
 

 

Abstract 
 

We present a new approach that realizes an image-
based fault tolerant distance computation for a multi-view 
camera system which conservatively approximates the 
shortest distance between unknown objects and 3D 
volumes. Our method addresses the industrial application 
of vision-based protective devices which are used to detect 
intrusions of humans into areas of dangerous machinery, 
in order to prevent injuries. This requires hardware 
redundancy for compensation of hardware failures 
without loss of functionality and safety. By taking sensor 
failures during the fusion process of distances from 
different cameras into account, this is realized implicitly, 
with the benefit of no additional hardware cost. In 
particular we employ multiple camera perspectives for 
safe and non-conservative occlusion handling of obstacles 
and formulate general system assumptions which are also 
appropriate for other applications like multi-view 
reconstruction methods. 
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2. Introduction 
An important application field of sensor technology for 

surveillance in industrial environments is safeguarding 
humans and machines during hazardous work processes by 
so-called protective devices [13] (equipment of machines). 
The aims are prevention of human injuries, material 
protection (safety issues) as well as detection of 
unauthorized accesses (security issues). In either case the 
protective device has to safely detect unknown objects 
intruding into a hazardous machinery area. 

There exist different kinds of certified safe protective 
devices. Separating protective devices [2], e.g. protection 
doors, separate a hazardous area completely from access 

through physical barriers. Instead, non-separating 
protective devices use sensors to detect objects, e.g. 
pressure-sensitive devices [3] like shut-off mats or 
optoelectronic devices [14] like light barriers. These 
sensors deliver information about the state (occupied/non-
occupied) of the so-called detection zone, which is the area 
that a sensor can monitor safely. With help of this 
information, the system can react (via a safety controller) 
in an appropriate way by causing the machine to slow 
down or to trigger an emergency shutdown. 

The previously mentioned protective devices have 
limited dimensions of the detection zones and are not able 
to monitor larger 3D volumes that surround the complete 
machinery. Thus they are typically installed at entrances to 
areas of dangerous machinery. Due to the coarse 
approximation of the hazardous area (machinery volume) 
the machinery has to be stopped during operating mode 
more often, than actually necessary (availability issue). 
This is an important disadvantage for industry and can be 
avoided with the aid of recently developed camera 
systems, so-called vision-based protective devices (VBPD) 
[15]. These systems model protection zones (parts of the 
image) within the detection zone (complete image) and 
detect unknown objects, which might intrude into a 
protection zone via image processing algorithms e.g. 
change detection methods. An overview of change 
detection methods can be found in [5]. Another important 
benefit for availability arises as such system can be 
enabled to safely register when objects which have 
intruded into the protection zone are leaving the hazardous 
area again, so that the system can recover safely in an 
autonomous way. In comparison, the non-vision protective 
devices require manual systems reactivation by a user after 
a shutdown. 

A certified VBPD is the product SafetyEYE [19], 
which consists of a tri-ocular stereo camera system that 
can be mounted on top of a working cell (top-down view). 
A drawback of the system is the limitation to one 
perspective which cannot handle optical occlusions in the 
scene e.g. through parts of machinery, so the system has to 
assume that all unknown objects are always visible within 
the monitored area. In result, this assumption does also 
mean that the system cannot sufficiently approximate 
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dynamic protection zones to dynamic machinery such as 
industrial robots. 

Existing uncertified non-safe camera systems offer 
promising improvements in handling occlusions by the use 
of multiple camera perspectives (multi-view). In [4, 8, 12] 
a dynamic protection zone is realized by a 3D hull of a 
robot for use in an image-based collision detection method 
of the robot with the environment for the goal of human-
robot cooperation. Occlusions caused by obstacles in one 
camera are reduced with the help of epipolar geometry 
information from the other cameras. In [16] the collision 
detection has been replaced by distance computations 
which result in a shortest distance of all unknown sensor-
detected objects to a protection zone. The general 
advantage of using distances is that the process of 
approaching objects can be recorded and evaluated for 
appropriate systems reaction such as speed regulation of a 
robotic arm. Occlusions have been examined in detail for 
multi-view voxel reconstruction methods for further 
improvement of the systems availability [17]. Also the use 
of time of flight cameras with polyhedron reconstruction 
methods has been considered for the regarded scenario [6]. 

Various other multi-view approaches cope with 
occlusions in 3D reconstruction methods, e.g. [9, 20]. 
However they do not cope with the regarded scenario of 
VBPDs (intrusion detection). Moreover they limit possible 
occlusions sizes, so that occluded objects are always 
partially visible in each camera [10] or assume occlusions 
conservatively as objects. Those approaches have a 
limitation in the approaches applicability, especially for 
our scenario. 

Despite the obvious advantages for machinery 
availability, multi-view VBPDs have not been realized yet. 
One reason is the challenging requirement of safe object 
detection components (change detection methods) which 
still lead to availability issues due to changing 
backgrounds or illumination changes in the environment. 
Some different image processing approaches with 
assumptions, e.g. to the image background (static pattern) 
or to the objects appearance (special reflecting material) 
have been discussed in [7] to guarantee safe object 
detection. Though we are also working on that field, this 
paper does not discuss any change detection method. It 
focuses on how the information is processed after 
successful object detection. 

Another reason for the non-existing multi-view VBPDs 
is the high software development effort to fulfill the 
special requirements of safe software design and 
implementation, so that no software fault can bring the 
protective device into an unsafe state. This can cause high 
economic cost, rising with the complexity of algorithms, in 
particular when reconstruction methods are employed. 

However we believe that the largest barriers for 
industry are the economic cost of redundant hardware 

structures for safety reasons, especially for the camera 
sensors which lead to lower profitability for such complex 
multi-view systems. Thus, in this paper we come up with a 
solution that exploits the diverse perspectives of the 
cameras in order to handle occlusions, while providing at 
the same time a hardware fault tolerance of the distributed 
camera sensors at no additional hardware cost. We focus 
on a state of the art method for image-based distance 
calculation to unknown objects [16] for limitation of 
complexity though our approach can be transferred to 
other systems which use reconstruction methods as well. In 
comparison to [12] and [16] we formulate more general 
assumptions for safety distance calculations which are also 
valid for other scenarios. 

In the following we present our idea of hardware fault 
tolerance in a multi-view system (Section 3). Then we give 
a detailed problem description of safe distance 
computation and occlusion handling (Section 4) and show 
the solution without and with occlusions by deriving 
necessary system assumptions (Section 5). Finally we 
present the safe functionality of our method in an 
experiment (Section 6). 

3. Preliminary considerations 
In order to realize protective devices with multi-view 

camera systems which handle obstacles, different ways 
exist to handle faults in the software or hardware. One 
preferable method is to prevent systems operation stops 
caused by failures (availability issue) of single system 
components through fault tolerant software and hardware 
structures. Focusing on the latter in this paper, these can be 
implemented to any form of hardware duplication like 
hardware redundancy (using one or more spares for a 
component which takeover when the component fails), 
hardware diversity (different implementations of the same 
specification) and replication (parallel processing of the 
same tasks and choice of the result on basis of a quorum). 
Such a fault tolerance enables the systems functionality, 
possibly on a reduced level, for a certain time until the 
system has detected the fault itself or by a user. 

As we need multiple perspectives for the applicability 
in occluded scenes, by a duplication of each camera 
sensor, the economic cost would raise immense 
proportional to the amount of perspectives. Thus our 
approach is to use an overall replication for the whole 
system, which is implicitly given when the system consists 
of more than one camera. We determine a tolerance factor 
τ which considers that τ cameras may fail at any time. The 
factor is applied during the process of distance information 
fusion from all cameras. Although this approach rejects 
information at each time step, it has the advantage of 
handling τ errors no matter in which cameras they occur. 
In comparison, systems which realize redundancy through 



 

sensor duplication do only have a failure tolerance τ = 1, 
which means, when both hardware devices of one sensor 
fail, the complete system fails, too. Moreover the same τ 
redundant cameras can be integrated in separated 
surveillance systems in order to further reduce economic 
cost as in industry it is common that several areas which 
have to be monitored are located very close to each other.   

This approach ensures uninterrupted functionality of a 
camera system when hardware failures occur in up to  τ 
cameras. 

4. Problem description 
Given a set of n calibrated cameras (e.g. grayscale, color 

or depth camera) which synchronously capture images at 
times ti and a pinhole camera model, the monitored space 
Ac in R3 of each camera c ∈ {1,…,n}  is determined by a 
projection function projc(x). This function produces a pixel 
p in the camera for a point x in R3 or an empty set, when 
the projected point does not hit the sensor area. 
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Ac can then be described as the set 

 { }∅≠= )(| xprojxA cc  (2) 

The back-projection of all pixels p from a camera c into 
R3 results in a finite set of view pyramids Bp,c with no gaps 
between them when assuming ideal pixels. 

 { }pxprojxpbackprojB ccp,c === )(|)(  (3) 

The view pyramids of different cameras intersect each 
other in R3 and subdivide the space into non-empty 
disconnected subspaces Si (Figure 1) (which are also called 
conexels [1]). Any two points x and y in Si are projected 
onto the same pixel in a monitoring camera c or the empty 
set, in case the subspace is not monitored at all. 

 ))()((:,,, yprojxprojyxSySxc ccii =≠∈∀∈∀∀  (4) 

To complete the definition of Si, any two points of 
different Si have to differ in at least one monitoring 
camera. Otherwise Si could be constructed which consist 
only of two elements. 

 ))()((:,, yprojxprojcSySx ccii ≠∃∉∀∈∀  (5) 

This definition also includes a specific subspace S∅ 
which needs not to be geometrically connected but has the 
property that it is not monitored by any of the n cameras. 

 { }∅=∀=∅ )(:| xprojcxS c  (6) 

For the following approach only those subspaces Si are 
considered whose elements x are projected onto each 

camera sensor, also called common  supervision space A. 

 { }))((:, ∅≠∀∈∀= xprojcSxSA cii   (7) 

Within A there exist protection zones Zj ⊆ A which are 
monitored completely by all cameras and which can be 
static or dynamic. We concentrate on a specific protection 
zone Z because all following computation steps have to be 
computed identical for any protection zones Zj. 

 

Figure 1: A schematic 2D illustration of subspaces Si which 
result from pixel back-projection into R3. The unconnected 
subspace S∅ (grey) is not monitored from any camera. The 
subspaces Sc (blue) are seen from c cameras. The monitored space 
A (green) for the system contains subspaces which are completely 
projected into each camera. 

Furthermore there exist occlusions in cameras caused 
by opaque static or dynamic obstacles Ok with a modeled 
geometry and volume in R3, which is known at every time 
ti, e.g. a robot, wall or table. It is not necessary to model 
static obstacles which are located behind A from a cameras 
point of view. 

 ∅≠∩∃∀ ik SOik :  (8) 

If only one point of the volume that is occluded for a 
cameras view is projected on a corresponding camera pixel 
via (1), this pixel has to be determined conservatively as 
occluded pixel, for safety reasons. This results in a set of 
occlusion pixels Pocc,c in each camera which can also be 
the empty set. 

 { }pxprojOxkpP ckc =∈∃∀= )(:| occ,  (9) 

Projecting the occlusion pixels back into R3, all Si ⊆ A 
are assigned to adjacent groups, which differ in their 
degree of sensor visibility. The visibility encodes the 
number of cameras in which all points of Si are projected 
onto non-occluded pixels. 

Though the real degree of visibility for a given Si can 
vary for different elements x, y of Si the overall visibility  



 

V(Si) is assumed conservatively. 
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There might exist opaque object volumes Um ⊆ A which 
are unknown a priori and therefore not modeled. They are 
detected by the sensors and do not intersect any obstacles. 

 ∅=∩∀∀ km OUkm :  (11) 

The visibility of objects is affected for every camera 
when located in occluded subspaces Si corresponding to 
Eq. 10. All parts of unknown objects which are projected 
onto non-occluded pixels for each camera form the set 
Punkn,c of unknown object pixels. These pixel sets are 
constructed via a background subtraction algorithm from a 
set of synchronized camera images at times ti. We assume 
an ideal background subtraction method. 
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Figure 2: The visibility of the subspaces Si results from the back-
projection of occluded pixels from Pocc,c from each camera c in 
R3 which are produced by the occluding obstacle O (blue). Shown 
also is an unknown object U1 and a protection zone Z. The 
numbering of the subspaces represents the amount of cameras in 
which a corresponding subspace is visible. The visibility of the 
subspaces affects the visibility of the objects.  

In Figure 2 the Si are grouped due to their degree of 
visibility v in all cameras which is restricted by the 
dynamic obstacle O (blue). To understand the figure it has 
to be noted that, given a dynamic obstacle, a camera is 
blind for the whole back-projection view pyramids of the 
occluded pixels, even if the subspace is lying in front of an 
obstacle from the cameras point of view (red bordered 
zone). This assumption has to be applied because we do 
not consider information about the appearance of known 
models in the images and therefore we are not able to 
distinguish between known dynamic objects and unknown 
objects in the process of background subtraction. 

After discussion of the basic conditions we can 
formulate the goal: We are searching for the shortest fault 
safe distance dsafe(τ) to the closest unknown object Ucl for 
a protection zone Z (Figure 2 yellow) within A by taking 
into account the discussed restrictions to the visibility 
caused by occluding obstacles. That safe distance has to be 
smaller or equal to the minimum distance between any 
points of Ucl and the protection zone, also in case of τ 
failing cameras. 

 }{min)(
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5. Approaches for safe distance 
calculation 

After the detailed problem description for safe distance 
computation in the last section, we will develop a safe 
distance computation for all unknown objects to a 
protection zone for scenes without occlusions, only 
regarding the redundancy, in section 5.1. Via formulation 
of necessary system assumptions for occlusion handling, 
occluded scenes will be addressed in section 5.2. 

5.1. Approach for non-occluded scenes 

The real minimum distance dreal between unknown 
objects Um and a protection zone Z can have the maximum 
value dmax which is defined by the limits of the monitored 
area A as well as the distance of the protection zones to 
these limits. 

 maxreal
,,

real 0with },{min ddqpd
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As no occlusion exists in the scene, it is assumed that 
every point of unknown objects inside A is projected onto 
a camera pixel resulting in an element of Punkn,c in each 
camera via Eq. 1. We have to back-project them into R3 
which results in back-projected view pyramids Bp,c (Eq. 3) 
as we do not have information of the exact location of the 
objects within these pyramids. The back-projection 
pyramids from all elements of Punkn,c include all points of 
the unknown objects Um. Specifically, the union of all view 
pyramids of all cameras contains the complete object 
volumes Um: 

 ABB cp
cPp
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∈∀

,
 unkn,

U  (15) 
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The shortest distance from a projection zone to a back-
projection pyramid dback,p,c (which can be seen as a kind of 
bounding box) is thus a lower bound of the distances to all 
points within the pyramid. In result, we get a safe lower 



 

distance dcam,c to all unknown objects for the camera c by 
computing the minimum of the shortest distances to all 
pyramids Bp,c from points of Z. 

 qbd
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There exist different methods for distance calculation in 
images when geometry of models is available through 
camera calibration. For instance in [16] an approach is 
presented in which the 3D models of a dynamic protection 
zone Z (the robotic arm) is expanded with known radii 
until an intersection of the projected robot pixels with 
pixels of unknown objects is detected in one of the camera 
images. The radius reached before the intersection is then 
assumed as minimum distance. In [11] the distance is 
computed in R3 via simple vector algebra where the back-
projected view pyramids Bp,c are approximated by vectors 
through the pixel centers. The projection zones are 
modeled by spheres and the vectors to the sphere centers 
are chosen for efficient distance calculation. Various 
methods can be applied to generate safe back-projection 
pyramids Bp,c which include all points of unknown objects 
(Eq. 15, 16). For instance, a solution for the latter method 
of distance calculation would be to subtract an offset from 
each dback (Eq. 17) to take into account the angle between 
the vector through the pixel center and the pixel borders. 

After such a safe computation of dcam,c for every camera 
c, the information of the cameras can be combined. Since 
all camera distances are each a lower bound of dreal, 
without loss of safety, the best approximation can be 
reached by choosing the maximum. 

 )(max camsafe ,c
c
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Now we want to consider hardware failures of τ 
cameras with τ ∈ {0, ..., n – 1}. Those failures may appear 
simultaneously caused by pixel errors or complete sensor 
dysfunctions. A safety issue for the system arises when the 
failure results in distances which are larger than dreal. So 
we can formulate the following corruption function dfail,c. 

 realcam,fail, )( ddfailured cc >=  (21) 

Our approach for handling these possible failures is to 
assume the worst case in which all of maximal τ cameras 
fail and all these failures result in safety issues (Eq. 21). 
With help of a sorted list of all n elements of dcam,c in 
ascending order, theτ biggest values are rejected and the 

selection of the distance at position s(n−τ) ensures that 
dsafe(τ) is a lower bound of dreal. 

  ],...,[ 1sorted cssL =  (22)

 )(safe )(
τnsd −=τ  (23) 

5.2. Approach for occluded scenes  

In the following the influence of occluding obstacles on 
the safe distance calculation will be discussed using the 
given pixel sets of occlusions Pocc,c and unknown objects 
Punkn,c, before we present the equation for safe distance 
computation in the end of this section. 

Detailed analysis of situations with occlusions showed 
that the difficulty of handling occlusions is based on the 
assumptions in Equation 16. This assumption can be 
transformed for all cameras into the following principle 
systems assumption. 

 ( ){ }( )τ+≥≠∧=∈∀∀ 1occm Ppp)x(proj:Uxc:m  (24) 

For each Um there always need to exist at least 1+τ 
cameras which have the information of the complete object 
given as set of Punkn,c, so that they can detect a distance 
which is safely below the real distance under the 
consideration that τ cameras might fail. 

This principle assumption is explained by the examples 
in Figure 3 which shows a monitored space of three 
cameras as well as back-projected pixel sets (light red 
hatched and light blue). The unknown object U1 is not 
visible for camera C2 but can be completely observed from 
the other two cameras. Correctly, the both resulting 
distances are smaller than the real distance. The object U2 
is partially occluded in the cameras C1 and C3 and 
completely occluded for camera C2. The corresponding 
distances are each bigger than the real distance from Z to 
U2, thus the resulting distance is not safe and the principle 
assumption from Eq. 24 is not fulfilled because of missing 
parts of the object in the corresponding pixel sets (light red 
hatched). The very small object U3 represents a case which 
is even worse. The object is not visible for any sensor 
because of the occlusions. Therefore the principle 
assumption is not fulfilled at all. 

A simple way to get all those problems under control 
would be to transform all occlusion pixels into object 
pixels for distance creation. Despite the guarantee for safe 
distances this approach is very conservative and would 
limit the usability of the system because of its imprecise 
distance approximation. 

Better results are achieved by applying the following 
assumptions and processing steps which finally result in 
fulfilling the principle assumption from Eq. 24. 

First of all it has to be ensured that objects do not get 



 

lost in all sensors simultaneously like U3 in the situation in 
Figure 3. The problem is that there always exist occlusions 
around obstacles Ok which are not visible by any sensor 
because of the visual hull [18]. Nevertheless, as we want to 
use the system for human or hand detection we can assume 
a minimum object size and shape that cannot hide 
completely in occluded volumes of visibility v = 0. 

Now we consider situations as the one with U2 in Figure 
3, where the object is partially visible in some cameras. 
Concluding from Eq. 24 we make the assumption that all Si 
that intersect an object may be occluded in ψ cameras at 
maximum. Then we can adapt Eq. 23 easily such that now 
the τ + ψ  biggest distances of the sorted list are discarded 
and a safe distance results, as the influence of the 
occlusion is compensated. 

While this assumption leads to a safe distance, in a real 
world environment it is impossible to ensure that all parts 
of an object may be visible in n − ψ  cameras (compare U2 
and U3 in figure 3) all the time, which consequently would 
turn the system non-applicable in reality as this would only 
be fulfilled for unknown objects like U1. So we relax this 
assumption by the definition of a parameter θ, set to be 
equal to ψ  in value, which states that there may always 
exist n − θ cameras where the object is projected onto at 
least one pixel which is part of Punkn, c: 
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With this definition, it can happen that parts of the 
objects may be occluded in more than θ cameras. Having 
this more realistic assumption, we nevertheless need to 
ensure the semantics of ψ for every Si to get a safe 
distance calculation using above equations. For this 
purpose we take advantage of the knowledge that at least 
parts of the objects are visible in some cameras (Eq. 25) 
and use image information to conclude the occluded parts 
to find a way that the semantics of ψ are achieved by an 
image set that satisfies the semantics of θ. 

For a contiguous object Um, the projection onto an 
image plane creates a connected pixel set Pconn,c (Um). 

Pconn,c(Um) may intersect with Pocc,c as well as with 
Punkn,c. Three cases are possible: intersection of Pconn,c(Um) 
with only Pocc,c or only Punkn,c or intersection with both. In 
the third case, there exists at least one pair of neighboring 
pixels with one pixel pocc in Pocc,c and the other pixel punkn 
in Punkn,c .These pixel pairs are called contact pixel pairs in 
the following. 

Whenever a contact pixel pair is encountered, the 
connected subset of Pocc,c of which pocc is part of, is 
transferred into the Punkn,c set. This is accomplished by 
flood-filling the connected pixel set, where pocc is located 
using some connectivity, e.g. 4-neighborhood. As a result  
of this, Pconn,c (Um) must completely be part of Punkn,c 

afterwards for contiguous objects. 
By this way, Pconn,c(Um) completely belongs to either Pocc,c 
or Punkn,c for each camera after processing all contact pixel 
pairs. Considering Equation 25, it follows that the number 
of cameras c in which Pconn,c(Um) belongs to Punkn,c must be 
bigger or equal to (n − θ). This in effect means that then 
the projection of each and every volume Si in Um will be 
part of Pocc,c exclusively or Punkn,c exclusively for a specific 
camera c. Thus all Si share the same set membership in 
each camera. And as the object as a whole projects 
completely into Punkn,c for equal or more than (n – θ) 
cameras, this is true for each Si. This way all Si fulfill the 
condition of ψ which is what we intended.  

 

Figure 3: A schematic 2D illustration of camera-based distance 
measurements in the presence of occlusions for unknown objects 
Um to a protection zone Z. The occluding obstacle O and related 
back projection pyramids are shown in blue. 

After this treatment of partially occluded objects, the 
distance can be safely determined by adjusting Eq. 23. 

 θψψ ψτ == +−  with  ,),( ))((safe nsτd  (26) 

In the beginning of this section we discussed that the 
conservative approach to fulfill the principle assumption 
(Eq. 24) by using all pixels of unknown objects as well as 
of obstacles for distance calculation would lead to 
imprecise distance approximation which affects the 
availability. Nevertheless we can safely include this 
approach into the overall distance computation as it might 
lead to better results in some specific scene configurations 
of obstacles, cameras, etc. Therefore we have to apply Eq. 
18 to all elements from object and occlusion pixels. 
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The conservative distance computation for the whole 
system ends up in a distance dsafe,cons(τ) corresponding to 
Equation 23.  



 

Finally we take the best result of both approaches to get 
the safe distance dsafe,fused(τ,ψ). 

 ( ))τ,(d),τ(dmax)τ,(d ψψ safeconssafe,fusedsafe, =  (28) 

6. Experimental results 
We implemented the fault tolerant distance calculation 

method for our multi-view system which uses a standard 
workstation and performs in real-time at 15 fps. All images 
have sizes of 80x60 pixels. In our first experiment, we use 
a simulated environment which is based on our real world 
system in order to avoid errors which arise from real 
change detection methods and in order to show our method 
in conjunction with a given ground truth, which would be 
more difficult to generate for the real setup. The ground 
truth was created through projection of simulated objects 
into the cameras resulting in ideal difference images.  

 

Figure 4: Visualization of the experimental setup of the 
simulation environment which contains an object (red sphere) 
that moves along the red arrow, an occluding obstacle (blue 
sphere) and a static protection zone (yellow sphere) to which the 
safe fused distance is calculated. 

The simulated situation is shown in Figure 4. Four 
cameras (C0 to C3) are monitoring the common supervision 
space A, indicated by the transparent blue cube. A small 
red object of 300 mm in diameter is translated for a 
duration of approximately a hundred frames (10 sec) 
through space along a trajectory represented by the red 
arrow from the position (1000, 0, 0) mm to (0, 1000, 
1000) mm. A static blue obstacle of 460 mm in diameter 
exists, that occludes the object completely at some 
positions along the trajectory in camera C1 and also partly 
at various positions in the other cameras. A yellow sphere 
of 300 mm in diameter represents the protection zone to 
which distances are calculated for each set of images.  

The experiment was performed several times with an 
increasing number of camera failuresτ. The results are 
shown in Figures 5 to 6. In the cases of τ = 1 and τ = 2, 
simulated failures were introduced around frame numbers 
35 and 40 in marked cameras. The parameter θ was 

constantly set to 1. With τ ranging from 0 to 2, the main 
condition n > θ + τ is ensured. The diagrams show the 
distances dreal (black line) and the resulting safe distance 
dsafe, fused (τ,ψ) (dotted black line) as well as all distances 
dcam,c for the given cameras (different colored lines). To 
clarify the presentation, the conservative distances 
dcam,cons,c for each camera are not shown. Since the 
occlusions are caused by a static obstacle (blue sphere), 
the corresponding distances are static, too, unless they get 
flood-filled when the object is intruding the occlusion. In 
that case, the distance to occluded areas increases to a 
local maximum because no occlusion pixels remain in an 
image with contact pixels pairs as all those pixels are 
converted into object pixels. The maximum of distances 
was limited to 1000 mm for all distances. 

 

Figure 5: Distance diagram with failure parameter τ = 0 showing 
the ground truth distance “Real dist” (black), the object distances 
dcam,c for all cameras C0 to C3 (colored) as well as the safe fused 
distance dsafe, fused (τ,ψ) (dotted black). The safe fused distance is 
always lower than the ground truth distance. 

 

Figure 6: Distance diagram with failure parameter τ = 1 showing 
the same distances as Figure 5. The safe fused distance is always 
lower than the ground truth distance though a failure is 
introduced to camera 0 from frame 35 to the end of the 
experiment. 

In Figure 5 all cameras are performing distance 
computations without failure (τ = 0). The object is 
occluded in camera C1 completely in frames 65 to 75. The 
safe fused distance is always close to the real distance, and 



 

does never cross it, even in case of a single camera 
occlusion. The jaggedness of the lines originates from the 
limited resolution of the cameras, which effectively 
quantize the distance measurements coarsely. In Figure 6, 
a single camera failure is introduced to C0 at frame 35. The 
effect of the failure parameter τ = 1 in comparison to 
Figure 5 is a reduced safe fused distance for the first 35 
frames. This reduction of the fused distance is even more 
evident in the scenario with the expected failure of two 
cameras, as presented in Figure 7. 

 

Figure 7: Distance diagram with failure parameter τ = 2 showing 
the same distances as Figures 5 and 6. The safe fused distance is 
always lower than the ground truth distance though failures are 
introduced to camera 0 and 1 from frame 35 and 40 respectively, 
to the end of the experiment. 

This example shows the downside of rejecting too many 
camera distances for safety issues which leads in the first 
frames to a fused distance close to zero. Nevertheless the 
resulting distance still remains safely below the real 
distance faced with the failure of the cameras. To improve 
distance computation this case, the total number of 
cameras could be increased.  

The second experiment shows the distance calculation 
approach applied to our real world working cell which also 
monitors a common supervision space A with four cameras 
(C0 to C3). The parameter θ was set to 1 after manual 
estimation of occlusion sizes. The experimental setup is 
visualized in Figure 8 which shows the view of camera C3.  

The setup consists of two static obstacles, which both 
produce occlusion pixels, on the right hand a machinery 
box (blue) and in the middle a robot which represents a 
static protection zone (yellow) to which the distances are 
calculated. The robot was not moved during the 
experiment while a person was walking through the cell 
along the trajectory as represented in Figure 8 (green line). 
The experiment was executed for duration of 255 frames at 
15 fps (17 sec). As shown, the person surrounds the robot 
and performs a loop around the machinery box. A simple 
background subtraction algorithm is applied to all cameras 
for object pixel creation. We do not have a given ground 
truth for this experiment, but can show nevertheless the 
distance behavior for a real world scenario.  

 

Figure 8: Visualization of the experimental setup of the real 
world working cell with two occluding obstacles, a static 
protection zone (yellow) which is represented by the non-moving 
robot model and a static machinery box (blue). A person is 
walking along the trajectory (green) which causes object pixel 
sets in the cameras due to a background subtraction algorithm to 
which the distances to the protection zone are computed. 

Figure 9 represents analog to the first experiment the 
resulting distances dcam,c to the object pixels of the four 
cameras (colored lines) as well as the resulting safe fused 
distance dsafe,fused (τ,ψ) (dotted black line). To understand 
the distances around 500 mm for the cameras C2 and C3 

(yellow and light blue lines) it has to be mentioned that 
those cameras are watching more than just the common 
supervision space A and therefore detect the person before 
entering and after leaving the scene. In comparison, the 
cameras C0 and C1 have views limited trough walls and 
cannot detect the person before entering A, this event can 
be detected in Figure 8 when the distances decrease 
beginning from the maximum distance, which was set to 
2000 mm as minimum border of the working cell. 

 
Figure 9: Distance diagram for the real world experiment with 
failure parameter τ = 1 showing  the object distances dcam, c for all 
cameras C0 to C3 (colored) as well as the safe fused distance dsafe, 

fused (τ,ψ) (dotted black). A camera failure of C0 is introduced 
from frame 95 to the end of the experiment. 

Also, when the person leaves the scenario, the distances 
rise up to the maximum again (just for camera C1). Similar 
to the first experiment, a single camera failure of C0 was 



 

introduced at frame 95. The trajectory of the person enters 
several times the protection zone from the cameras points 
of view, which results in distances equal to zero in Figure 
8. The occlusion handling with the parameter θ worked 
well, because the person is only invisible in θ=1 cameras 
at one time while surrounding the occluding machinery 
box and the occluding robot. If the person was occluded 
simultaneously in more than θ cameras the fused distance 
would not be safe any longer. 

7. Conclusions 
We have presented a vision-based surveillance 

approach that exploits multiple camera perspectives for 
distance computations to achieve increased distance 
accuracy in 3D and fault tolerance at the same time. 
Additionally the system is able to cope with occlusions of 
the detected objects by known modeled obstacles which 
provide applicability to more (industrial) scenarios. The 
correct handling of occlusions and failures is proven under 
certain assumptions. These assumptions are represented by 
the occlusion parameter θ, which has to be user-given or 
automatically determined. The overall system is 
performing in real-time on a standard workstation. 
Experimental results show effects of camera failures on the 
safe fused distance and call for further examinations 
concerning loss of availability and applicability in 
different industrial scenarios. 
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