionally to the silhouettes of the background
subtraction [8]. The reconstruction is the intersection of all
backprojected pixel cones. A better approximation of the
objects and obstacles volume can be expected with the solu-
tion of [14] and our solution in [6]: For each camera a depth
map is employed that determines the free space up to the
surfaces of the obstacles similar to a range sensor.

Photo Hull: The process of reconstructing a photo hull
starts with a fully occupied voxel space. Visible voxels are
carved iteratively until the objects in the scene are approx-
imated. A voxel is visible in a pixel if no other voxel is in
front of that voxel. The visibility of a voxel might change
with every carved voxel in the voxelspace and thus has to be
determined again in each iteration. The decision for carving
a visible voxel is based on the concept of color consistency.
A voxel is consistent if the respecting pixels of all cameras
for which it is visible (a subset of all projection pixels) have
the same color, otherwise it is carved. An overview of dif-
ferent consistency criteria, e.g. the maximum norm, can be
found in [18].

Different concepts of voxel carving distinguish in the de-
termination of the visibility. A naive and simple algorithm
with high computation cost is proposed in [17]. This cost
can strongly be reduced by introducing a limitation to the
camera positions, called ordinal visibility constraint [16]. All
cameras have to be placed behind a parting plane so that
the voxels can be processed in a fix order in one iteration.
Disadvantageous is the incomplete reconstruction from one
perspective. In comparison, algorithms of the partial vis-
ibility space carving (PVSC) and full visibility space carv-
ing (FVSC) [18] apply a sweep subsequently along all three
coordinate axes of the voxelspace in positive and negative
directions, beginning from the external borders. Only the
active cameras of the current sweep plane are incorporated
in the consistency test. All of the mentioned approaches
appoximate the ordinal visibility constraint but do not pro-
vide an actual visibility test. An exact computation with
arbitrary camera placement is provided with the generalized
voxel coloring (GVC) [3]. The visibility of the voxels is man-
aged with help of a surface voxel list (SVL). The GVC-IB
approach projects in each iteration all voxels of the SVL into

the cameras and saves the closest and thus visible voxel for
each pixel in an item buffer (IB). The consistency of each
voxel from the SVL is determined by the use of the assigned
pixels from the item buffer. Whenever a voxel from the SVL
is carved, it is replaced by its neighbors. This is repeated
until all voxels in the SVL are consistent. A disadvantage
is that the voxels of the SVL permanently have to be pro-
jected into the cameras. An improvement of the computa-
tion time can be achieved by using sorted linked lists as in
the generalized voxel coloring - layered depth images method
(GVC-LDI) [3], whereas the algorithmic complexity and the
memory usage are increasing.

(Hardware) Acceleration: In [12] the use of texture
mapping for fast voxel-pixel projections is suggested. Also,
a coarse-to-fine approach e.g. with octree structures as well
as temporal coherence for image sequences is recommended.
Plenty approaches have been developed to accelerate the
processing of the visual hull and the photo hull that often
follow these fundamental ideas (partially also the presented
references). For instance, a current octree-based visual hull
is proposed in [19]. In [13] a texture mapping is applied
in combination with an octree and a multiple-sweep-space-
carving similar to the PVSC approach for creating a photo
hull. Another photo hull approach uses raycasting to en-
hance the computation time of voxel-pixel projections [2].
Many other approaches provide solutions that focus on the
rendering of new virtual perspectives (e.g. by applying the
ordinal visibility constraint) without the execution of an ex-
plicit reconstruction (which is our concern). One method
that comes close to our work is provided in [10]. A mod-
ern graphics board is used to compute segmented images,
the visual hull (via vertex shader), and the photo hull (via
fragment shader). A multi-sweep approach that employs
a raycasting step with early-ray-termination as well as an
heuristic approach is applied for determining the visibility
of the voxels, whereas only the voxel center is projected to
the images. For a voxelspace of size 94× 94× 113 and eight
FireWire cameras with a resolution of 1024 × 768 a frame
rate of 33 fps is achieved.

3. OUR APPROACH
So far, to our knowledge, the existing (accelerated) ap-

proaches lack at minimum in one of the following aspects:
(a) Explicit consideration of occluding obstacles in the pro-
cess of reconstructing the visual hull. (b) Projection of the
complete voxel volumes to the images, instead of using the
voxel center [10] or another simplification [8]. (c) Computa-
tion of exact voxel visibilities for the use of arbitrary camera
placements in voxel carving.

In our approach we consider all of these aspects. For as-
pect (a) we adapted our algorithm of [6] and redesigned it
for hardware acceleration on the GPU, described in section
3.3. To our knowledge it is the most general approach with
conservative volume approximation of objects and obstacles
in the presence of occlusions. Aspect (b) also is covered in
[6] by using a look-up table that holds the voxel-pixel corre-
spondences similar to [8]. In order to realize the processing
of higher resolutions of the voxelspace and the images, we
replace this method by a GPU-supported rendering method
(raycasting). Finally, aspect (c) is realized by a redraft of
the GVC-IB voxel carving [3] (In [2] the usage of graph-
ics boards for acceleration of the GVC approaches also is
suggested). We apply the likelihood ratio test (LRT) as pro-

posed in [16] as consistency criterion. In pretests the LRT
achieved the best reconstruction quality (compared to the
ASDT, histogram and maximum norm [18]). An incremen-
tal computation of the standard deviation in the LRT per-
mits a fast parallelization of the incremental photo hull on
the GPU. The integration of the anytime concept [4] al-
lows for the termination of the algorithm after a defined
maximum computation time. For hardware acceleration we
appreciated using an open standard and decided to apply
OpenGL due to the rendering of plenty of images to get the
voxel-pixel projections in the cameras. More details to our
approach and the results can be found in [20].

In this Section we describe our GPU implementations of
the visual hull und the photo hull, starting with each CPU
equivalent in advance, for better understanding.

3.1 Standard Visual Hull
Given is our system with multiple calibrated and synchro-

nized color cameras Ci at positions pC,i with the images
PC,i, i = 1, ..., n. A visual hull VH(PC,1, ..., PC,n) is recon-
structed from the a priori unknown humans, called objects,
represented as a set of voxels x ∈ VH(PC,1, ..., PC,n) ⊂ R3.
At first, the camera images are processed by a background
subtraction method. The resulting segmented n silhouette
images MC,i are used as input for the visual hull.

The value color(p,MC,i) of a pixel p in the silhouette im-
ages indicates the foreground (= 1) respectively the back-
ground (= 0). Let πx,i be the set of pixels, which show the
projection of a voxel x in Camera i. The voxels of the visual
hull are defined by all those voxels x ∈ VH(PC,1, ..., PC,n),
which hold for the Formula (1).

(color(p,MC,i) = 1) ∀p ∈ πx,i, ∀i ∈ {1, ..., n} (1)

Given the pixel sets πx,i for all voxels, the visual hull can
be determined by set operators in terms of boolean expres-
sions. A simple algorithm of the standard visual hull given
πx,i is shown in Figure 2. A voxel marked “UNCARVED” is
visible and occupied. A voxel that is carved is discarded. It
is empty and not visible anymore.

1 def visualHull(V)

2 V.set_all(UNCARVED)

3 V.each do |x| # for each voxel

4 πx.each do |p| # for each pixel

5 if(color(p,MC,i) == 0)

6 carve x

7 end

8 end

9 end

Figure 2: Algorithm of the standard visual hull

3.2 Visual Hull with Occluding Obstacles
For the standard visual hull, projections of objects are as-

sumed to be completely included in the silhouettes of the n
segmented images MC,i. Using an online surveillance sys-
tem with ideal background subtraction method, this is true
for all objects that enter an empty surveillance volume after
capturing the reference images. As opposed to this, static
obstacles like tables that are present in advance are not part
of the silhouettes and thus are not reconstructed. Moreover

they might occlude partially or completely the targeted ob-
jects such that clipped silhouettes arise. In result Formula
(1) is wrongly not true and it is not guaranteed that the
remaining visual hull contains the complete objects. We
provide a solution of this problem in [6]. Knowledge of a
priori known static and dynamic occluding obstacles is in-
tegrated into the reconstruction process. In this paper we
focus on known static obstacles only. The idea of [6] is now
briefly described.

The obstacles are geometrically modeled, e.g. as triangle
meshes. With help of those, depth images are created for
all cameras with the same resolution as the other images.
Each depth pixel contains the distance to the closest surface
of the obstacles. In the reconstruction process all pixels of
a projected voxel are tested for visibility given their depth
values. Only pixels having a free sight to the voxel are per-
mitted to contribute to the decision of carving. Lets define
the function depth(p) that returns the maximum free range
of a pixel p. Given the position pC,i of the camera i, the
center of a voxel px and a constant dv describing half of the
length of the diagonal of a voxel (to be conservative), the
Formula (1) can be extended such that, for all voxels of the
visual hull x ∈ VH(PC,1, ..., PC,n) holds:

(color(p,MC,i) = 1) ∨ (|px − pC,i|+ dv ≥ depth(p))

∀p ∈ πx,i, ∀i ∈ {1, ..., n} (2)

Accordingly, all objects and all obstacles are part of the
visual hull. The magnitude of the difference of the position
vectors is calculated via L2-Norm. The algorithm in Figure
2 can be adjusted by replacing Line 5 with:

1 if((|px − pC,i|+ dv < depth(p)) &&

2 (color(p,MC,i) == 0))

3.3 Conservative Visual Hull with Occluding
Obstacles

The Formulas (1) and (2) do not account for discretiza-
tion errors of the voxelspace approximation, which have an
impact on the boundary of the visual hull. Only one projec-
tion pixel p ∈ πx,i of a camera with value color(p,MC,i) = 0
(free) suffices to carve a voxel, though all other projection
pixels might have the value color(p,MC,i) = 1. In result, the
boundary of the visual hull is formed by voxels that com-
pletely project to silhouette pixels in all cameras. However,
to ensure that all parts of objects and obstacles are enclosed
by the visual hull, the following conservative formulation is
provided:

∃i ∈ {1, ..., n}, ∀p ∈ πx,i :

(color(p,MC,i) = 0) ∧ (|px − pC,i|+ dv < depth(p)) (3)

A voxel is only carved if all projection pixels πx,i of at least
one camera are completely free, whereas no occluded or oc-
cupied pixel is allowed (Formula (3)). On the other hand,
one occupied or one occluded pixel in each camera is suffi-
cient to keep the voxel in the reconstruction (Formula (4)).

∃p ∈ πx,i, ∀i ∈ {1, ..., n} :

(color(p,MC,i) = 1) ∨ (|px − pC,i|+ dv ≥ depth(p)) (4)

An according algorithm is shown in Figure 3.

1 def visualHullConservative(V)

2 V.set_all(UNCARVED)

3 V.each do |x|

4 Cameras.each do |Ci|

5 occupied = nil

6 occludedPixelExist = false

7 πx,i.each do |p|

8 if(|px − pC,i|+ dv < depth(p))

9 if(color(p,MC,i) == 1)

10 occupied = true

11 else if(occupied == nil)

12 occupied = false

13 else

14 occludedPixelExist = true;

15 end

16 if((occupied == false) &&

17 (occludedPixelExist == false))

18 carve x

19 end

20 end

21 end

Figure 3: Algorithm for a conservative visual hull
with occlusion handling.

3.4 Conservative Visual Hull with Occluding
Obstacles on the GPU

After having shown the conservative visual hull with oc-
cluding obstacles we present our corresponding implemen-
tation on the GPU. All images are transferred to the GPU
and pixels are processed in parallel.

1 def processVoxelInPixel(xfree,xocc,p,MC,i)

2 if((color(xocc) >= color(xfree)) ∨
3 (color(xfree) == i))

4 if((color(p,MC,i) != 0) ∨
5 (|px − pC,i|+ dv >= depth(p)))

6 color(xocc) = i

7 else

8 color(xfree) = i

9 end

Figure 4: Algorithm for a conservative visual hull
with occlusion handling on the GPU.

We create two equal sized voxelspaces Vfree and Vocc that
have the properties of the original voxelspace. Each voxel
holds a single number out of N that is initialized with 0.
Each camera is assigned an ID i ∈ N. The computation takes
place sequentially for one camera after the other, sorted by
ascending i, but parallel for all pixels. Each pixel handles
all voxels that are included by its backprojection cone in
a sequential way. The process executed for each pixel and
each voxel is shown in Figure 4. Basically every voxel gets
for each projection pixel an entry of the current camera ID
in either Vfree or Vocc. The pixel-parallelism is ensured by
the special construction of the condition in Figure 4, Line
2. Possible mixes of read and write operations on the voxel
space do not matter, because after the processing of a cam-
era (the outer loop), a memory barrier is employed, that
ensures synchronization. Once a voxel is detected as free

color(xocc) < color(xfree)
Camera n or a previous camera (< n) contains only free
pixels. One camera that sees the voxel completely as free is
sufficient to carve the voxel. Thus the voxel is free.

color(xocc) ≥ color(xfree)
At least one occupied or occluded pixel was recorded for the
last camera n. This indicates that no previous camera (<
n) sees the voxel completely as free. The voxel is occupied.

Table 1: Final values of each voxel in Vfree and Vocc

and the resulting voxel occupation.

in one camera, the condition is never true for the following
cameras. The resulting visual hull can be readout by com-
paring the two voxelspaces after the processing of all pixels
and voxels, as shown in Table 1.

1 def processVoxelInPixel(xfree,xocc,p,MC,i)

2 if(|px − pC,i|+ dv >= depth(p))

3 return

4 if((color(xocc) >= color(xfree)) ∨
5 (color(xfree) == i))

6 if(color(p,MC,i) != 0)

7 color(xocc) = i

8 else

9 color(xfree) = i

10 end

Figure 5: Algorithm for a conservative visual hull
with occlusion handling on the GPU. Obstacles are
not part of the visual hull.

Hitherto, objects and occluding obstacles are part of the
visual hull. However, currently we consider scenarios with
static obstacles, whereby parts of the visual hull remain con-
stant for every time step t of the image sequence. For the
subsequent computation of the photo hull we decided to ig-
nore the constant parts (which might be computed once in
an offline step) and concentrate on the reconstruction of the
changing environment (humans). For this reason a modified

color(xocc) < color(xfree)
Camera n or a previous camera (< n) contains only free
pixels besides possibly occluded pixels. This is sufficient to
carve the voxel. Thus the voxel is free.

(color(xocc) ≥ color(xfree)) ∧ (color(xocc) > 0)
At least one occupied pixel was recorded for the last camera
n. This indicates that no previous camera (< n) sees the
voxel as free. The voxel is occupied.

(color(xocc) = 0) ∧ (color(xfree) = 0)
The voxel is occluded in all corresponding projection pixels
of all cameras. The voxel is free.

Table 2: Final values of each voxel in Vfree and Vocc

and the resulting voxel occupation. Obstacles are
not part of the visual hull.

algorithm is shown in Figure 5. The difference is that oc-
cluded pixels are now ignored completely (Lines 2 and 3).
The resulting values of the two voxelspaces Vfree or Vocc

have to be interpreted as shown in Table 2.

3.5 Photo Hull on the GPU

1 def GVCIB(V ,τ)
2 determine SVL

3 do

4 project Voxels of SVL , collect πx

5 SVL.each do |x|
6 compute µx, LRT of πx

7 if(LRT < τ)

8 color(x) = µx

9 else

10 carve x
11 add neighbours of x to SVL

12 end

13 while voxel was carved

14 end

Figure 6: Algorithm of the GVC-IB [3] with likeli-
hood ratio test (LRT) as consistency criterion.

Our GPU algorithm of the photo hull can be found in Figure
7. It is similar to the GVC-IB approach of [3] in Figure
6. In the latter method, at the beginning of each iteration
the surface voxels are determined and stored in the surface
visibility list (SVL), which contains the outer voxels of the
voxelspace in the first iteration (or the outer voxels of the
visual hull if used as input data). For each of the surface
voxels the consistency test is conducted to decide whether
the voxel is really located on an objects surface. This is
true if all projection pixels in which the voxel is visible have
the same color. The voxel remains uncarved in this case,
otherwise the voxel is carved and replaced in the SVL by
the next potential surface voxels. The SVL is applied in
order to reduce the amount of voxel projections. However,
an implementation of such a dynamic list on the GPU is
hard to realize and allows elements only to be inserted or
deleted in a sequential way. Thus we replace the SVL and
utilize an efficient GPU rendering technique (discussed in
the following subsection). Therewith in each iteration all the
currently occupied voxels of the voxelspace Vt are projected
into the cameras, while applying a visibility transfer function
to each voxel (Formula 5), similar to the volume rendering
used in other application fields.

f(x, p) =


(x[0], x[1], x[2], 1) if((occ(x) > 0) ∧ (depth(p)

≥ |px − pC,i|)), p ∈ PC,i

(0, 0, 0, 0) else

(5)
As our visual hull contains objects but no obstacles, addi-
tionally we have to consider the occlusions in Formula 5 by
applying the information of the depth maps similar to the
usage in the visual hull algorithm. After rendering, the re-
sulting values R,G,B of each pixel p encode the coordinates
of the closest visible voxel (x = vis(pixel) in Figure 7). This
equals the projection of the SVL into the cameras. In our
case the initial occupation of each voxel is determined by the
computed visual hull from the previous step. Each carved
voxel (Figure 7, line 12) gets the entry occ(x) = 0, so that
it will not be rendered in the next iteration anymore. The
result of the rendering in each iteration is stored in so called
visibility images (VI). By having encoded the current visi-
ble voxel in each pixel, a parallel processing of the pixels is

1 def parallelGVCIB(Vt,τ ,duration)
2 start = Time.now

3 do

4 render occupied voxels of Vt and

5 obtain visibility images VI

6 VI.each.pixels do |pixel|

7 x = vis(pixel)

8 update µx, n · (σx)2

9 if(((n− 1)/n) · (n · (σx)2) < τ)

10 color(x) = µx

11 else

12 carve x # occ(x) = 0
13 end

14 while Time.now - start < duration

15 end

Figure 7: Algorithm of the GVC-IB on the GPU

reasonable for the consistency test in each carving iteration.

The likelihood ratio test (LRT) is applied as consistency cri-
terion, which employs the standard deviation σx. Uncarved
voxels are colored with the average value µx of all colors that
are assigned to each voxel. The mean value of the pixel col-
ors µx and the associated standard deviation σx is calculated
incrementally to avoid dynamic data structures, too. The
original definition of the mean value requires all n elements
vi in advance.

µx =
1

n

n∑
i=1

vi (6)

This can be replaced by the following incremental Formula:

µn
x =

1

n
(vn − µn−1

x) + µn−1
x (7)

The original definition of the standard deviation is:

σn
x =

√√√√ 1

n

n∑
i=1

(vi − µx)2 (8)

Its incremental equivalent can be expressed as in [5]:

n · (σn
x)2 = (n− 1) · (σn−1

x)2 +n · (n− 1) · (µn
x −µn−1

x)2 (9)

As can be seen from the Formula, the computation of n ·
(σn

x)2 requires the evaluation of a monotonic expression fol-
lowing the form of f(n) = f(n− 1) + X, X > 0. Similarly,
the function g(n) = 1− 1/n = (n− 1)/n is monotonic when
n > 0. The product of these two functions g(n) · f(n) will
be monotonic as well. A combination of Formula (9) with
the definition for the consistency test LRT, which is given as
LRT = (n − 1) · (σx)2, yields a function following the form
of g(n) · f(n). As such, the LRT can be computed incre-
mentally using the following term, which is monotonously
increasing in n:

LRT(n) =

[
n− 1

n

]
·

[
n · (σn

x)2
]

(10)

Due to this adaptation, the consistency test can now be ac-
complished parallel for all pixels in each iteration. Whenever
LRT > τ , the voxel can be carved immediately as it can not

become smaller anymore due to its monotony. Solely the
update of µx and n · (σx)2 requires a common access. As
a repeated carving does not influence the result, a synchro-
nization only is required for accessing the values of the same
voxel, which is realized by the use of spin-locks. Due to the
high amount of pixels a parallel processing is guaranteed
anyhow.

A further challenge is the loop condition “while voxel

was carved” of the GVC-IB (Figure 6, Line 13) because this
requires a feedback of the graphics board that currently only
can be realized with a trick [11]. Moreover the computation
time of the photo hull varys depending on the content of the
scene. Thus we require a bound for the maximal compu-
tation time. Therefore we apply the concept of an anytime
algorithm proposed by [4] to the photo hull. After initializa-
tion, such algorithms can be interrupted at any time while
providing a correct result. The quality of the result im-
proves as function of the time. We define an upper bound of
processing time in which at minimum one iteration can be
accomplished, so that a colored visual hull is guaranteed in
worst case and a refined photo hull is provided in the best
case. It should be noted that the obtainable quality of the
photo hull is limited mainly due to the properties of the re-
constructed objects as well as the experimental setup (e.g.
amount and perspectives of cameras).

4. RESULTS
All experiments were accomplished with a graphics board

of type AMD Radeon HD 7970 with 3GB RAM. The propri-
etary AMD driver “fglrx” (Catalyst) in version 12.104 was
employed and the operating system was OpenSUSE 12.3.
The processor was of type AMD FX-8350 Octocore, clocked
with 4 GHz und access of 32GB RAM. We chose a fix camera
resolution of 640× 480 pixels for all experiments.

4.1 Analysis of the Rendering Methods
As we have already stated, we utilize the GPU for a fast

and efficient computation of the complete voxel-pixel pro-
jections that are required in both reconstruction methods.
We render the voxelspace in the camera views so that each
pixel encodes in its RGB values the coordinates of the visi-
ble voxel. Two groups of approaches for efficient rendering
methods are available, namely texture mapping and ray-
casting. Texture mapping interprets volumes, e.g. the vox-
elspace, as a pack of images (layers), which are rendered
individually. To avoid aliasing effects we insert layers paral-
lel to each coordinate axis as shown in Figure 8.

Figure 8: Exact texture mapping. From left to right:
occupied voxels, rendering in directions: +y, -y, -x,
+x, final image of the voxels

In comparison, the standard raycasting determines the
visible voxel in each pixel by following the backprojected
”viewing ray” until an occupied voxel is intersected (ray
marching). The ray is sampled at discrete points with an
equal step size. The optimization of Amanatides [1] avoids

aliasing effects by computing analytical the intersections of
the ray with the voxels. We compare the texture mapping
with the standard raycasting, the Amanatides raycasting as
well as a compute shader implementation of the Amanatides
algorithm. For analyzing the computation time of these ren-
dering approaches, we created a test case (independent of
the reconstruction methods) in which different voxelspaces
were projected to the camera images. The voxelspace res-
olution was varied from 1003 to 3503 in steps of 503. We
varied the occupation of the voxelspaces from 1 % to 100%
by randomly placing spheres and counting the filled voxels
until the desired occupation was achieved.

10 20 4030 50 60 70 80 90

Figure 9: Computation times of different rendering
methods for a varying occupation of the voxelspace.

Figure 9 shows one result that is characteristic for all
results. Beginning with unsegmented images (continuous
lines): The texture mapping is worst in all cases. Although
it employs most the given hardware functions for vertices,
there is much overhead while projecting layers that are not
visible into the cameras. The standard raycasting approach
with fix step size and the optimization of Amanatides [1] pro-
duce similar results. The cost for calculating the intersection
points of the viewing rays with the voxels (for reducing the
amount of steps) are opposed to the cost of more required
iterations in the standard raycasting. Obviously, the frame
rates increase with higher voxel occupations for all methods.
This is caused by in average shorter ray marching distances
up to the intersection with an occupied voxel. The frame
rates significantly improved when using the compute shader
implementation of the Amanatides method. This means
that the usage of the full OpenGL pipeline in the vertex-
and fragment-shader based raycasting methods is not rea-
sonable due to the arising overhead.

For each method and parameter combination the influence
of segmented silhouette images is examined (dotted lines) as
such are used for the reconstruction of the visual hull. The
silhouette creation time is not included in the measurements.
As expected, all raycasting methods benefit from the result-
ing skipping of pixels that are located outside the silhou-
ette. This leads additionally to a decreasing computation
time for little voxelspace occupations with almost no pixels
to process. The efficiency of the texture mapping cannot be
increased, because all layers have to be rendered regardless.

We evaluated the quality of the rendering methods by
comparing the results with a naive rendering that renders
for each single voxel 12 triangles in the image. Although this
method is less efficient than the others, it does not apply nu-
merical approximations and returns results of best quality,
which we also verified on the CPU for voxelspaces of low

resolution. We measured the absolute amount of wrong pix-
els and the average deviation for the actual voxel positions
encoded in the pixel from the target voxels. The Manhat-
tan distance is caculated between each pair of actual voxel
and target voxel. An example measurement of the abso-

10 20 4030 50 60 70 80 90

Figure 10: Absolute amount of wrong pixels com-
pared to the naive rendering.

lute amount of wrong pixels for a voxelspace of size 2003 is
shown in Figure 10. The standard raycasting produces the
worst results. The Amanatides rendering achieves the best
results as well as its alternative implementation of the com-
pute shader (graph is identical to Amanatides). With just
0.08 % wrong pixels the error can be neglected. Also, the
average deviation of 2...3 voxels is significant lower for the
Amanatides algorithms as for the raycasting (not shown).
The texture mapping is a little worse than the Amanatides
algorithms (not visible by eye), because it is completely con-
ducted on the graphics board, which is optimized in speed
and not in accuracy.

In summary, the compute shader implementation of the
Amanatides method achieved the best results in both com-
putation time (rendering of 2000 images per second) and
quality. This rendering method was applied in the following
experiments.

4.2 Analysis of the Photo Hull
The complete reconstruction pipeline was tested with im-

age sequences of a real work cell with seven cameras of reso-
lution 640×480. Two or three persons with colored overalls
(for better background subtraction) are moving in the cell
that contains several occluding static obstacles as shown in
Figure 12. Furthermore a simulation of the same work cell
with one person is used in order to have perfect ground truth
data and undistorted images.

First, for computing the photo hull with a fix upper bound
of 800 ms we examined the number of iterations by vary-
ing the voxelspace resolutions (1003 up to 3003) and the
amount of cameras (4 up to 7). The results are shown in
Figure 11. The presented values are average measurements
of all image sequences. Surprisingly, the influence of the
amount of cameras is similar to the resolution of the vox-
elspace for the selected parameters, though the calculation
of the photo consistency is done iteratively per image and
should mainly depend on the amount of cameras. A large
part of the computation time (up to 50% for 3003 voxels) is
required for resetting the voxelspace data structures. After
each iteration the counter of each voxel that is used for the
incremental computation of the LRT has te be reset. After
each frame additionally the voxel data structures Vfree and
Vocc have to be zeroed. The OpenGL standard of version 4.2

 200

 300

 400

 500

 600

 700

 100 150 200 250 300

Sp
ee

d
(p

ho
to

hu
ll

ite
ra

tio
ns

)

Voxelspace Resolution (steps per axis)

4 cameras
5 cameras
6 cameras
7 cameras

Figure 11: Iterations of the photo hull for varying
amount of cameras and voxelspace resolutions.

does not provide a more efficient approach, but an outlook
for improvement is given with OpenGL version 4.4 [15].

Another experiment aimed in the applicability of the ap-
proach to our real-world work cell of 40 m3 with 7 cameras
and a voxel resolution of 2003. First, we determined the
optimal threshold of τ = 7.5 for the LRT consistency test
given 800 ms processing time to get the best quality. After-
wards we reduced the computation time. As most voxels are
carved within the first 200 ms, the slight refinements after-
wards can be omitted. The achievable computation times
are shown in Table 3. The values were averaged over the
first 200 frames for each sequence.

Sequence VH PH Total
Persons Iter. Total Time fps

Sim 1 22 ms 8.2 ms 200 ms 222 ms 4,5
Real 2 29 ms 5.1 ms 200 ms 229 ms 4,3
Real 3 28 ms 8.1 ms 200 ms 228 ms 4,4

Table 3: Computation Times for the Visual Hull
(VH) and the Photo Hull (PH).

Finally, we examined the quality of the photo hull. The
photo integrity of Seitz and Dyer [16], which demands that
the projection of the reconstruction into the cameras repro-
duces the original images is sufficiently fulfilled, as shown
in Figure 12. Occluders are partially reconstructed, which
might be caused due to discretization errors, an imprecise
camera calibration, imprecise modeled obstacles or just arte-
facts from background subtraction. These effects occur less
in the simulation sequence. The other demand of broad view-
point coverage [16] is sufficiently guaranteed in the center of
the cell whereas the quality of the geometric reconstruction
strongly suffers at the cell borders, which mainly are moni-
tored by one camera only.

5. CONCLUSIONS
We examined a photo hull algorithm for the online recon-

struction of humans in environments that are characterized
by the presence of occluding obstacles as well as a rather
little amount of incorporated cameras. A new GPU imple-
mentation of the GVC-IB approach [3] is presented. There-
fore an incremental calculation of the LRT consistency cri-
terion is integrated. The termination of the algorithm is
managed with the anytime concept of [4]. The input of the
photo hull is a visual hull reconstruction. For the GPU we
redesigned our visual hull algorithm of [6] that can handle
conservatively known occluding obstacles. We analyzed dif-
ferent rendering techniques (texture mapping and raycasting

Figure 12: Results of the photo hull. Top: real-
world work cell. Bottom: simulation.

approaches) for computing the required voxel-pixel projec-
tions. Our compute shader implementation of the Ama-
natides algorithm [1] yielded the best results concerning
computation time and quality. Thus, the OpenGL pipeline
is partially dispensable. A comparative implementation in
OpenCL would be interesting. We examined the computa-
tion times depending on variations of the voxelspace resolu-
tion and amount of cameras. A strong dependency on the
amount of voxels was detected caused by expensive memory
accesses for the voxels required during data structure prepa-
ration. An improvement is expected with OpenGL 4.4. We
figured out that 200 ms as upper bound for computing the
photo hull (about 50 iterations) is sufficient for our scenario.
An overall frame rate of 4,4 fps can be reached. Furthermore,
we examined the quality of the photo hull. The geometri-
cal approximation of the visual hull could not be visibly
improved for the given scenario with only 7 cameras and
occluding obstacles. Nevertheless, the aimed colorization of
the reconstruction fulfills the photo integrity assumption.

6. ACKNOWLEDGMENTS
This work has partly been supported by the Deutsche

Forschungsgemeinschaft (DFG) under grant agreement
He2696/11 SIMERO.

7. REFERENCES
[1] J. Amanatides and A. Woo. A fast voxel traversal

algorithm for ray tracing. In Proceedings of
EUROGRAPHICS, volume 87, pages 3–10, 1987.

[2] O. Batchelor, R. Mukundan, and R. Green. Ray
casting for incremental voxel colouring. In New
Zealand: International Conference on Image and
Vision Computing - IVCNZ05, pages 206–211, 2005.

[3] W. B. Culbertson, T. Malzbender, and G. Slabaugh.
Generalized voxel coloring. In Vision Algorithms:
Theory and Practice, volume 1883, pages 100–115.
1999.

[4] T. Dean and M. Boddy. An analysis of time-dependent
planning. In Proceedings of the seventh national
conference on artificial intelligence, pages 49–54, 1988.

[5] T. Finch. Incremental calculation of weighted mean
and variance. University of Cambridge, 2009.

[6] S. Kuhn and D. Henrich. Multi-view reconstruction of
unknown objects in the presence of known occlusions.
In ISVC ’09 Proceedings of the 5th International
Symposium on Advances in Visual Computing: Part I,
pages 784–795. Springer Verlag, Berlin, 2009.

[7] K. N. Kutulakos and S. M. Seitz. A theory of shape by
space carving. International Journal of Computer
Vision, 38(3):199–218, 2000.

[8] A. Ladikos, S. Benhimane, and N. Navab. Efficient
visual hull computation for real-time 3D
reconstruction using CUDA. In IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition Workshops, 2008. CVPRW’08., pages 1–8,
2008.

[9] A. Laurentini. The visual hull concept for
silhouette-based image understanding. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 16(2):150–162, 1994.

[10] C. Nitschke. A Framework for Real-time 3D
Reconstruction by Space Carving using Graphics
Hardware. Grin Verlag, München, 2007.

[11] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris,
J. Krüger, A. E. Lefohn, and T. J. Purcell. A survey
of general-purpose computation on graphics hardware.
Computer Graphics Forum, 26(1):80–113, 2007.

[12] A. Prock and C. Dyer. Towards real-time voxel
coloring. In Proceedings of the DARPA Image
Understanding Workshop, pages 315–321, 1998.

[13] M. Sainz, Bagherzadeh, Nader, and Susin, Antonio.
Hardware accelerated voxel carving. In 1st
Ibero-American Symposium in Computer Graphics
(SIACG 2002), pages 289–297, 2002.

[14] A. Schick and R. Stiefelhagen. Real-time GPU-based
voxel carving with systematic occlusion handling. In
Pattern Recognition. 31st DAGM Symposium, Jena,
Germany, September 9-11, 2009. Proceedings, pages
372–381, 2009.

[15] M. Segal and K. Akeley. OpenGL 4.4 core profile
specification, July 2013.

[16] S. M. Seitz and C. R. Dyer. Photorealistic scene
reconstruction by voxel coloring. International Journal
of Computer Vision, 35(2):151–173, 1999.

[17] G. G. Slabaugh, W. B. Culbertson, T. Malzbender,
and R. W. Schafer. A survey of methods for
volumetric scene reconstruction from photographs. In
VG’01 Proceedings of the 2001 Eurographics
conference on Volume Graphics, pages 81–101, 2001.

[18] G. G. Slabaugh, W. B. Culbertson, T. Malzbender,
M. R. Stevens, and R. W. Schafer. Methods for
volumetric reconstruction of visual scenes.
International Journal of Computer Vision,
57(3):179–199, 2004.

[19] T. Werner and D. Henrich. Efficient and precise
multi-camera reconstruction. In Eighth ACM/IEEE
International Conference on Distributed Smart
Cameras - ICDSC, November 4-7, Venice, 2014.

[20] M. Zwicker. Erweiterung der Photohülle zur schnellen
Onlinerekonstruktion auf moderner Grafikhardware.
Master thesis, University of Bayreuth, Bayreuth, 2014.

