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Human-robot cooperation and coexistence requires robust surveillance. Our system creates a visual hull as volume
approximation of humans within the work cell from images of multiple static color cameras. We present a fast, exact,
and conservative reconstruction from high-resolution input data and apply temporal filtering after the reconstruction
to address detection failure of the cameras. Furthermore, we avoid incorrect placement of cameras by automatically
optimizing the camera positions. All processing steps handle occluding obstacles.

1 Introduction

In the long term, the SIMERO2 project shall establish
strategies which allow robust human-robot cooperation
and coexistence for combining the endurance and preci-
sion of autonomous robots with the error tolerance and
adaptivity of human beings [9] [12] [16] [17].
Our main component is a monitoring system, consisting
of multiple static calibrated color cameras, that serves as
protection device for humans in a given environment, e.g.
the robot work cell. In the following, this surveillance
system will briefly be described. The parts of the envi-
ronment that are targeted by the system, e.g. humans,
are called objects, the remaining parts, such as tables and
racks, are called obstacles. Objects are a priori unknown,
obstacles are supposed to be given. The part of the en-
vironment that is completely observed by the monitoring
system is called surveillance volume.

Figure 1: Left: The current image of a camera. Right:
The silhouette image after background subtraction.

In particular the system performs in each camera a back-
ground subtraction to distinguish between objects and ob-
stacles. As illustrated in Figure 1, this method results in
a silhouette image that associates each pixel with either
an unknown object in the foreground (red) or a known
obstacle in the background (gray). The information of
this image can be transferred to the 3D environment: The
projection from a background pixel to the next obstacle
in the environment will not contain objects, is therefore

object-free space. The space behind the obstacle is oc-
cluded, which means an object could be hidden there.

Figure 2: Reconstruction of the visual hull (red).

The reconstructed visual hull of an object is the approxi-
mated space of the surveillance volume, where an object
is located according to the combined silhouette images
of multiple cameras. Each additional camera results in
more object-free space and thus refines the visual hull.
In contrast to the standard visual hull, we integrate con-
text information of obstacles in the scene and design con-
servative algorithms [17]. Hence, we create a conserva-
tive visual hull that avoids false-negative object detection
even in the presence of occlusions, as shown in Figure 2.

Our current research aims at bringing the system closer to
its applicability in real environments. One aspect we dis-
cuss, is the use of modern Full HD color cameras as high-
resolution input sources. For this purpose, one must use
reconstruction algorithms that can process a huge amount
of data to deliver high-detail output over a large spatial
area. At the same time, these algorithms must meet real-
time and anytime constraints to guarantee fast responses,
which are required for human-robot cooperation. Sec-
tion 2 describes such an algorithm. Another focus of this
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work is the improvement of human localization in situa-
tions with pseudo objects and coarse visual hulls due to
occlusions. Additionally, we want to deal with noise and
short-time detection failures in the silhouette images as so
far the objects are considered to be distinguishable from
the background obstacles. In order to loosen this limita-
tion we apply temporal filtering after the reconstruction
step, which will be described in Section 3. Again, the
challenge is the handling of obstacles and occlusions in
the scene. Furthermore, a correct camera placement is
regarded, here: When the object-free space is maximized
the remaining visual hull is minimized, which is the only
space where the objects can be located. We will address
a characterization of a respective objective function for
optimization purposes in Section 4.

2 Efficient, Precise Reconstruction
Current solutions to visual hull reconstruction in a robot
workspace favor naive voxel discretization over more in-
tricate algorithms. For example, the reconstruction in
[23] exploits per-voxel data parallelism to efficiently per-
form voxel-to-silhouette tests on a GPU at 10 ms per 2563

voxels. Another, more optimized approach [3] restricts
updates to modified entries within incoming silhouettes
for a time of 100 ms per 2563 voxels.
Yet, even optimized voxel representations are not suited
for high-detail and efficient reconstruction: They do not
scale well to high input and output resolutions, they do
not adapt to inhomogeneous object distributions, and they
do not offer reasonable early-out capabilities for support-
ing real-time constraints.
Hierarchical data structures, such as octrees and
quadtrees, promise advantages over brute force voxel re-
construction. A sample hierarchical approach [18] builds
an octree reconstruction via image-space downsampling
and single-pixel projection tests at 25 ms per 1283 voxel
equivalent detail. Likewise, the algorithm [22] performs
parallel, load-balanced octree reconstructions on CPU or
GPU at 25 ms per 1283 voxel equivalent.
However, no existing approach satisfies all requirements
for close-quarter collaboration of robots and humans. In
particular, a suitable visual hull reconstruction must be
efficient, precise, and conservative. An efficient recon-
struction delivers results in time for an appropriate robot
reaction. While a definite time limit depends on many
factors (e.g. robot speed or sensor frame rate), we de-
sire a maximum processing time of 30 ms. We further
understand a precise reconstruction as to provide cen-
timeter resolution within a standard-sized 64m3 robot
workspace, an equivalent of at least 10243 voxels. In
our experiments, multiple Full HD cameras are necessary
to generate input for this level of detail. Finally, a con-
servative reconstruction guarantees that the resulting vi-
sual hull will at least contain all objects present within the
scene. Given ground-truth silhouette images, this strong
bias to false-positive object detection ensures workspace
safety. Our approach meets all three named requirements:
it is efficient, precise, and conservative.

2.1 Our Approach
In brief, we support hierarchical, incremental, real-time-
and anytime-capable multi-camera reconstruction of vi-
sual hulls from silhouette images. Our respective algo-
rithm performs two separate steps: The first step cal-
culates conservative quadtrees over all current silhouette
images. The second step incrementally computes a con-
servative octree reconstruction of the observed objects.
This involves projecting octree nodes into camera images
and efficient testing for object silhouettes within respec-
tive quadtrees. Both steps track modifications in-between
consecutive input images in order to reuse quadtree test
results or unmodified octree branches. We apply various
knowledge-based and low-level optimizations to further
improve reconstruction efficiency and precision. Finally,
client applications can raise an exit flag to abort recon-
struction prematurely. This allows for realtime and any-
time capabilities within incremental computations.
In the following, we discuss quadtree setup, incremental
octree updates, and algorithmic optimizations in detail.

2.2 Silhouette Quadtrees
We build quadtrees over all input images in a bottom-up
merge process. The lowest level of each quadtree always
holds the respective silhouette image. We then apply a
merge function to reduce four element squares from any
level to a single element within the next-coarser level. In
order to guarantee conservativeness, the merge function
must at most increase the perceived volume of any sil-
houette. We achieve this by an additional mixed-content
value on higher quadtree levels.

Figure 3: From left to right: A synthetic test scene with
foreground objects (human, crates) and background ob-
stacles (table, robot, work cell). A silhouette image of
the foreground objects. Four quadtree levels over the next
image in the sequence, with half-tones for mixed content,
and corresponding modification entries in red.

Later octree updates use the resulting quadtrees to ef-
ficiently determine whether a given octree node corre-
sponds to an actual object or object-free space. In par-
ticular, a top-down test over all quadtree levels returns
an early-out result if the node completely maps to ei-
ther occupied or free space. Only nodes that project to
mixed content need to test against lower quadtree levels.
Hence, quadtrees avoid many pixel-level or quadtree ele-
ment tests for spatially coherent objects, which is a major
contribution to efficient reconstruction.
We avoid another substantial number of pixel tests by
incremental computations. To this end, we track pixels
that changed state in-between the current and the preced-
ing silhouette image. We then mark each quadtree ele-



ment as modified if it covers at least a single modified
pixel. Later incremental updates exploit this information
to maintain entire octree branches over consecutive re-
construction frames without individual per-node tests.
Figure 3 illustrates the overall quadtree build process for
a sample silhouette.

2.3 Incremental Octree

Nodes within our octree carry one of three different
states: Nodes can be entirely object-free, can be com-
pletely occupied by an object, or can hold mixed content.
Further subdividing of object-free or full nodes is futile.
Hence, such nodes form the leaves of the octree. In con-
trast, we split nodes of mixed content to refine reconstruc-
tion precision later on.
Apart from its state, each node also stores its projection
into all silhouette images. A high-precision reconstruc-
tion cannot afford pre-calculating these projections for
all nodes as in [18] due to excessive memory require-
ments. Hence, we rebuild all projections on creation of
individual nodes. To avoid expensive per-pixel projec-
tions, we approximate node projections by conservative
image-space bounding boxes. Conservative boundings at
most consider additional silhouette pixels, hence main-
tain overall conservativeness. Finally, our approximation
does not reduce reconstruction precision, as we usually
stop subdividing the octree at pixel-sized boundings.
We initialize the actual octree with a single root node of
mixed content that spans the entire surveillance volume.
We then incrementally update the octree for each conse-
quent series of silhouette images.
In detail, our algorithm recursively traverses the existing
octree. The algorithm tests each node bounding against
the modified entries of each silhouette image quadtree. If
modified entries indicate that some node did not change
in any camera image, we maintain the respective octree
branch in its entirety without further calculations. Oth-
erwise, node contents have been modified in at least one
camera, so we need to rebuild the node state.
In order to determine the current state of a node, we check
the actual contents of each silhouette quadtree within the
node boundings: A node is object-free if its projection
into a single camera is object-free. Likewise, a node is en-
tirely filled by an object if its projection into all cameras
maps to object silhouettes. In all other cases, the node
has mixed content. For an additional efficiency gain, we
cache results of these node-to-silhouette tests. In partic-
ular, we only need to rebuild silhouette test results if pre-
ceding modification tests indicated a changed silhouette
within the node projection.
Once our algorithm has set a new state on a node, it up-
dates the octree accordingly: The algorithm deletes any
children of empty or full nodes, and potentially creates
new children on mixed nodes.
Incremental updates then recurse on the children of
mixed nodes. As mentioned previously, recursion usually
continues until a node projects to a single-pixel bounding
box in each camera. Reconstruction now has exploited

all available input information, and further subdivision is
pointless. Once our algorithm has explored all branches
to either full, empty, or pixel-sized nodes, reconstruction
terminates with an updated, conservative octree.
Finally, we introduce a second exit condition to imple-
ment realtime capabilities: Client applications may raise
an external abort flag in order to force a return of pre-
mature reconstruction results. In this case, reconstruction
returns instantly. To satisfy conservativeness, we must
now consider any untouched octree branches as mixed
content (i.e. potential objects). Realtime capabilities are
especially important for fixed-interval distance tests, as
required for path planning in robotics.
See Figure 4 for an example incremental update.

Figure 4: Left, right: Four incoming silhouettes and as-
sociated modification tags on a synthetic scene, both in
form of quadtrees as in Figure 3. Center: A correspond-
ing reconstruction. Our algorithm only touched octree
branches that contain red nodes.

2.4 Optimizations

Once our algorithm has finished, we apply additional
knowledge-based refinement criteria [16] to increase re-
construction precision. For instance, if the target appli-
cation only requires to avoid robot-human collisions, we
can ignore any coherent object that does not meet the
minimum volume occupied by a human. All knowledge-
based refinement efficiently integrates into our octree:
We only need to touch few nodes for volume or neighbor-
hood tests, as opposed to an expensive voxel flood fill.
We also parallelize reconstruction over multiple root
nodes in order to achieve maximum throughput on mod-
ern multi-core CPUs. We do not use advanced per-thread
load-balancing as in [22]. Instead, we generate a large
number of initial roots (e.g. 512 nodes) and distribute
these over any waiting threads. This enables fully data-
parallel processing per root node. Consequentially, our
experiments still achieve an almost linear speedup.

2.5 Evaluation

We evaluated our reconstruction algorithm in an online
test on synthetic data. In particular, we placed multiple
virtual cameras into an animated, virtual scene. These
cameras generated high-resolution ground-truth silhou-
ettes of objects in the scene at real-time frame rates via
OpenGL rendering. Our algorithm then combined result-
ing silhouettes with a-priori ground-truth camera parame-
ters to update an incremental octree representation of the



virtual scene. We measured performance on commod-
ity hardware, an i5-3320m dual-core notebook CPU and
16GB of dual-channel RAM. Even with these constraints,
our algorithm delivered the framerate of 30hz desired for
high-resolution input and high-detail output.

3 Human Tracking with Obstacles

We apply a human tracking approach to reconstructed
voxel data (occupancy grids) in order to improve the hu-
man localization in situations with pseudo objects and
coarse visual hulls due to occlusions. In addition, the
concept of the conservative visual hull described so far
assumes ground-truth silhouette images, which means
that objects are considered to be distinguishable from
the background obstacles. Temporal filtering supposedly
looses this limitation and allows some noise as well as
short-time detection failures.
Methods that use voxel data as input for human tracking
with skeletal models are applied in the field of markerless
motion capturing, e.g. in [15, 5]. Human poses and mo-
tions are required for animations in movies and computer
games or for motion analysis in sports and medical appli-
cations. Motion capturing approaches commonly assume
empty scenes, so that they only have to handle the prob-
lem of self-occlusion to get sufficiently good human state
approximations.
By comparison, tracking in industrial environments is
similar to tracking in home or office environments [13, 6],
whereas less camera sensors might be involved and the
scenes usually contain obstacles like tables and chairs.
Due to the coarse human approximation, which results
from the reconstruction in such scenarios, skeletal mod-
els are not convenient, especially when only parts of the
humans are visible in the sensors. Instead, simple shape
models like ellipsoids [6] are proposed. Different track-
ing methods are applied, e.g. a particle filter [6] or the
Viterbi algorithm [13].
However, we did not find an approach that thoroughly
considers obstacle and occlusion information in the track-
ing step which is adequate for industrial applications.
Thus, we discuss the integration of 3D modeled obsta-
cles as context knowledge in two tracking steps: the like-
lihood evaluation and the particle propagation.

3.1 Tracking Approach

We search for the best estimation Xt of the unknown state
xt of the human at time t by using the particle filter as
applied in [6]. The particle filter [1] is chosen to handle
non-Gaussian posterior probability densities. Those can
easily appear in scenes with obstacles, coarse reconstruc-
tion results, and pseudo objects. The amount of tracked
persons in the targeted scenario is small. Thus, for ev-
ery human a new instance of the particle filter is initial-
ized, despite the growing computation time. The Stan-
dard Sampling Importance Resampling (SIR) [10] is ap-
plied.

A simple ellipsoid shape model approximates the hu-
man with the unknown state xt. We have given the
state space xt =

(
xt, yt, zt, kt, lt,mt

)
∈ R6 with xt,

yt, zt representing the ellipsoid center and kt, lt, mt

representing the length of the ellipsoid axes, that are
aligned to the axes of the voxel space. The observation
for each time step t is a set of n voxels V = {vk}
with k = 1, .., n whereas vk =

(
ak, bk, ck

)
with ak,

bk, ck ∈ Z. We consider four different voxel states
for use in the likelihood function of the particle filter:
ft : V → {known, occluded, unknown, free}. The syn-
thesis of the respective, pairwise disjoint voxel subsets
V = Ut ∪ Kt ∪ Ot ∪ Ft is now explained in detail.
a) In an online reconstruction of the visual hull we create
voxels that approximate the volume of the visible parts of
humans (unknown objects) and label those as unknown.
We get the respective voxel set Ut. In comparison to the
standard visual hull, context knowledge of the obstacles
is integrated in the reconstruction process. More pre-
cisely, a depth map is built for each camera, which holds,
for each pixel, the distance to the closest modeled obsta-
cle, similar to a range sensor [17]. Thus, a camera con-
tributes only to the classification of a voxel (occupied or
not) if the voxel is not occluded in that camera. The result
is a correct visual hull for all parts of the objects which
are visible for at least one camera.
b) A voxelization of the modeled obstacles (triangle
meshes) gives us a set Kt of known voxels in the voxel
space. Those voxels represent the physically occupied
volume in the scene (except the occupation by unknown
objects).
c) With help of the depth maps we construct the visual
hull of the known obstacles to get a set of voxels Zt that
are not visible in any camera. This set is composed of
voxels that are empty and voxels that contain parts of ob-
stacles. Hence, a valid assumption is that Kt of known
voxels is enclosed by Zt with Kt ⊆ Zt. We produce the
set of empty occluded voxels Ot with Ot = Zt \Kt.
d) All remaining voxels are labeled as "free", given the
respective voxel set Ft.
In the case of dynamic obstacles, we would need to com-
pute the steps b) and c) at every time step t. Currently
we use static obstacles only and perform the computation
once in an offline step.

3.1.1 Likelihood Evaluation

The authors in [6] use the associated ellipsoid of each
particle j in state xj

t and consider the binary information
of voxelsMj

t (occupied or not) that are located inside the
ellipsoid for particle weighting. We adopt this method but
extend the likelihood function with the described voxel
states of obstacles (state known) and occlusions (state oc-
cluded). Every voxel q ∈ Mj

t is assigned a different
weight s(xj

t , q) ∈ R.

s
(
xj
t , q
)
=


ρ if ft(vk) = unknown
σ if ft(vk) = occluded
τ if ft(vk) = known
ε if ft(vk) = free



In the first line (ρ) we reward (value > 0) every unknown
voxel within the ellipsoid. In the second line (σ), also
every occluded voxel is rewarded. Even though it is not
visible for any camera, it may nevertheless contain an un-
known object. This reward allows a person to completely
move into an occluded volume without leading to a ter-
mination of the filter. To avoid that the filter moves into
an occlusion, though the person does not, it is required
that σ < ρ. In addition, for a person that steps outside
an occlusion the filter would stay in the occlusion other-
wise (depending on the size of the occlusion). The third
line (τ ) requires a penalty (value ≤ 0) , because every
voxel which is located inside a known modeled obstacle
can impossibly contain an unknown object (human) at the
same time. Line four (ε) calls for a penalty, too, because
a free voxel is not part of an unknown object. The weight
wj

t of a particle is updated proportional to the prior den-
sity wj

t ∝ p(zt,x
j
t ) with the observation zt of all vox-

els (see [6]). We normalize each particle weight to [0, 1]
by the sum S of all individual ellipsoid weights, whereas
an ellipsoid weight is the sum of all respective weights
s(xj

t , q).

p(zt|xj
t ) = max

(
1

S

∑
q

s
(
xj
t , q
)
, 0

)
, with q ∈Mj

t

The SIR [10] is conducted subsequently.

3.1.2 Particle Propagation

The new state xr
t+1 of each resampled particle r is prop-

agated with xr
t+1 = xr

t + N . A Gaussian diffusion N
is added to account for noise and changes in direction.
As constraint, a maximum ellipsoid volume is assumed.
Since creating an exact motion model is the key for good
tracking results, we are currently working on refining the
prediction step, e.g. by applying adaptive noise parame-
ters.
During multi-person tracking, we observe situations in
which a filter located in an occlusion (e.g. of a person
under the table) completely diverges through an obstacle
into the adjacent measurement of another filter (e.g. of a
person on the table). This is caused by the gradient in the
weights of occluded voxels (σ) and unknown voxels (ρ).
A stringent condition to avoid such effects can be met
by replacing all particles whose ellipsoids collide with an
obstacle. Unfortunately, we deem this inappropriate for
two reasons. First, we observe that the filter terminates in
certain situations, e.g. when a person crawls under a ta-
ble. In that case, all resampled particles that collide, e.g.
with the table legs, are replaced. Thus, only a few valid
particles are predicted under the table, which finally re-
sults in a termination of the tracker. Second, the ellipsoid
is just a coarse approximation of a human’s shape, so it
should not disturb some invalid known voxels at the exte-
rior of the ellipsoid. Moreover, this can improve tracking
situations in which persons are located very close to an
obstacle. One solution to handle the last two issues is al-
ready implemented with the penalization in the likelihood

(τ ). However, it does not avoid divergences through ob-
stacles in rather unfavorable situations that can appear in
multi-person tracking. Hence, we need a combination of
the penalization in the likelihood and the prevention of
a complete divergence through obstacles in the particle
propagation step. Therefore, we propose the following
approach.

Figure 5: Left: Sweeping volume for collision test (dot-
ted), constructed between the ellipsoid kernels (dark col-
ored) of the predicted particle at state xr

t+1 (violet) and
the particle at the previous state xr

t (green). Right: Using
a capsule with radiusR as approximation of the sweeping
volume for efficiency reasons.

A sweeping volume (Figure 5, left) is spanned by the el-
lipsoid kernels of a predicted particle at state xr

t+1 and the
particle at the previous state xr

t . The kernels are smaller
versions of their parents with the same proportions and
the same center. The sweeping volume must not collide
with an obstacle, otherwise the respective particle is re-
jected and replaced by a collision-free one.

Figure 6: Left: Real-world situation of two persons on
and below a table. Right: The unknown voxels of the ob-
servation are shown (red) as well as the ellipsoids of the
state estimations Xt (blue).

A collision outside the kernel is ignored and will be pe-
nalized in the next likelihood evaluation step at time t+1.
As the execution of the described collision test would be
very time consuming, we approximate the ideal sweeping
volume through a capsule with radiusR aligned to the el-
lipsoid centers, as shown in Figure 5, right. The radius
R should be smaller than the minimum lengths of all six
ellipsoid axes of the parent ellipsoids. For efficiency the
obstacles are also modeled as capsules and other suited
primitives.



3.2 Experiments

The proposed tracking method is evaluated by a visual
analysis of a real-world scenario as shown in Figure 6.
We used the following parameters: ρ = 1.0, σ = 0.1,
τ = −5.0, ε = −0.1, R = 200mm.

4 Camera Placement

One of the failures of such a system is caused by the in-
correct placement of the cameras. It is possible to opti-
mize a camera network manually, by heuristics like plac-
ing the cameras in the corners of the robot work cell. But
heuristics, as well as common sense, can be error-prone,
e.g. what if an obstacle occludes the view from the corner
of the work cell? Hence, the computational automation of
camera placement is formulated as an optimization prob-
lem, here.

Depending on the application of the camera network,
such an optimization could be the maximization of the
field of view of a camera, minimization of the amount of
cameras or costs, or the minimization of an error. The lat-
ter could be the error that is made when reconstructing a
target as in [11] and [25]. In our case, the visual hull is a
conservative approximation of an object, meaning the ob-
ject is completely inside the visual hull. Thus, the objects
are better outlined if their visual hull is minimal.

There has been extensive research in the optimal place-
ment of cameras. We will address an exact measure of
the volume of the field of view of a camera and a mea-
sure of the volume of the visual hull with the prospect
of constructing derivatives, here. This could be of help
in the maximization of continuous values as in [20, 14],
in contrast to the maximization of integer values as the
number of objects or paths. Also, it could be helpful for
calculating the visual hull used by [11] or [25], or when
deriving continuous constraints to the art gallery problem
as in [2, 7, 24]. But within their visibility analysis, all
of the mentioned publications discretize the surveillance
area into cells, also called voxels. After simulating the
visibility of every voxel, the visible voxels are then com-
bined to the field of view or visual hull. The major draw-
back is that the simulated objective cannot be derivated,
which is necessary for so many deterministic non-linear
programs.

The frequent use of voxels is a hint that an exact visibility
analysis as approached in this paper has not been done,
yet. In 2006 the authors of [8] have started to analyse
the volume of the field of view in 2D and to examine the
smoothness of the volume of an omni-directional camera
in a polygonial environment. His result: The volume is
almost everywhere locally Lipschitz.

Our work is closest to his work. We will transfer some
ideas of his into 3D and add the theory about the mini-
mization of the visual hull of an object.

4.1 The visibility analysis
Finding the field of view of one/several cameras is called
visibility analysis in [20] and is a central issue in cam-
era placement. Whereas the visibility analysis is part of
the objective function when maximizing the field of view,
the visibility analysis is part of the constraints minimizing
costs or errors. E.g. one usually wants the complete work
cell to be visible when minimizing the costs of a camera
network. But the visibility analysis is a real challenge as
shown in the next section.

4.1.1 The challenges

Computational problems of the visibility analysis in-
clude: First, the field of view of one camera, let alone
a network of cameras, can only be derived geometrically.
That takes time, e.g. [19] reported “For very high dimen-
sional spaces (>8), ..., it sometimes took several hours to
jump to a better solution”. For comparison: The posi-
tioning and orientating of one camera in a plane includes
three variables (x- and y-position, and one orientation an-
gle). That means, even in a 2D-room, eight variables cor-
respond to not even three cameras. Second, recent re-
search, that could reduce the complexity of the task, uti-
lizes z-buffer methods. But these methods are only suit-
able for computing the image of the field of view, not
the geometrical shape. Third, the field of view of several
cameras is an intersection/union of polyhedra, which is
known to be a non-robust computation.
As an objective function the visibility analysis is chal-
lenging, too, e.g. have a look at the volume of the field
of view of one camera: First, it is non-linear and only
piecewise differentiable in the placement and orientation
of a camera. Second, given the geometrical property of
the problem only few approaches exist that provide a for-
mula of the volume of the (unlimited) field of view in 2D,
none in 3D with limited field of view. Thus, its convexity
or differentiability is hardly analysed in literature. Third,
lacking a formula, a gradient of the objective made of
the partial derivatives of the volume is not available. The
numerical approximation by the difference quotient is an
alternative, but in a one dimensional domain it needs two
function evaluations, in a two dimensional domain three
function evaluations, etc. This adds to the complexity of
the visibility analysis.
These and other challenges are why we have chosen to
start analysing the limited field of view of a camera in a
work cell in 3D including a formula.

4.1.2 The field of view of a camera as a star-shaped
polyhedron

We have investigated the limited field of view of one cam-
era. The field of view inside a polyhedron turns out to be
a polyhedron with three types of faces: Environmental
faces (E) share at least three points with the work cell.
Opening faces (O) are the faces along the limits of the
field of view. For the third type edges are relevant, which
inner angle exceeds π. These are called reflex edges. The



third type of faces are projection faces (P), their hyper-
plane includes the viewpoint x and a reflex edge.
Since we have found that all vertices of the field of view
except x are on an environmental face, 3!=6 types of ver-
tices can be deduced: EEE, EEP, EEO, EPP, EOO, EPO;
The reflex edges of two different projection faces can be
skew or can intersect, denoted by EPPs and EPPi, respec-
tively. We can show that the path of an EEE when mov-
ing x is a single point, the paths of EEP, EPPi, EEO, and
EOO are line segments or points, and the paths of EPPs
and EPO are 2-dimensional quadrics. The seven types of
vertices are illustrated in Figure 7.

Figure 7: The seven types of vertices of the field of view
result from three types of faces, environmental (E, blue
face), projection (P, bounded by green and blue lines),
and opening faces (O, bounded by purple and green
lines).

With these vertices, we can state an analytical formula for
the volume of the field of view suitable for differentiation:
We know that the field of view V (x) is star-shaped from
the viewpoint x ∈ R3. That means P can be divided into
pyramids with environmental faces as a base. Therefore,
let F be a polygon in space with x not in F ’s hyper plane.
We define [x, F ] := {y ∈ R3 | ∃f ∈ F : y ∈ [x, f ]} as
a pyramid and F its base face. Then, with the set of all
environmental faces F of the polyhedron of the field of
view V , the volume can be calculated by the area of the
base face λ(F ) and the distance d(x, F ):

λ
(
P
)
=
∑
F∈F

λ([x, F ]) with λ([x, F ]) =
1

3
d(x, F ) · λ(F )

(1)

Thereby, the area λ(F ) can be developed as a function
of the vertices’ coordinates: Let F ⊂ R2 be a polygonal
area with vertices vi ∈ R2, i = 1, ..., n, and let v(x/y)i

denote the x- and y-components in the x-y-Plane. From
[4, cf. Section 3.5.2.2] we know:

λ(F ) =
1

2

∑
i

(vx(i−1) − v
x
(i+1)) · v

y
i +

(
(vxn − vx2 ) · v

y
1

)
+
(
(vx(n−1) − v

x
1 ) · vyn

)

Thus, we have been able to develop the volume of the
field of view suitable for differentiation and convexity
analysis.
We can show that this volume is piecewise continuously
differentiable. The non-continuous positions of the cam-
era x lie on planes. The volume is non-continuous, when
passing x through a wall or a reflex edge. The non-
differentiable positions lie on planes and 3D-quadrics.
The volume is non-differentiable, when two vertices van-
ish and it is not two times differentiable, when one vertex
vanishes. A vertex vanishes when it hits another face:
After a vertex hits an opening face it is outside the frus-
tum. Similarly, after it hits a projection face it is occluded
behind a reflex edge.

4.1.3 The minimization of the error of the visual hull

The theory about the vertices of the field of view can be
enlarged, when considering not only the maximum field
of view as an objective, but also the minimum error of the
visual hull. We have already stated that the minimization
of the visual hull of an object corresponds to the mini-
mization of the error of reconstruction. This corresponds
to a maximization of the definitely object free space.
So, in case the camera placer knew where the dynami-
cal objects are, the maximization of the definitely-object-
free-space is a suitable alternative to maximizing the field
of view.

Figure 8: Figure 7 with an additional orange object re-
sembling a dynamic object; The volume of the definitely-
object-free-space is the field of view minus the orange
pyramid from x to the bottom of the environment.

In Figure 8 the same image as in Figure 7 is depicted,
with an additional orange object, resembling a dynamic
object. The dynamic object casts a shadow of an orange
pyramid from x to the bottom of the environment. As be-
fore, the volume of this pyramid can be calculated by the
vertices on top of an environmentally induced face (the
face below the dynamical object). The vertices of the or-
ange pyramid are of type EEE, EEP, EPPi, EPPs, EEO, or
EPO, not EOO. The volume of the definitely-object-free-
space is the field of view V minus the orange pyramid. In
short, the only thing that has changed in formula (1) is the
set F , which is now the set of environmentally induced



facets with the additional property that the faces are not
part of a dynamical object. For this calculation the ob-
ject needs to be part of the polyhedron that resembles the
environment.

5 Conclusions and Future Work
In this paper we focused on a surveillance system with
multiple static calibrated color cameras for human local-
ization in industrial environments with occluding obsta-
cles. First, we discussed the use of Full HD resolution
cameras as input for the reconstruction of the visual hull.
A conservative octree-based reconstruction is proposed,
which meets real-time and anytime requirements. We
evaluated our reconstruction algorithm in simulated sce-
narios and achieved the desired framerate of 30 hz. Sec-
ond, we applied a particle filter to a voxel-based visual
hull and integrated knowledge of occlusions and modeled
obstacles. In result an occupancy grid with four different
voxel states is considered in the likelihood function. To
avoid the divergence of a filter through obstacles (an is-
sue in multi-person tracking) a collision test with obsta-
cles is conducted in the motion model. Third, we consid-
ered a favorable camera placement. Therefore, the cam-
era placement is formulated as an optimization problem.
To maximize the object-free space in the scene, not only
the maximum field of view is considered in an objective
function, but also the minimization of the error of recon-
struction.
Further research should aim at combining the individual
software components to a joint system. A framework for
robust multi-person tracking is being developed. Fault
tolerant concepts as provided in [21] might be adapted to
the reconstruction.
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