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Abstract. We present a general vision-based method for staarting
multiple unknown objects (e.g. humans) within a Wwnoenvironment (e.g.
tables, racks, robots) which usually has occlusidhgse occlusions have to be
explicitly considered since parts of the unknowrjeots might be hidden in
some or even all camera views. In order to avoidteled reconstructions,
plausibility checks are used to eliminate recortsionm artifacts which actually
do not contain any unknown object. One applicatiois a
supervision/surveillance system for safe humanfiobexistence and -
cooperation. Experiments for a voxel-based impleate@mn are given.

1 Introduction

Geometrical information about objects is requiradmany applications. In several
cases this information i&known For example, most industrial robots act in a
geometrically completely known environment. It rdispensable, to guarantee the
correctness of this information anytime, in ordeatoid collisions. Therefore, fences
and safety light barriers are set up to guarartisecbrrectness and to stop the robot
in an unexpected situation. In other cases, thengetcal information isiot knownin
advance. Thus, vision sensors can be used, to seaohthis information. In the
example, it would become possible, that a human walk through the robots
workspace, since its geometrical information isorestructed and included in the
robot’s environment model, such that even in thisecno collision occurs.

The reconstruction of objects based on its silltesgéh multiple cameras is known
as surface from silhouetter inferred visual hull([12], [15]). Many volume-based
([3], [11], [16]) and surface-based ([5], [13]) appches have been investigated in the
past. Most of them have the assumption that theod{s) to reconstruct resides within
the common volume which is seen by all cameraghEumore, almost all approaches
have the assumptions that the object(s) to reamtsis not occluded by static
obstacles — like tables, racks or the robot itselthe example. It may result in an
incomplete reconstruction of a human, since cornwerat background subtraction
methods ([4], [6]) are not able to generate thiecsiette of the occluded parts of the
human. Thus, it is necessary to explicitly consitiesse occlusions.
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Fig. 1. lllustration of the visibility for a setup with encameraC; (first row, a-d) and a setup

with multiple camera<&; (second row, e-h) using different approaches reaiting occlusions
(b-d and f-h) resulting from the known environméatc).
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Recently, two concepts to overcome these limitatioave been investigated. First,
occlusions can be modeled bgclusion masks Mvhich are binary masks in image
space marking regions where occlusions can ocdwesd marked regions are simply
added to the segmented regidhsdetected by the background subtraction method
when calculating the inferred visual hull (Fig. 1fp In [2] and [10] the concept of
occlusion masks has been usednfaskingdynamic occluding objects (i.e. robots) in
order to avoid future collisions with objects, vehi[7], [8] and [9] automatically
generatethese occlusion masks for static occluding objdntsobserving active
objects in a scene. Unfortunately, using occlugitasks causes more occlusions in
the reconstruction than necessary since the volbeteeen the camera and the
occluding object is interpreted as occlusion asl veeken though a background
subtraction method could detect objects in frontho§ occluding object. Second,
objects which reside outside the common observagne can be correctly integrated
in the inferred visual hull, if the complement bétfused back-projected free space is
calculated [5]. In Fig. 1 ¢, g this concept is agglin conjunction with the previously
described occlusion masks. Note, the object regidimside the common observed
volume is now included. But still the reconstrunticontains unnecessary occlusions.

Thus, we propose a new approach (Fig.1 d, h)réatihg occlusions in a general
and more accurate way by additionally utilizing tpeometrical information of the
known environment (Section 2). Both concepts dbscriabove are contained by our
approach. Furthermore, the information about hawafpixel can see up to the first
occluding object is includedW';), resulting in more accurate reconstructions. osm
cases, it results in cluttered reconstructions ttuéhe occlusions. Therefore, we
propose using plausibility checks, which reviseoretruction artifacts that do not
contain an object. Furthermore, a voxel-based dhgorof our approach is provided
in Section 3. The memory consumption of look-upldab which are used for
optimization purpose, is analyzed. Experimentalltesare discussed in Section 4.
The paper concludes with Section 5.
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2 Occlusionsand Visibility

This section comprises a theoretical look at thebjem of occlusions and visibility in
a multi-camera setup using plausibility checks tmnieate pseudo objects, i.e.
reconstruction artifacts which actually do not @amtan object.

In the first subsection, the types of objects #r&t contained by surveyed scenes
are described. In the following subsection, vidipiland occlusions for a single
camera are considered, taking the types of objetts account. Thereafter, the
simultaneous use of several cameras with diffepmamspectives onto the surveyed
scene is described. The last subsection discussesdtonstruction artifacts can be
revised, using plausibility checks.

Fig. 2. lllustration of the visibility and the occlusionsing color or grayscale cameras with
common background subtraction methods. Nomenctafiir€amerd; F': Free in camerg S
Static known objectd: Dynamic known objecty): Unknown objectO'x: Known occlusion in

i; O'y: Unknown occlusion ir; B'e: Free boundary ifi; B'o: Occlusion boundary im; B'y:
Unknown boundary in

2.1 Object Types

The surveyed scene contains static and dynamictsbiaticobjectsS are racks,
tables etc. The geometry, position and the appearafthose objects ak@mownand
do not change over the time (apart from possiblguoing shadows and from
illumination changes caused by the dynamic obje®@ghamic objects are robots,
conveyor belts, humans etc. This group must baldd/into two subgroups. The first
subgroup containknown dynamic object®, with changing geometry, position and
the appearance but in a known manner. The robatsamveyor belts pertain to this
subgroup. The second subgroup contains dynamictstjewith unknownchanging
geometry, position and appearance, e.g. humarieelmajority of cases approximate
information about size, volume or similar can bevied. Note that static unknown
objects do not exist. THeee spacd- of a surveyed scene does not contain any known
object but may contain unknown objedtsg. 2 illustrates the introduced object types.
In summary, the following three equations hold true
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SO D O F =E", with E™ Euclidian Space (1)

SnD=SnF=DnF=0andUcF )

2.2 SingleCamera

A number ofN calibrated cameras with focal poifBse E", i € {1, ..., N} and a
frustumL' = {x € E"| x is projected vi&C' onto the image plane of camé}aare used
to detect and finally reconstruct the unknown otgeehich reside in-between the
known objects as accurate as possible. Here, we amisider color and grayscale
cameras, but the approach can easily be extend#gpth cameras.

One fundamental characteristic of these vision@msnis that they can only see up
to the surface of the nearest opaque object pevingedirection (e.g. pixel center
direction). Thus, occlusions always occur at thar reide of an opaque object.
Moreover, the visibility of these sensors is lirditby the frustuml'. Outside this
frustum, the sensor is not able to see anythingsTthese parts can be interpreted as
occlusions as well.

Now, the termsvisibility and occlusionshave to be introduced and detailed (Fig.
2). Thevisibility V' of a camera is the region of the free spaBewhere a camera is
able to detect unknown objects. Tkigown occlusiorOx' of a camera is the region
of the free spacE where a camera can not detect unknown objectsadaeclusions
caused by known objects. Thus, it can be stateddfan V' =0 andO¢' U V' = F
for each camera The unknown occlusior®y' of a camera is the region of the
visible space/' where an unknown object has to be assumed, dilne tevaluation of
a camera image by a background subtraction meffueifree space seen by camiera

"is defined b)F \/\OU' It can be stated, th@' N O, = O/ N F = O, N

F' = 0 andO¢' U Oy' U F' = F for each camera The concrete structures of the
sets V', Ok, Oy depend directly on the used camera type with $edation
capabilities.

In order to describe our formalism for a specifienera type (here color-/grayscale
cameras), we use the concepts of rays and segmehis Euclidean Space. A r&)(
E) and a segng, B are point sets and are defined by

ray(S,E) ={S+t(E-S)|tOR;,S,EQE"} ©)

segn{S,E) :={S+tE-S)[tORDI0<t<1 SEDE"Y (4)

Furthermore, a distance function dit@Q), with P, Q € E" exists, since the
Euclidean Space is a metric space. Having the iligitand the occlusions, sets
containing the most distant visible points andribarest occluded points (per viewing
direction) can be specified by

BL ={x0OV'|distC',x)= max {dist(C',y)} ()
yoV' nray(C' x)
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BL ={x00O] |dist(C',x)= min {dist(C',y)} (6)
YOk nray(C',x)

B, ={x0Q) |distC',x)= min {dist(C',y)} (7)
ya)y nray(C',x)

Using color or grayscale cameras, conventional ¢gmaeind subtraction methods
can be utilized. These methods segment an imagefaneéground and background
based on the known appearance and a current infatiee surveyed scene. If an
unknown object resides in the scene and is nouded by the known environment, it
is marked as foreground in the segmented image.uBuélly the dynamic known
objects are also - if not occluded — identifiedaeground in the segmented image.
Thus, the detection of unknown objeatsfront of a dynamic known object is not
possible. Since the change detection method isabiet to decide whether the cone
between the camera and the dynamic known objefte& or contains unknown
objects, it must be interpreted as known occlusidms, the visibility is described by

V' ={xOL |segn{C',x) OF O 8
(ray(C',x)nD=010
(ray(C',x) n Dz 0 Oray(C',x) n Sz 0 O

O  dist(C',y) <dist(C',2)))}

yISn ray(Ci ,X) ﬂDnray(Ci X)

As detailed above, the known occlusions are fortedlebyO, =F \V'. Since

depth values are not available for unknown objedth this sensor type, unknown
occlusions start at the camera:

Q) ={x0OV'|ray(C',x\)nU nV' £ 0} 9

2.3 Simultaneous Use of Several Cameras

a) .D

Unknown Objects

Dynamic
Static @ Known Objects
Known

Objects h
|

Fig. 3. lllustration of combining several camera views. gatup; (b) partitioning of the space;
(c) Occluded parts with occlusion-tuples.

Using several cameras with different perspectiva® dhe surveyed scene, each
camera that is used provides a different occlusion visibility situation, as
discovered in the previous section that now hdsetmerged.
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For every camerg a collection of sets can be provided describheknown and
unknown occlusions as well as the surveyed freesspg Q' ={O} 0], ,F'}
The partitioning of the free space via the recartsion step can be described by

R={A=qg'n..nqg"|d O0Q O (10)
Ox,yOA:F :[0]] - Af@OQ)=x0Of@ =y}

In words, all different labeled regions of all caia are intersected among each
other. Furthermore, the resulting intersections gwuped into connected
components. All these connected components araioeat byR (Fig. 3 b). Again, it
can be stated thata,.r A=F.

~Volumes in the free space of the surveyed scenehndrie actually seen as free (cf.
F') by at least one camera are not further considesiade no unknown object can
reside there. This results in (Fig. 3 ¢):

R={xOR|0i ={0,...,.N} : xOF' Ox# O} (11)

To each set oR’ a tuple ¢, u) can be assigned, containing the number of seen
known occlusions and unknown occlusions (Fig. 3 c).

2.4 Plausibility Checks

In the majority of applications some informatiokelisize, volume, etc. about the
unknown objects is available. Several setRbéctually cannot contain an unknown
object. Thus, plausibility checks are used to elaté those occlusions which do not
contain unknown objects. The mentioned plausibitibhecks aim for ajuasi-static
consideration. Another kind of plausibility cheatan utilizetemporalconsiderations,
like “an unknown object can not suddenly appeand surrounded by free space”.

Note plausibility checks can apply to the wholerscer only to a part of the scene.
In the following, a couple of quasi-static plaubipichecks are discussed.

Minimum Volumelf only unknown objects like humans with a tygiealume of
0.075 m3 should be detected, one might set a marinaiume for occlusions to be
eliminated to 0.05 m3. Thus, all connected set®Robbtained as described in the
previous section with a volume smaller than 0.05cand be safely removed. Only
unknown objects with a specified minimum volume aém

Maximum Distance to Groundypically, objects do not hover but have contact
with the ground. If this can be guaranteed, allnemed sets dR’ with no contact to
the groundS or D can be eliminated. More general, all objects wittistance larger
than a specified maximum distance to the groundbeaeliminated. Thus, setting the
maximum distance to 1 m also a jumping human cadebected and is not removed
by this plausibility check.

Surveillance Zonedn most cases, only certain parts of the wholwesged scene
are actually interesting so that unknown objectside this part can be eliminated.

Occlusion paramete#: If it can be guaranteed, that an unknown object be
completely occluded by the known environment inaximum number of cameras,
all regions where more thahcameras see a known occlusion can be eliminated if
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other region is connected to it with equal or l#smnd cameras which see a known
occlusion, since no unknown object can reside withis region. For more details
aboutd, see [10].

3 Reconstruction Algorithm

In this section we provide a voxel-based reconsivoalgorithm, which works on the
surfaces of the objects and is capable to deal @gtiiusions. Regarding the camera
model, we only assume a two-dimensional field afrexted pixels, with their back
projected volumes also connected. Furthermore,pthgtion and geometry of the
pixels and the back projected volumes have to lmavkn Thus, we assume neither a
pinhole camera model nor undistorted images.

3.1 Surface Voxel Deter mination

Given several calibrated cameras and images segthento free, known and
unknownand a voxel space, surface voxels can be detedniiyethe following
algorithm. Then the result is a voxel space wittkxel® marked according to the
occlusions of all perspectives and a list contgjnall these voxels. At first, the
needed functions are explained.

The classification valuefree, knownor unknown of a pixelP is provided by the
functionclassification(P) Assuming that two adjacent pixels are separayeal pixel
edgeE, a list of voxels that are intersected by the bariection of this pixel edge
down to its visibility depth is provided by the fition voxelList(E) The function
neighborClassification(Efor a pixel edgeE provides the valueinknown if one of
the two pixels is classified asmknown It providesknown if one pixel is classified as
knownand the other aee In all other cases, it providdsee For each voxel, the
pixels it projects to in all cameras are needed.shuoplification, here we only use the
center of the voxels with the consequence, thaaibjthat are smaller than the half of
the voxel diagonal may be reconstructed incorredthus, it is necessary to choose
an appropriate small voxel size. (Another voxeklliut camera centric-representation
called conexels [1] could be applied, which avdids drawback). The pixel of the
projection of the voxel centéf into a camera imag€ is provided by the function
projectVoxelCenter(V, C)rhe distance for a voxel centérto a camer& is provided
by the functiondistance(V, C)Per pixelP, the visibility depth (distance #B'r) and
the occlusion depth (distance B,) as described in Section 2.2 is provided by the
functions  visibleDepth(P) and occlusionDepth(R) The function
markVoxelAndAddTolList(V, @@ Oy) marks the voxeV in voxel space by the two
counter variable®y, Oy representing the number of known and unknown cochs
respectively, and adds it to a list containingsaliface voxels.

foreach camera C do
foreach sil houette pixel edge E do
foreach voxel V in voxellList(E) do
counter 9, =0, F=0, Q =0
i f neighbord assification(E) == unknown
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el se if neighbordassification(E) == known
Q=1
endi f
foreach camera C' !'= C do
pi xel P = projectVoxel Center(V, C')
if classification(P) == known
or distance(V, C') = occlusionDepth(P)
++
else if classification(P) == unknown
and di stance(V, C') < visibl eDepth(P)
Qi+
el se
F++
endi f
done
if F ==
mar kVoxel AndAddToLi st (V, Q, Q)
endi f
done
done

done

In summary, each camera provides lists of potersiaface voxels due to the
segmentation. These voxels are sequentially téstatl other cameras. If no camera
marks a voxel as free, it actually is a surfaceeloAll actual surface voxels are
stored in a list and marked in voxel space by tipet Ok, Oy).

Since the surface is not necessarily closed aktioavn objects, one may use a
constrained flood fill algorithm to close it. Fuettmore, completely occluded regions
exclusively caused by the static environment arereeealed by this algorithm but
can be determined in an initialization step byitgseach voxel for visibility against
the static environment in all cameras.

Having the surface voxels, partitions of relatecals, i.e. voxels with the same
known and unknown occlusion counter can be builter; the sorted plausibility
checks can be applied according to the costs aockess probability. Dependent on
the plausibility check additional information likeolume of a partition, has to be
calculated.

Besides pixel discretization, the accuracy of threl based algorithm depends on

the voxel size and can be describeck I;ytv/ZB/g, with v length of a voxel edge,
while the quality of the reconstruction dependgtmnscene and camera positions, i.e.
the visibility and the occlusions.

3.2 Memory Consumption

Some of the used functions can be implemented @ls-Up tables to enable fast
calculations. In order to give a memory consumpgstimationM of these look-up
tables, the following variables are introduced: @xel space with dimensions Y
andZ is used and the resolutiondfcameras is provided By andH.
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The visibility depth and occlusion depth per pikals a memory consumption for
all images of:

Mi=2-N-W-H (12)

The memory consumption for the voxel lists per pizéges and for all cameras
can be estimated by:

Ma<N-[(H+W+2) -E+(W+1)-H-1)+W-1)-H+1)) -G], (13)
withG=X+Y+ZandE=Z-Y+Z-X, X<Y<Z

Furthermore, the distances for each voxel to atheras results in a memory
consumption of:

Ms=2-N-X-Y-Z (14)

Thus, the overall memory consumption is boundedvby M; + M, + Ms. As an
example the parameters are seliite 4, W= 320,H = 240 andX =Y =Z = 100, with
a typical camera placement and voxel-, pixel-adstesnd floating point variables of
4 bytes, results in an upper boundvwk 907 MB and actually of 411 MB.

4 Experiments

a) H:”h I b)ﬁ )
Tl k‘ uN IVERSITAT

d) 1
I ) l
Reconstruction -!
i

Mmm BAYREUTH

.
l ID Static Environment Tested VOXEIS‘I

4 (.
M Environment_ Simulated Test Environment| -Frame #450] |

Fig. 4. Our test environment (a), the simulated one (o) faur frames of the experiment (c-f).

]
Frame # 590

In order to evaluate our methods and algorithmssetaup a test environment (Fig. 4
a), with five color cameras mounted around the sdensurvey. It is available in a
virtual simulation environment, too (Fig 4. b).

4.1 Hardware and Software Configuration

The computer contains an Intel Core™2 Quad CPW) @i6 GHz, 6 MB Cache
and 4 GB RAM, but currently only one core of the WCRs utilized by our
implementation. The graphics card is an NVIDIA Gefeo9600 GT with 512 MB and
it is CUDA enabled. The operating system is a SU$B, with the gcc/g++ compiler
suite version 4.3.1. The cubical volume of the &stironment is 76 cm x 76 cm x 76
cm. Five Unibrain FireWire Fire-i™ Digital Board @&ras with 15 and 30 fps and a
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resolution of 640x480 Bayer Pattern are used. Hiibration results, obtained by [14]
for the images with a resolution of 640x480 haveva 3D position projection error
(mean deviation < 1.6 pixels and standard deviatidrpixel).

The following performance tests for the reconsiorctuses the virtual test
environment, based on the real test environmentiging a virtual object (here:
sphere with a radius of 6 cm) and its segmentedecanmages. Additionally, a
surveillance zone and a static object are inclyéégl4. b).

4.2 Performancetests

140000 . . o4
120000 f Tested Voxels 1 22
« 100000 {1 20 .
2 80000 12 B
g 60000 18
* 40000 14 £
20000 w“ﬂs /m\——\ 10
0 ) ‘ ‘ 8
0 200 400 600 800 1000 1200

Fig. 5. Diagram of the computation times (gray area) &onstructing the sphere using five
cameras with a resolution of 320x240 and a voxatsmf 152x152x138 voxels. Additionally,

the number of tested voxels is described by theeupprve and the voxels that actually lie on
the surface are described by the lower curve.

The unknown object in the virtual test environmenmoved on a circular path
around and through the static known object in thddhe of the scene. The virtual
object is projected into all camera images simaotata conventional background
subtraction. The segmented images are used togtaonthe unknown object within
the predefined surveillance zone and in considamadf the occlusions. Two cycles of
this movement with a total of 1200 frames have beeorded. Fig. 4 c-f illustrates
four interesting frames of the recorded sequende White dots represent voxels
which have been tested for being surface voxel® msulting surface voxels are
shown containing the visibility tuples.

Dependent on the position of the unknown objedfedint numbers of pixels and
voxels are marked and thus, different computatiores are needed. The diagram in
Fig. 5 shows the computation time for reconstrugtime unknown object. Further it
shows the number of tested voxels and the numbgoxdls that actually lie on the
surface. Obviously, the calculation time corresponid the number of potential
surface voxels which have to be tested for eachecanturthermore, the number of
actual surface voxels must always be smaller orletpu the number of potential
surface voxels. The calculation time is high, i€ thnknown object is seen by all
cameras, such that many potential voxels have ttested (frame# 250). Although
the unknown object may be outside the surveillanzee, potential surface voxels
have to be tested because of the absent deptimiafion of this unknown object.
Only the number of actual surface voxels is zeranfe# 450). In Fig 4. d the lower
part of the sphere is only seen by the rightmostera. Thus, the complete cone of
potential surface voxels within the surveillanceiea@aused by that camera actually
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results in surface voxels. In this case, the ragtween actual surface voxels and
potential surface voxels is relatively high.

Table 2. summarizes the measured computation thpesomparing the average
values of different configuration pairs. A and Bewscamera resolution of 320x240, a
voxel space resolution of 152x152x138 and two dffic number of cameras — 3 and
5. C and D use four cameras, a voxel space of B32138 and two different camera
resolutions — 160x120 and 320x240. E and F usedanmeras, a camera resolution of
320x240 and two different voxel space resolutioh86x76x69 and 152x152x138.

The quintessence of this table is that althoughtipiying the number of pixels or
voxels by a factor, the average time increases eslowhis behavior is due to the
consideration of surfaces and silhouettes instéadlames and areas, respectively.

Table 2. Comparison of different configuration pairs for@astructing the sphere.

# cameras Avg. number of Avg. number of actual Avg.
potential surface voxel tested surface voxe tested time [mg]
B 5 89021 8281 15.74
A 3 52488 9168 9.88
B/A 1.667 1.696 0.903 1.593
# pixe
D 172800 99095 11536 19.06
C 19200 51821 6166 9.01
D/C 9 1.91 1.87 211
# voxel
F 10760688 134968 15717 24.43
E 398544 31175 3674 5.9
FIE 27 4.33 4.28 4.14

5 Conclusions

For the first time, a general and consistent forsnalfor describing the visibility
and occlusions within a camera surveyed sceneanktiown environment is provided.
To do so, objects are classified as known/unknomehsdatic/dynamic. A voxel-based
algorithm constructing the visual hull, which wors surfaces using grayscale/color
cameras in combination with a conventional backgdosubtraction method, has been
presented. The experimental results show that tbepatation time for the
reconstruction step depends mainly on the numbertested surface voxels.
Additionally, the measurements show that the coatrt time increases slower than
the camera resolution and voxel space resolutiae, td the surface and silhouette
consideration.

In the future, the plausibility checks especiallye ttemporal ones will be
considered more intensively, since these promiseslaable enhancement in the
reconstruction of unknown objects. The plausibitityecks will be integrated into the
voxel-based algorithm. Furthermore, the presenigarithm can be parallelized, such
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that potential surface voxels are tested simultasigo For this, NVIDIAs CUDA
seems to be suited. In addition, non-voxel-bas@dogezhes will be investigated.
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