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through physical barriers. Instead, non-separating
Abstract protective devices use sensors to detect objects, e
pressure-sensitive devices [3] like shut-off mats o

We present a new approach that realizes an image_optoelectronic devices [14] like light barriers. €Be

based fault tolerant distance computation for atingew  S€nsors deliver information about the state (o@ifpon-
camera system which conservatively approximates thePCcupied) of the so-callatetection zonewhich is the area
shortest distance between unknown objects and 3p1at @ sensor can monitor safely. With help of this
volumes. Our method addresses the industrial apptin ~ Information, the system can react (via a safetytrodier)

of vision-based protective devices which are usedbtect N @n appropriate way by causing the machine tovslo

intrusions of humans into areas of dangerous maalyin down or to trllgger an emergency ShUtdO.W”' .
in order to prevent injuries. This requires hardwar The previously mentioned protective devices have
redundancy for compensation of hardware failures limited dimensions of the detection zones and ateable

without loss of functionality and safety. By takignsor ~ t© monitor larger 3D volumes that surround the cletep
failures during the fusion process of distancesmfro machinery. Thus they are typically installed aramtes to

different cameras into account, this is realizegliitly, areas of dangerous machinery. Due to the coarse
with the benefit of no additional hardware cost. In @PProximation of the hazardous area (machineryme)u
particular we employ multiple camera perspectives f (e machinery has to be stopped during operatingemo

safe and non-conservative occlusion handling ofatiss ~ More often, than actually necessagdilability issue).

and formulate general system assumptions whictalse | NiS IS an important disadvantage for industry aad be
appropriate for other applications like multi-view avoided with the .ald of recently .develo'ped camera
reconstruction methods. systems, so-calledsion-based protective devices (VBPD)

[15]. These systems modgtotection zonegparts of the
image) within the detection zone (complete image) a

1. Keyords detect unknown objects, which might intrude into a
Safety, vision-based protective devices (VBPDs)jtfa protection zone via image processing algorithms. e.g
tolerance, redundancy, replication, distance catmni,  change detection methods. An overview of change
occlusion handling, occlusion masks, protection ezon detection methods can be found in [S]. Another irtguat
multi-view reconstruction, human-robot cooperation benefit for availability arises as such system d@n

enabled to safely register when objects which have
2 Introduction intruded ipto the protection zone are leaving thedndou;
area again, so that the system can recover safebni
An important application field of sensor technoldgy autonomous way. In comparison, the non-vision otote
surveillance in industrial environments is safeduzy devices require manual systems reactivation byea afser
humans and machines during hazardous work procbgses a shutdown.
so-calledprotective devicefL3] (equipment of machines). A certified VBPD is the product SafetyEYE [19],
The aims are prevention of human injuries, material which consists of a tri-ocular stereo camera systesn
protection ¢afety issugs as well as detection of can be mounted on top of a working cell (top-dovewy.
unauthorized accessese€urity issugs In either case the A drawback of the system is the limitation to one
protective device has to safely detestknown objects  perspective which cannot handle optical occlusionthe
intruding into a hazardous machinery area. scene e.g. through parts of machinery, so themyisés to
There exist different kinds dfertified safe protective assume that all unknown objects are always visiliflein
devices. Separating protective devices [2], e.gtgution the monitored area. In result, this assumption cass
doors, separate a hazardous area completely freessic  mean that the system cannot sufficiently approxémat



dynamic protection zone® dynamic machinery such as structures for safety reasons, especially for thmera
industrial robots. sensors which lead to lower profitability for sumbmplex
Existing uncertified non-safe camera systems offer multi-view systems. Thus, in this paper we comenith a
promising improvements in handling occlusions hyy tise solution that exploits the diverse perspectives tlod
of multiple camera perspectives (multi-view). In 81 12] cameras in order to handle occlusions, while priagidt
a dynamic protection zone is realized by a 3D biila the same time a hardware fault tolerance of thieilliged
robot for use in an image-based collision detecti@thod camera sensors at no additional hardware cost. dles f
of the robot with the environment for the goal afitian- on a state of the art method for image-based distan
robot cooperation. Occlusions caused by obstaolené calculation to unknown objects [16] for limitatioaf
camera are reduced with the help of epipolar gegymet complexity though our approach can be transferied t
information from the other cameras. In [16] thelisan other systems which use reconstruction methodseisiw
detection has been replaced by distance compusationcomparison to [12] and [16] we formulate more geaher
which result in a shortest distance of all unknasensor- assumptions for safety distance calculations whiehalso
detected objects to a protection zone. The generablalid for other scenarios.
advantage of using distances is that the process of In the following we present our idea of hardwareltfa
approaching objects can be recorded and evaluated f tolerance in a multi-view system (Section 3). Thengive
appropriate systems reaction such as speed regulatia a detailed problem description of safe distance
robotic arm. Occlusions have been examined in ldfetai computation and occlusion handling (Section 4) simolw
multi-view voxel reconstruction methods for further the solution without and with occlusions by dergin
improvement of the systems availability [17]. Alde use necessary system assumptions (Section 5). Finadly w
of time of flight cameras with polyhedron reconstion present the safe functionality of our method in an
methods has been considered for the regarded sz¢dlar experiment (Section 6).
Various other multi-view approaches cope with
occlusions in 3D reconstruct.ion methods, e.g. [9]. .2 3. Preliminary consider ations
However they do not cope with the regarded scenairio ) ] _ ) _
VBPDs (intrusion detection). Moreover they limitgsible In order to realize protective devices with mulgw
occlusions sizes, so that occluded objects areyalwa camera systems which handle obstacles, differeryswa
conservatively as objects. Those approaches have &referable method is to prevent systems operatiopss
limitation in the approaches applicability, esp#gidor caused by failures (availability issue) of singlgstem
our scenario. components through fault tolerant software and \ward
Despite the obvious advantages for machinery Structures. Focusing on the latter in this papersé can be
availability, multi-view VBPDshave not been realized yet. implemented to any form of hardware duplicationelik
One reason is the challenging requirement of safeco ~ hardware redundancy (using one or more spares for a
detection components (change detection methodsjhwhi component which takeover when the component fails),
stil lead to availability issues due to changing hardware diversity (different implementations of tleme
backgrounds or illumination changes in the envirent  SPecification) and replication (parallel processwfgthe
assumptions, e.g. to the image background (statienm) Such a fault tolerance enables the systems furattipn

or to the objects appearance (special reflectintpriad) possibly on a reduced Ievel,.for a certain timeil uhe
have been discussed in [7] to guarantee safe objec8ystem has detected the faultitself or by auser.
detection. Though we are also working on that figiis As we need multiple perspectives for the applicgbil

paper does not discuss any change detection method. in occluded scenes, by a duplication of each camera
focuses on how the information is processed afterSensor, the economic cost would raise immense
successful object detection. proportional to the amount of perspectives. Thus ou
Another reason for the non-existing multi-view VB®D approach is to use an overall replication for theole
is the high software development effort to fulfihe  System, which is implicitly given when the systeamsists
special requirements of safe software design andof more than one camera. We determine a toleraaaterf
implementation, so that no software fault can brihg rwhich considers that cameras may fail at any time. The
protective device into an unsafe state. This casehigh  factor is applied during the process of distanéermation
economic cost, rising with the complexity of algbms, in ~ fusion from all cameras. Although this approactects
particular when reconstruction methods are employed ~ information at each time step, it has the advantafje
However we believe that the largest barriers for handling 7 errors no matter in which cameras they occur.
industry are the economic cost of redundant hardwar In comparison, systems which realize redundanayutyin



sensor duplication do only have a failure tolerancel,
which means, when both hardware devices of oneosens
fail, the complete system fails, too. Moreover Hagner
redundant cameras can be integrated
surveillance systems in order to further reducenendc
cost as in industry it is common that several asglaish
have to be monitored are located very close to etwtr.

This approach ensures uninterrupted functionalita o
camera system when hardware failures occur in uprto
cameras.

4. Problem description

Given a set oh calibrated camergg.g. grayscale, color
or depth camera) which synchronously capture images

timest; and a pinhole camera model, the monitored space

A. in R of each camera 0 {1,...,n} is determined by a
projection functiorproj.(x). This function produces a pixel
p in the camera for a pointin R® or an empty set, when
the projected point does not hit the sensor area.

. p, if xis projectecbntoa pixel of ¢
proje (x) = . 1)
0, otherwise
A. can then be described as the set
A ={x| projs () # 0} 2)

The back-projection of all pixelgfrom a camera into
R® results in a finite set of view pyramiég . with no gaps
between them when assuming ideal pixels.

B, =backproj.(p) ={x| proj (x) = p} 3)

The view pyramids of different cameras interseathea
other in R and subdivide the space into non-empty
disconnected subspacggFigure 1) (which are also called
conexels [1]). Any two pointg andy in § are projected
onto the same pixel in a monitoring camerar the empty
set, in case the subspace is not monitored at all.

Oc,0x0S;,0y0S , x# y:(proj.(x) = proje(y))  (4)

To complete the definition of, any two points of
different S have to differ in at least one monitoring
camera. Otherwis& could be constructed which consist
only of two elements.

OxO§;,0y0s;, Ce: (proje () # projc(y)) (5)

This definition also includes a specific subsp&e
which needs not to be geometrically connected batthe
property that it is not monitored by any of theameras.

S, ={x|0c: proj,(x) =0} (6)

For the following approach only those subspegese
considered whose elememtare projected onto each

camera sensor, also calleemmon supervision space A.

A={s|OxOs,,Oc: (proj,(x) # 0)} @)

Within Athere exist protection zon&s [0 A which are
monitored completely by all cameras and which can b
static or dynamic. We concentrate on a specifi¢cgmt@amn
zoneZ because all following computation steps have to be
computed identical for any protection zogs

in separated

Figure 1: A schematic 2D illustration of subspa&swhich
result from pixel back-projection into °R The unconnected
subspace $ (grey) is not monitored from any camera. The
subspacesblue) are seen fromcameras. The monitored space
A (green) for the system contains subspaces whehamnpletely
projected into each camera.

Furthermore there exist occlusions in cameras cause
by opaque static or dynamic obstac@swith a modeled
geometry and volume in®Rwhich is known at every time
t, e.g. a robot, wall or table. It is not necesdarynodel
static obstacles which are located behinflom a cameras
point of view.

LkO:0, n§ 20 (8)

If only one point of the volume that is occluded &
cameras view is projected on a corresponding capirea
via (1), this pixel has to be determined consevedji as
occluded pixel, for safety reasons. This resulta iset of
occlusion pixels R.. in each camera which can also be
the empty set.

Pocec ={PIOKXOO, : proje(x) = p}

occ,c

9)

Projecting the occlusion pixels back int, Rll S O A
are assigned to adjacent groups, which differ ieirth
degree of sensor visibility. The visibility encodése
number of cameras in which all points $fare projected
onto non-occluded pixels.

Though the real degree of visibility for a givencan
vary for different elements, yof S the overallisibility



V(S) is assumed conservatively.
V(S) =vwithOk,0xO § ,OydO, :

. ) (20)
(Kel proj. (x) # proj.( )} =v)

There might exist opaque object volunigs] A which
are unknown a priori and therefore not modeled.yTdre
detected by the sensors and do not intersect astaadbs.

Omk:U, n O, =0 (11)

The visibility of objects is affected for every cara
when located in occluded subspa&<orresponding to
Eq. 10. All parts of unknown objects which are potgd
onto non-occluded pixels for each camera form tie s
Punkne Of unknown object pixelsThese pixel sets are
constructed via a background subtraction algorittom a
set of synchronized camera images at titné&/e assume
an ideal background subtraction method.

P =

unkn,c

. (12)
{PIOMXOU M : (proj.(x) = pO pO Pocc,c)}

Figure 2: The visibility of the subspacgsesults from the back-
projection of occluded pixels froM,.. from each camerain
R®*which are produced by the occluding obstaziglue). Shown
also is an unknown objedi; and a protection zong. The
numbering of the subspaces represents the amowaintéras in
which a corresponding subspace is visible. Thebwitsi of the
subspaces affects the visibility of the objects.

In Figure 2 theS are grouped due to their degree of
visibility v in all cameras which is restricted by the
dynamic obstacl® (blue). To understand the figure it has
to be noted that, given a dynamic obstacle, a cariser
blind for the whole back-projection view pyramidstbe
occluded pixels, even if the subspace is lyingamf of an
obstacle from the cameras point of view (red barder
zone). This assumption has to be applied becausdowe
not consider information about the appearance ofnkn
models in the images and therefore we are not tble
distinguish between known dynamic objects and unkno
objects in the process of background subtraction.

After discussion of the basic conditions we can
formulate the goal: We are searching for the skoifeult
safe distancésad 7) to the closest unknown objedt, for
a protection zon& (Figure 2 yellow) withinA by taking
into account the discussed restrictions to thebitsi
caused by occluding obstacles. That safe distaas¢ohbe
smaller or equal to the minimum distance betweeyn an
points of Uy and the protection zone, also in caserof
failing cameras.

min  {[p-df} (13)

deare(7) <
safe() 0Py 0qZ

5. Approaches for safe distance
calculation

After the detailed problem description for safetatise
computation in the last section, we will developsate
distance computation for all unknown objects to a
protection zone for scenes without occlusions, only
regarding the redundancy, in section 5.1. Via fdation
of necessary system assumptions for occlusion heydl
occluded scenes will be addressed in section 5.2.

5.1. Approach for non-occluded scenes

The real minimum distancel., between unknown
objectsU,,, and a protection zor&can have the maximum
value d,, Which is defined by the limits of the monitored
areaA as well as the distance of the protection zones to
these limits.

min_ {|p-d}, with0<d o <dpa (14)

d =
real ™ 5ot 0g0Z

As no occlusion exists in the scene, it is assuthatl
every point of unknown objects insideis projected onto
a camera pixel resulting in an elementRyf.. in each
camera via Eq. 1. We have to back-project them Rito
which results in back-projected view pyramilg. (Eq. 3)
as we do not have information of the exact locatibthe
objects within these pyramids. The back-projection
pyramids from all elements &« include all points of
the unknown objectd,,. Specifically, the union of all view
pyramids of all cameras contains the complete objec
volumesU,

Bunited = U Bp,c n
DpDPunkn,c

A (15)

Om: (Eunited nu m = D)! Eunited nAz0 (16)

The shortest distance from a projection zone tackb
projection pyramictyacip c (Which can be seen as a kind of
bounding box) is thus a lower bound of the distartoeall
points within the pyramid. In result, we get a skfeer



distanced.ame to all unknown objects for the camerdoy selection of the distance at positiagp-, ensures that
computing the minimum of the shortest distanceslto  d,.{7) is a lower bound ofea
pyramidsB;, . from points ofZ.

Lsorted:[sly---’sc] (22)
dback,p,c = DU]BTL?DQ]Z"b - q" (17) dsafe(r) = S(n—t) (23)
deame = g:::nc(dback,p,c) (18) 5.2 Approach for occluded scenes
In the follqwing the influepce of occluqling obsteelon
depme < ron (19) the safe distance calculation will be discussedigushe

given pixel sets of occlusior,... and unknown objects
Punkne: before we present the equation for safe distance
computation in the end of this section.

Detailed analysis of situations with occlusionsgbd
that the difficulty of handling occlusions is based the
assumptions in Equation 16. This assumption can be
transformed for all cameras into the following pipie
systems assumption.

There exist different methods for distance caléoifein
images when geometry of models is available through
camera calibration. For instance in [16] an appno&c
presented in which the 3D models of a dynamic jptaie
zone Z (the robotic arm) is expanded with known radii
until an intersection of the projected robot pix&ih
pixels of unknown objects is detected in one ofdhmera
images. The radius reached before the intersettitinen Dm:q{cIDxDUm :(proj(x)=pOp# Pocc)}|21+ r) (24)
assumed as minimum distance. In [11] the distasce i
computed in Rvia simple vector algebra where the back-  for eachU,, there always need to exist at leastr 1+
projected view pyramidB,, . are approximated by vectors  cameras which have the information of the compigject
through the pixel centers. The projection zones aregiven as set 0Py SO that they can detect a distance
modeled by spheres and the vectors to the spheterse  which is safely below the real distance under the
are chosen for efficient distance calculation. Wasi  cqnsideration that cameras might fail.
methods can be applied to generate safe back-fimjeC  Thjs principle assumption is explained by the ex@sip
pyramidsB, . which include all points of unknown objects i, Figure 3 which shows a monitored space of three
(Eq. 15, 16). For instance, a solution for theeflathethod  cameras as well as back-projected pixel sets (light
of distance calculation would be to subtract aseiffrom hatched and light blue). The unknown objést is not
eachdyaq (Eq. 17) to take into account the angle between yisipje for cameraC, but can be completely observed from
the vector through the pixel center and the pixetibrs. the other two cameras. Correctly, the both resyitin

After such a safe computation @ for every camera  gjstances are smaller than the real distance. BfeetdJ,
¢, the information of the cameras can be combin@wteS s partially occluded in the camera®; and C; and

all camera distances are each a lower boundqf completely occluded for camei@. The corresponding
without loss of safety, the best approximation & gjstances are each bigger than the real distaoceZrto
reached by choosing the maximum. U,, thus the resulting distance is not safe and timeiple

(20) assumption from Eq. 24 is not fulfilled becauseni$sing
parts of the object in the corresponding pixel gégbt red
hatched). The very small objedt represents a case which
is even worse. The object is not visible for anyses
because of the occlusions. Therefore the principle
assumption is not fulfilled at all.

A simple way to get all those problems under cdntro
would be to transform all occlusion pixels into et
pixels for distance creation. Despite the guarafiesafe

O ¢ = failure(deame) > drea (21) distances this approach is very conservative andldvo
limit the usability of the system because of itpigtise
Our approach for handling these possible failuse®i  distance approximation.

dsafe = m?x(dcamc)

Now we want to consider hardware failures bf
cameras withr O {0, ..., n — 1}. Those failures may appear
simultaneously caused by pixel errors or completessr
dysfunctions. A safety issue for the system andgesn the
failure results in distances which are larger thap So
we can formulate the following corruption functiog .

assume the worst case in which all of maximahmeras Better results are achieved by applying the folfayi
fail and all these failures result in safety iss(ieg. 21). assumptions and processing steps which finallyltreésu
With help of a sorted list of alh elements ofd.amc iN fulfilling the principle assumption from Eq. 24.

ascending order, thebiggest values are rejected and the  First of all it has to be ensured that objects db get



lost in all sensors simultaneously likl in the situation in
Figure 3. The problem is that there always existusions
around obstacle®, which are not visible by any sensor
because of the visual hull [18]. Nevertheless, asvant to
use the system for human or hand detection we saumze

afterwards for contiguous objects.

By this way,Ponnc(Urm) completely belongs to eith@&..

or Punkne fOr each camera after processing all contact pixel
pairs. Considering Equation 25, it follows that thenber

of camerag in which Pgonno(Ur) belongs tdPynke must be

a minimum object size and shape that cannot hidebigger or equal ton( - #). This in effect means that then

completely in occluded volumes of visibility= 0.

Now we consider situations as the one Within Figure
3, where the object is partially visible in someneaas.
Concluding from Eq. 24 we make the assumptiondh&
that intersect an object may be occludedyicameras at
maximum. Then we can adapt Eq. 23 easily suchnihat

the projection of each and every volu®en U, will be

part of Py exclusively oPyn. exclusively for a specific
camerac. Thus allS share the same set membership in
each camera. And as the object as a whole projects
completely into Py, for equal or more thann(— 6)
cameras, this is true for eah This way all§ fulfill the

the 7+  biggest distances of the sorted list are disehrde condition of¢ which is what we intended.

and a safe distance results, as the influence ef th

occlusion is compensated.

While this assumption leads to a safe distancae, real
world environment it is impossible to ensure thaparts
of an object may be visible m— ¢ cameras (compaté,
andUsin figure 3) all the time, which consequently would
turn the system non-applicable in reality as thigil only
be fulfilled for unknown objects lik&J;. So we relax this
assumption by the definition of a parameferset to be

equal toy in value, which states that there may always
existn — 8 cameras where the object is projected onto at

least one pixel which is part B nin c:

Om: (| {c|XOU ,:

(PO} () 1 P 20} 20-0) )

With this definition, it can happen that parts bkt
objects may be occluded in more thtacameras. Having
this more realistic assumption, we nevertheless nee
ensure the semantics af for every $ to get a safe
distance calculation using above equations. Fos thi
purpose we take advantage of the knowledge thksaat
parts of the objects are visible in some cameras ?B)
and use image information to conclude the occlyskts
to find a way that the semantics gfare achieved by an
image set that satisfies the semanticg. of

For a contiguous objedt,, the projection onto an
image plane creates a connected pixePsgt (Un).

Peonnc(Um) may intersect withP,... as well as with
Punkne- Three cases are possible: intersectioBgf.(Um)
with only Pycc. or only Pynkn OF intersection with both. In
the third case, there exists at least one paireightoring
pixels with one pixepyec iN Pocce @and the other pixaynkn
in Pynkne - These pixel pairs are calledntact pixel pairsn
the following.

Whenever a contact pixel pair is encountered, the

connected subset dP... Of which p, is part of, is
transferred into thé?,n,. set. This is accomplished by
flood-filling the connected pixel set, whepg.. is located
using some connectivity, e.g. 4-neighborhood. Assallt

of this, Peonne (Uym) must completely be part dPynnc

Figure 3: A schematic 2D illustration of cameradshslistance
measurements in the presence of occlusions forawkrobjects
U, to a protection zong. The occluding obstacle and related
back projection pyramids are shown in blue.

After this treatment of partially occluded objectise
distance can be safely determined by adjustin®2Bqg.

Asate(T:¥) = Sin_(rayy With ¢ = 6 (26)

In the beginning of this section we discussed that
conservative approach to fulfill the principle asgion
(Eq. 24) by using all pixels of unknown objectswasl as
of obstacles for distance calculation would lead to
imprecise distance approximation which affects the
availability. Nevertheless we can safely includds th
approach into the overall distance computatiort asght
lead to better results in some specific scene gordtions
of obstacles, cameras, etc. Therefore we havepily &uj.

18 to all elements from object and occlusion pixels

d 27)

min (dback,p,c)

camgonse =
FE( Punkn,c o Pocc,c )

The conservative distance computation for the whole
system ends up in a distandg conf?) corresponding to
Equation 23.



Finally we take the best result of both approadbeget
the safe distano®se fusel 7 ¢)-

dsafefused( n)= ma)(dsafecons( T )vdsafe( (4 )) (28)

6. Experimental results

We implemented the fault tolerant distance caloutat
method for our multi-view system which uses a séadd
workstation and performs in real-time at 15 fpd.illages
have sizes of 80x60 pixels. In our first experimeve use
a simulated environment which is based on our weald
system in order to avoid errors which arise fromal re
change detection methods and in order to show etiod
in conjunction with a given ground truth, which vidude
more difficult to generate for the real setup. Tgreund
truth was created through projection of simulatéjects
into the cameras resulting in ideal difference iesag

——————
Cz\

y
co.' ‘1
g

E—

Figure 4: Visualization of the experimental setup tbe
simulation environment which contains an objecd (sphere)
that moves along the red arrow, an occluding obstéuue
sphere) and a static protection zone (yellow spherevhich the
safe fused distance is calculated.

The simulated situation is shown in Figure 4. Four
cameras@, to C3) are monitoring the common supervision
spaceA, indicated by the transparent blue cube. A small

red object of 300 mm in diameter is translated #or

duration of approximately a hundred frames (10 sec)

through space along a trajectory represented byrabe

arrow from the position (1000, 0, 0) mm to (0, 1000

1000) mm. A static blue obstacle of 460 mm in diteme

exists, that occludes the object completely at some

positions along the trajectory in came&@aand also partly
at various positions in the other cameras. A yeléphere
of 300 mm in diameter represents the protectiorezon
which distances are calculated for each set of @hag

constantly set to 1. Witlr ranging from 0 to 2, the main
conditionn > 6 + 1 is ensured. The diagrams show the
distancesd,e, (black line) and the resulting safe distance
Jsate, used( I ¢)) (dotted black line) as well as all distances
dcamc for the given cameras (different colored lines). To
clarify the presentation, the conservative distance
Ocamcongg fOr each camera are not shown. Since the
occlusions are caused by a static obstacle (blhersp
the corresponding distances are static, too, untessget
flood-filled when the object is intruding the ocsion. In
that case, the distance to occluded areas increasas
local maximum because no occlusion pixels remaiann
image with contact pixels pairs as all those pixate
converted into object pixels. The maximum of distm
was limited to 1000 mm for all distances.

Distances diagram t =0
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Figure 5: Distance diagram with failure parameterO showing
the ground truth distance “Real dist” (black), digect distances
deame for all cameras gto G; (colored) as well as the safe fused
distancedsare, used 7, ¢) (dotted black). The safe fused distance is
always lower than the ground truth distance.

Distances diagram t = 1

1200
1000

== Real dist

== (C 0 (failure)
C1

—C2
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mnSafe fused dist

800
600
400
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5 13 21 29 37 45 53 61 69 77 85 93101
1 9 17 25 33 41 49 57 65 73 81 89 97

Frame-No.

Figure 6: Distance diagram with failure paramaterl showing
the same distances as Figure 5. The safe fusethdésts always
lower than the ground truth distance though a failus
introduced to camera 0 from frame 35 to the endthsf

The experiment was performed several times with anexperiment.

increasing number of camera failuresThe results are
shown in Figures 5 to 6. In the casesref 1 and7r = 2,
simulated failures were introduced around frame lvens
35 and 40 in marked cameras. The paraméteras

In Figure 5 all cameras are performing distance
computations without failure 7(= 0). The object is
occluded in camer@; completely in frames 65 to 75. The
safe fused distance is always close to the retdmdis, and



does never cross it, even in case of a single @mer

occlusion. The jaggedness of the lines originates) fthe

limited resolution of the cameras, which effectwel

guantize the distance measurements coarsely. lird=ig}
a single camera failure is introduceddgat frame 35. The
effect of the failure parameter = 1 in comparison to
Figure 5 is a reduced safe fused distance for itbe 35
frames. This reduction of the fused distance imavere
evident in the scenario with the expected failufeva
cameras, as presented in Figure 7.

Distances diagram t© = 2
1200

1000

800 == Real dist
E == C0 (failure)
E 600 C1 (failure)
= 400 —ra
g =-C3
200 muSafe fused dist

5 13 21 29 37 45 53 61 69 77 85 93101
1 9 17 25 33 41 49 57 65 73 81 89 97

Frame-No.

Figure 7: Distance diagram with failure parameter2 showing
the same distances as Figures 5 and 6. The safé dlistance is
always lower than the ground truth distance thofaglures are
introduced to camera 0 and 1 from frame 35 andedpectively,
to the end of the experiment.

This example shows the downside of rejecting toayna

camera distances for safety issues which leadseirfirtst
frames to a fused distance close to zero. Nevethahe
resulting distance still remains safely below thesalr
distance faced with the failure of the camerasirijrove

distance computation this case, the total number of

cameras could be increased.

The second experiment shows the distance calcnlatio

approach applied to our real world working cell gfhalso

monitors a common supervision spacwith four cameras
(Co to C3). The parametef) was set to 1 after manual

estimation of occlusion sizes. The experimentalisaes
visualized in Figure 8 which shows the view of ceaar@;.

The setup consists of two static obstacles, whictt b

produce occlusion pixels, on the right hand a rrealyi
box (blue) and in the middle a robot which représen
static protection zone (yellow) to which the distes are
calculated. The

along the trajectory as represented in Figure 8e(gtine).
The experiment was executed for duration of 25mém at
15 fps (17 sec). As shown, the person surroundsatihet

and performs a loop around the machinery box. Apkm

background subtraction algorithm is applied tocalineras
for object pixel creation. We do not have a giveougd
truth for this experiment, but can show nevertreldswe
distance behavior for a real world scenario.

robot was not moved during the
experiment while a person was walking through tek c

Figure 8: Visualization of the experimental setuptloe real
world working cell with two occluding obstacles, static
protection zone (yellow) which is represented t®y/lon-moving
robot model and a static machinery box (blue). Aspe is
walking along the trajectory (green) which causbged pixel
sets in the cameras due to a background subtraalgonithm to
which the distances to the protection zone are coeab

Figure 9 represents analog to the first experintkat
resulting distancesl.,m: to the object pixels of the four
cameras (colored lines) as well as the resultifig &sed
distancedsase used( ;) (dotted black line). To understand
the distances around 500 mm for the camé&aand C;
(yellow and light blue lines) it has to be mentidndat
those cameras are watching more than just the commo
supervision spacA and therefore detect the person before
entering and after leaving the scene. In comparition
camerasCy, and C; have views limited trough walls and
cannot detect the person before enteAnghis event can
be detected in Figure 8 when the distances decrease
beginning from the maximum distance, which wasteet
2000 mm as minimum border of the working cell.
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Figure 9: Distance diagram for the real world ekpent with
failure parameter = 1 showing the object distanaggn, . for all
cameras gto G (colored) as well as the safe fused distahge
tused (I,¢) (dotted black). A camera failure @, is introduced
from frame 95 to the end of the experiment.

Also, when the person leaves the scenario, thardies
rise up to the maximum again (just for cam€ga Similar
to the first experiment, a single camera failureCgfwas



introduced at frame 95. The trajectory of the persnters
several times the protection zone from the campoass
of view, which results in distances equal to zerd-igure
8. The occlusion handling with the paramefeworked
well, because the person is only invisiblefinl cameras
at one time while surrounding the occluding machjine
box and the occluding robot. If the person was wbetl

would not be safe any longer.

7. Conclusions

We have presented a vision-based surveillancel9]

approach that exploits multiple camera perspectioes
distance computations to achieve
accuracy in 3D and fault tolerance at the same.time
Additionally the system is able to cope with oc@uas of
the detected objects by known modeled obstacleshwhi
provide applicability to more (industrial) scenaiolhe
correct handling of occlusions and failures is growunder
certain assumptions. These assumptions are repeddan
the occlusion paramet#; which has to be user-given or
automatically determined. The overall system is
performing in real-time on a standard workstation.
Experimental results show effects of camera fadlune the
safe fused distance and call for further examinatio
concerning loss of availability and applicabilityn i
different industrial scenarios.
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