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Abstract. Medium-sized companies have the potential to automate nu-
merous tasks. However, this often faces challenges due to small batch
sizes with costs outweighing the benefits. One solution is enabling non-
experts to program robots with an intuitive interface. Prior research
hardly focused on gestures for such an interface. In this paper, we con-
tribute a concept for a unimodal control structure-based robot program-
ming system. To this end, we present a concept and prototype that
records the user’s gestures, classifies them and converts them into a robot
program with control structures. Further, we present methods for error
detection. We assessed the usability of our prototype with a user study
resulting in a median SUS score of 81.25. We found that users can pro-
gram both simple and complex tasks in less than 2 minutes on average.

Keywords: gesture programming, intelligent robots, intuitive robot pro-
gramming, human-robot interaction

1 Introduction

Automating tasks presents a significant value for companies [21]. Nevertheless,
robot programming demands expertise, incurring high costs [20, 21]. A common
solution lies in having a robot capable of intuitive and flexible reprogramming
by non-experts enabling seamless adaptation to evolving task requirements [20,
21]. Research is currently underway to increase programming accessibility using
natural language [23, 22], kinesthetic guidance [25], augmented reality [18, 19, 11],
or gestures [15, 14]. Gestures are body movements conveying ideas or meanings
[28]. Further, they are applicable in loud environments and can express complex
ideas (e.g., sign language). Thus, gestures offer a promising interface for intuitive
human-robot interaction [27, 26].

This paper targets intuitive robot programming of complex tasks using only
gestures (see Fig. 1). In robot programming, gestures often supplement a main
input modality (e.g., voice commands in [14]). Here, we specifically focus on ges-
tures as unimodal programming input modality. Programming refers to complex
control flow and parametrization of robot skills differing from simple motion
primitives – thus, allowing the expression of complex tasks. Such control flow



preprint
2 Fabian Mikula et al.

Fig. 1: We envision robot gesture programming to instruct complex tasks. Here,
we instruct a for-each loop to place the selected objects into the box.

encompasses various control structures, including sequences, branches, and loops
(for, while, and for-each).

As our contribution, we present intuitive robot programming of complex
tasks using only gestures (Sec. 3). This includes a dynamic world representation,
gesture recognition (Sec. 3.1), and program construction including syntax (Sec.
3.2) and semantic interpretation (Sec. 3.3). Based on a user study, we examine
the usability of robot programming with gestures only, given our prototype (Sec.
4).

2 Related Work

Research in robot programming using gestures focuses significantly on teleoper-
ations. In this method, users often direct the robot to move in increments in a
specific direction through gestures [1–5]. Another form of teleoperation involves
extracting the skeletal model of the user from a video stream with depth data and
transferring the model’s joint positions to a humanoid robot [6] or robot arm
[7] in real-time. Alternative approaches specify the position of a robot, using
arm movements or predefined hand gestures that trigger a linked robot program
[8–11, 16]. However, these programming methods cannot handle more complex
tasks as no branches are supported. Furthermore, programming techniques that
connect robot programs with gestures would necessitate expert knowledge to
program the robot’s movements.

To program more complex tasks, we must extract control structures from
gestures. For instance, there are methods for programming pick and place op-
erations using hand gestures [12, 14, 13, 15, 17]. Individual objects [12, 13, 15, 17]
or groups [14] can be selected using pointing gestures and placed at the target
location. Some of these approaches are multimodal [14][17], allowing for input in
multiple forms. For example, voice commands and gestures can be used for pick
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Fig. 2: This is an overview of the programming process with gestures. Gesture
and Object Recognition are done parallelly. The programming step interprets
both results to create the program for robot execution.

and place operations [14, 17]. However, these implementations only include con-
trol structures such as sequences for the successive execution of operations (all
works) or the for-each loop [14] for moving entire selected object groups. Other
control structures need to be included in these approaches, thus not allowing
complex programs, which is the central focus of this work.

Additionally, prior research explored gesture programming in augmented re-
ality, which specifies the target position of an object more precisely. For instance,
augmented reality allows the user to grasp and move virtual objects, enabling
the parameterization of both the object orientation and target position [18, 19].
Another approach uses object relations to define target positions through gestic-
ulation [15]. However, we aim to limit ourselves to the most necessary hardware.

Regarding programming with gestures, prior approaches focus on control
structures such as sequences (all works), for-each loops [14], and for loops [16].
However, they lack the integration of branches and while-loops, which are essen-
tial for the control flow of complex programs. Therefore, this work fills the gap
by focusing on programming control structures using gestures.

3 Robot Programming with Gestures

This work aims to realize the programming of the control structures using ges-
tures. The first step in the programming process with gestures is to record a video
stream with depth information (Recording, Fig. 2). For gesture recognition, a
hand skeleton model, consisting of markers with a fixed position on the hand,
is extracted from the video stream. A neural network classifies these markers
into gesture tokens. After the classification, the tokens are filtered to avoid noise
(unintended gestures) contributing to the program’s correctness. The filtered
gesture tokens are analyzed syntactically to further check correctness utilizing a
context-free grammar. After this, a semantic parsing is conducted to generate a
control structure based robot program consisting of semantic gesture informa-
tion (Programming, Fig. 2). Before execution, the semantic gesture information
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is analyzed and checked for semantic correctness in the relevant context. For
instance, in a pick and place operation, it is verified whether the selected objects
exist or the target position is reachable. Finally, the robot executes the program.

3.1 Object and Gesture Recognition

During object recognition we detect and localize objects in the robot’s workspace
creating a dynamic world model [31, 30]. For this, we require a video stream with
depth information from a calibrated sensor encompassing the workspace. Con-
currently, in gesture recognition, we extract a sequence of gesture tokens from
image data of the same video stream. Gesture recognition can be achieved using
a neural network, typically through CNN-based approaches [32, 33]. However,
the programming system can be complex to train due to the varying character-
istics of many individuals, such as different skin colors. Moreover, incorporating
the orientation of the gesture into the training data presents a challenge. There-
fore, we have implemented gesture recognition based on hand pose estimation.
Hand pose estimation can be approached through vision-based or sensor-based
methods [36]. Vision-based approaches often use neural networks to determine
a hand skeleton model M from an input image I containing individual hand
skeleton markers mi ∈ M ⊆ I [36]. Sensor-based methods often use a data glove
to measure the bending angle and the level of adduction of each finger cap-
tured by embedded sensors [36]. We opted for the vision-based neural network
approach as publicly available software (e.g., media pipe [35]) can generate 21
markers M . Furthermore, there is no need for additional hardware on the body.
To recognize the gestures, we use a neuronal network, which receives the hand
skeleton markers M as input and delivers the gesture class as output. There is
no pre-trained neural network that classifies gestures for programming control
structures. Thus, a custom neural network is required (e.g., on the basis of [33]).
The neural network’s training data can be generated by recording a gesture over
several frames and storing the extracted labeled data. However, the training
data would be required to cover all orientations and positions of a gesture for
accurate classification. To remedy this, we normalize the training data for trans-
lation and rotation invariance. We achieve translation invariance of the hand
skeleton model by specifying all markers mi relative to the base marker m0. We
obtain rotational invariance by aligning the hand skeleton model with the y-axis.
Accordingly, we can use this normalization to record fewer training samples.

Natural behavior, such as thinking, may occur during the programming pro-
cess. It is essential to acknowledge this as it can impact the correctness of the
program. To prevent a false robot program, we have to filter out gestures irrel-
evant to the programming task. For example, suppose a user extends his index
finger as he thinks about which object to point next. In that case, the inadver-
tent extension of the index finger is also accidentally recognized as a gesture.
It is feasible to solve this problem in several ways. One possibility would be to
analyze the posture data and the direction of the programmer’s gaze and deduce
whether the user is currently programming or engaging in natural behavior such
as thinking. However, this requires further research and needs to be considered
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in another paper. A more straightforward solution would be to enforce a specific
dwell time for the gestures before transmitting them to the robot controller.
This would result in minor uncertainties and hand movements being ignored.
We implement this type of filtering by looking at the probability of a gesture
occurring in a time window. If this probability exceeds a certain threshold, the
gesture is then added to the program’s gesture token stream.

3.2 Program Construction with Control Structures

This work aims to realize the programming of the control structures using a
context-free grammar G = (N,T, P, S). The production rules P map the non-
terminal symbols N into sequences of terminal symbols T , where a terminal
symbol t ∈ T corresponds to a single gesture. From the start symbol S, all
words w of the language L(G) are derived from the grammar G. Using context-
free grammar implies that the set of all terminal symbols is interchangeable
without losing the functionality of the language. Furthermore, the assignment
of the words w ∈ L(G) can be checked for syntactic correctness, allowing us
to decide whether a gesture sequence w makes sense and is part of the defined
language, which is essential for the generation of a correct robot program. In
addition, semantic parsing enriches the grammar to ensure executable code.

The program is constructed by first sending the filtered gestures to the robot
programming instance, which checks the transmitted gesture sequence for affili-
ation to the language L(G) by syntactic analysis. The framework of each control
structure can only be constructed as part of the program using syntactic analy-
sis if the program of the gesture is syntactically correct. Therefore, each control
structure has a grammar G′, a subset of the grammar G from which we derive
the control structures. When we recognize a word w ∈ L(G′), we apply semantic
parsing to generate a control structure using the semantic information from the
gestures. The terminal symbols of the grammar result from a preliminary study
with three participants. First, the participants are gesticulating an instruction
for a task and then executing a gestured instruction. However, the choice of
gestures requires a further, more elaborate user study with more participants.
All loops start and end with an initial gesture. Following this, we provide loop-
specific instructions, such as a condition (thumbs up, down, or an interval with
index finger and thumbs) or an object selection with the flat of the hand over an
object group. Now, we can define the loop body, which can contain further in-
structions. We conclude loops with an end gesture that corresponds to the start
gesture. The only exception is the for loop with a fixed number of repetitions,
particularly if the number 5 is gesticulated. Therefore, we define the number of
repetitions of the for loop at the end. This is important to avoid confusion when
selecting objects with a flat hand in a for-each loop. The number n of repeti-
tions can be defined in different ways. One possibility is to define n by gestures
from the most significant digit xp to the least significant digit x0. This method
is independent of the base b of n and can be calculated with n =

∑p
i=0 xi · bi.

For humans, the decimal system (b = 10) is suitable because of the ten fingers.
Another possibility is an additive method, in which we calculate n as the sum of
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the numbers xi shown in the numerical gestures. The last possibility is a hybrid
approach. For the calculation of n = c · 10+ d, we first add the number c of tens
and then the digits d. This was commonly used in our preliminary study leading
us to choose this approach.

Branching is initiated with a branching gesture, followed by a set of conditions
represented by gestures such as thumb down for negative, thumb up for positive,
and an interval. To define the interval, we use the distance between the thumb
and index finger. Now, we can define the body of the branch and terminate
the branch with a branch gesture. In the case of multiple conditions in a single
branch, the logical ’and’ is applied to them. Several branches can be instructed
in succession to implement the logical ’or’.

3.3 Semantic Interpretation

Following the program setup step, the control structures and operations provide
an understanding of the context of individual gestures. However, the deictic ges-
tures, such as pointing gestures and object selection with a flat hand in the
for-each loop, require interpretation and semantic verification to ensure an ex-
ecutable program. For instance, verifying if the objects have been selected is
necessary during the pick and place operation. Additionally, we indicate an ac-
cessible point on the table when selecting a target by a pointing gesture. For
interpreting the pointing gestures, we calculate a line

g = m̂5 + λ · (m̂7 − m̂5); with λ ∈ R, m̂i ∈ M̂ (1)

from the hand skeleton model, where m̂i ∈ M̂ represents the world coordinates
of the marker i from the hand skeleton model M . The program checks whether
the straight line g intersects with one of all oriented bounding boxes of the
world model. If it is an object selection and the intersection test is positive, the
corresponding object is noted in the pick and place operation. If the cut test of an
object selection is negative, an error is output, and the program is not executed.
When selecting a target, a positive intersection test results in stacking, and a
negative intersection test results in calculating the intersection point between the
worktop and the straight line g. We model the worktop as a plane D, resulting
in the following intersection test:

E = u ·

1
0
0

+ v ·

0
1
0

 = g; with u, v ∈ R. (2)

For the group selection, we project the palm’s center point

p =
1

n
·

n∑
i=1

m̂i; with n = |M̂ |, m̂i ∈ M̂ (3)

onto the plane E of the robot’s work surface. Next, we perform a K-Means
clustering for all objects in the world model. Then, we select the object group
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closest to the projected point p of the palm when p lays within a radius from
the nearest cluster’s center. An error message will be displayed if no cluster is
found near the palm. Otherwise, the program can be executed.

4 Evaluation

The following user study aims to answer the scientific question of the extent to
which robots can be programmed to use gestures. To this end, the study consists
of four tasks, each requiring different types of control structures, which are used
to analyze the program’s usability with the SUS score and the programming time.
The first task involves programming a sequence of pick and place operations,
while the second task requires a for loop to program a pick and place operation.
Task three involves a for-each loop to move a set of objects using a pick and place
operation. The fourth task requires programming a for-each loop that evaluates
a condition within the loop body. We also set up a monitor for feedback about
the hand skeleton model, the recognized gesture, and the filtered gesture. A
suspected confounding factor is unreliable hand tracking. As the hand skeleton
model is not displayed correctly on the monitor, it may affect the overall usability.

The user study commences with a written briefing for each participant and
addresses any questions. Next, we give the participants a brief period to acquaint
themselves with the robot programming system. Subsequently, we present indi-
vidual tasks to the participants in paper form, which they can solve one after the
other. Upon completing all tasks, the participants complete a SUS and a demo-
graphic questionnaire. The questionnaire covers information such as age, gender,
highest degree attained, programming experience, experience with robots, and
experience with gesture recognition systems.

The study involved twelve participants, all from convenience sampling, pri-
marily students and employees of the University of Bayreuth. The age range of
the participants was between 22 and 57 years, with a median age of 25 years,
including eleven male and one female participants. Half of the participants had
prior experience with handling robots, and 28.8% of all participants had previ-
ously worked with gesture recognition systems, all of whom had prior experience
with robots. The analysis of the effects of previous knowledge on handling the
programming system was not possible due to the small number of participants.
However, this could be investigated in further research with a larger user group

The data shows that the median SUS score awarded is approximately 81.25,
with an average SUS score of 77.7 (Fig. 3a). These values are higher than the
average SUS values in the hardware (=71.8) and GUI (=76.2) categories and
can be classified as good [29]. The outlier with a SUS Score of 35 is due to
hand tracking. In particular, the hand skeleton model is not always detected
or is lost during movement making programming the robot more complex and
requiring additional effort. This was the case with the female subject, possibly
due underrepresented training data in Media Pipe. However, in general, the user
study evaluation by the SUS score demonstrates the convenience of programming
complex tasks with gestures.
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(a) Usability of the programming system
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(b) Programming time including failures

Fig. 3: The program’s usability is ’good’ [29], with a median SUS over 81.25
across all tasks. We suspect a familiarisation effect at the beginning reducing
the programming time of Task 2 and 3. With increasing complexity in Task 4,
however, the programming time increases due to multiple failed attempts.

When evaluating programming time, it is measured until a syntactically cor-
rect program is generated, including the times of failed programming attempts.
As tasks get more complex, programming time increases, and more failed at-
tempts occur before a correct program is achieved. Task four took twice as long
as tasks two and three combined, with an average completion time of 111 sec-
onds over two attempts and an outlier with 594 seconds due to hand tracking.
Task one had a longer completion time of 57 seconds due to unfamiliarity with
the programming system (Fig. 3b). The evaluation of the programming time in
the user study showed that simple and complex tasks can be programmed quite
quickly using gestures.

Most of the feedback from all participants relates to hand tracking. The hand
skeleton model is not found during movements, which causes irritations. Addi-
tionally, participants suggested adding meta gestures that would influence the
programming process to improve user-friendliness. For example, meta-gestures
would allow users to undo gestures sent incorrectly rather than having to cancel
programming and repeat programming the whole task. The study participants
suggested including acoustic feedback to characterize the transmission of the ges-
ture to the programming system, in addition to displaying text on the monitor.
Another suggestion was to recognize natural behavior and segment it out.

5 Conclusions and Future Work

This work contributes a gesture-based robot programming system with good us-
ability. In this case, gesture-based programming means the robot is programmed
unimodally, and control structure-based with gestures. The programming sys-
tem has proven to be good, as the median SUS score from the user study is
above 71.4. For user-friendly programming with gestures, it is crucial to distin-
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guish relevant gestures from natural behavior, which is achieved through gesture
recognition and a sliding window filtering method. A context-free grammar is
presented to check the syntactic correctness of a gesture input sequence and
build up the context of the instructions using control structures. To make the
program executable, the gestures in the control structures must be semantically
interpreted. The programming system’s usability was evaluated as part of a user
study. The average SUS score was 77.7, which is considered good. The evalua-
tion of programming time to generate a syntactically correct program showed
a increase for more complex tasks. This was due to additional failed attempts
caused by incorrect hand tracking during programming.

Therefore, our prototype needs further improvements. For example, quicker
and more robust hand tracking could improve the system’s usability. Addition-
ally, reducing the filtering time of the gestures enhances user-friendliness and the
programming time. Moreover, a customized feedback could improve the user’s
understanding and, thus, the overall usability. Also specifying the object posi-
tion more precise would increase the number of industrial assembly tasks. In
conclusion, this concept allows users to program a robot with good usability
using only gestures. With this, even complex tasks can be programmed quickly.
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