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Abstract. We present a general vision-based method for reconstructing 
multiple unknown objects (e.g. humans) within a known environment (e.g. 
tables, racks, robots) which usually has occlusions. These occlusions have to be 
explicitly considered since parts of the unknown objects might be hidden in 
some or even all camera views. In order to avoid cluttered reconstructions, 
plausibility checks are used to eliminate reconstruction artifacts which actually 
do not contain any unknown object. One application is a 
supervision/surveillance system for safe human/robot-coexistence and –
cooperation. Experiments for a voxel-based implementation are given. 

1   Introduction 

Geometrical information about objects is required in many applications. In several 
cases this information is known. For example, most industrial robots act in a 
geometrically completely known environment. It is indispensable, to guarantee the 
correctness of this information anytime, in order to avoid collisions. Therefore, fences 
and safety light barriers are set up to guarantee this correctness and to stop the robot 
in an unexpected situation. In other cases, the geometrical information is not known in 
advance. Thus, vision sensors can be used, to reconstruct this information. In the 
example, it would become possible, that a human can walk through the robots 
workspace, since its geometrical information is reconstructed and included in the 
robot’s environment model, such that even in this case no collision occurs. 

The reconstruction of objects based on its silhouettes in multiple cameras is known 
as surface from silhouette or inferred visual hull ([12], [15]). Many volume-based 
([3], [11], [16]) and surface-based ([5], [13]) approaches have been investigated in the 
past. Most of them have the assumption that the object(s) to reconstruct resides within 
the common volume which is seen by all cameras. Furthermore, almost all approaches 
have the assumptions that the object(s) to reconstruct is not occluded by static 
obstacles – like tables, racks or the robot itself in the example. It may result in an 
incomplete reconstruction of a human, since conventional background subtraction 
methods ([4], [6]) are not able to generate the silhouette of the occluded parts of the 
human. Thus, it is necessary to explicitly consider these occlusions. 
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Fig. 1. Illustration of the visibility for a setup with one camera C1 (first row, a-d) and a setup 
with multiple cameras Ci (second row, e-h) using different approaches for treating occlusions 
(b-d and f-h) resulting from the known environment (a, c). 

Recently, two concepts to overcome these limitations have been investigated. First, 
occlusions can be modeled by occlusion masks Mi which are binary masks in image 
space marking regions where occlusions can occur. These marked regions are simply 
added to the segmented regions Si detected by the background subtraction method 
when calculating the inferred visual hull (Fig. 1 b, f). In [2] and [10] the concept of 
occlusion masks has been used for masking dynamic occluding objects (i.e. robots) in 
order to avoid future collisions with objects, while [7], [8] and [9] automatically 
generate these occlusion masks for static occluding objects by observing active 
objects in a scene. Unfortunately, using occlusion masks causes more occlusions in 
the reconstruction than necessary since the volume between the camera and the 
occluding object is interpreted as occlusion as well even though a background 
subtraction method could detect objects in front of this occluding object. Second, 
objects which reside outside the common observed volume can be correctly integrated 
in the inferred visual hull, if the complement of the fused back-projected free space is 
calculated [5]. In Fig. 1 c, g this concept is applied in conjunction with the previously 
described occlusion masks. Note, the object residing outside the common observed 
volume is now included. But still the reconstruction contains unnecessary occlusions. 

Thus, we propose a new approach (Fig.1 d, h), for treating occlusions in a general 
and more accurate way by additionally utilizing the geometrical information of the 
known environment (Section 2). Both concepts described above are contained by our 
approach. Furthermore, the information about how far a pixel can see up to the first 
occluding object is included (M’ i), resulting in more accurate reconstructions. In most 
cases, it results in cluttered reconstructions due to the occlusions. Therefore, we 
propose using plausibility checks, which revise reconstruction artifacts that do not 
contain an object. Furthermore, a voxel-based algorithm of our approach is provided 
in Section 3. The memory consumption of look-up tables, which are used for 
optimization purpose, is analyzed. Experimental results are discussed in Section 4. 
The paper concludes with Section 5. 
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2   Occlusions and Visibility 

This section comprises a theoretical look at the problem of occlusions and visibility in 
a multi-camera setup using plausibility checks to eliminate pseudo objects, i.e. 
reconstruction artifacts which actually do not contain an object. 

In the first subsection, the types of objects that are contained by surveyed scenes 
are described. In the following subsection, visibility and occlusions for a single 
camera are considered, taking the types of objects into account. Thereafter, the 
simultaneous use of several cameras with different perspectives onto the surveyed 
scene is described. The last subsection discusses how reconstruction artifacts can be 
revised, using plausibility checks. 

 

 

Fig. 2. Illustration of the visibility and the occlusions using color or grayscale cameras with 
common background subtraction methods. Nomenclature: Ci: Camera i; Fi: Free in camera i; S: 
Static known object; D: Dynamic known object; U: Unknown object; Oi

K: Known occlusion in 
i; Oi

U: Unknown occlusion in i; Bi
F: Free boundary in i; Bi

O: Occlusion boundary in i; Bi
U: 

Unknown boundary  in i. 

2.1   Object Types 

The surveyed scene contains static and dynamic objects. Static objects S are racks, 
tables etc. The geometry, position and the appearance of those objects are known and 
do not change over the time (apart from possibly occurring shadows and from 
illumination changes caused by the dynamic objects). Dynamic objects are robots, 
conveyor belts, humans etc. This group must be divided into two subgroups. The first 
subgroup contains known dynamic objects D, with changing geometry, position and 
the appearance but in a known manner. The robots and conveyor belts pertain to this 
subgroup. The second subgroup contains dynamic objects U with unknown changing 
geometry, position and appearance, e.g. humans. In the majority of cases approximate 
information about size, volume or similar can be provided. Note that static unknown 
objects do not exist. The free space F of a surveyed scene does not contain any known 
object but may contain unknown objects. Fig. 2 illustrates the introduced object types. 
In summary, the following three equations hold true: 
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S ∪ D ∪ F = En, with En: Euclidian Space (1) 

S ∩ D = S ∩ F = D ∩ F = ∅ and U ⊆ F (2) 

2.2   Single Camera 

A number of N calibrated cameras with focal points Ci ∈ En, i ∈ {1, …, N} and a 
frustum Li = {x ∈ En| x is projected via Ci onto the image plane of camera i}, are used 
to detect and finally reconstruct the unknown objects which reside in-between the 
known objects as accurate as possible. Here, we only consider color and grayscale 
cameras, but the approach can easily be extended to depth cameras. 

One fundamental characteristic of these vision sensors is that they can only see up 
to the surface of the nearest opaque object per viewing direction (e.g. pixel center 
direction). Thus, occlusions always occur at the rear side of an opaque object. 
Moreover, the visibility of these sensors is limited by the frustum Li. Outside this 
frustum, the sensor is not able to see anything. Thus, these parts can be interpreted as 
occlusions as well. 

Now, the terms visibility and occlusions have to be introduced and detailed (Fig. 
2). The visibility Vi of a camera i is the region of the free space F where a camera is 
able to detect unknown objects. The known occlusion OK

i of a camera i is the region 
of the free space F where a camera can not detect unknown objects due to occlusions 
caused by known objects. Thus, it can be stated that OK

i ∩ Vi = ∅ and OK
i ∪ Vi = F 

for each camera i. The unknown occlusion OU
i of a camera i is the region of the 

visible space Vi where an unknown object has to be assumed, due to the evaluation of 
a camera image by a background subtraction method. The free space seen by camera i 
Fi is defined by Fi = Vi\OU

i. It can be stated, that OK
i ∩ OU

i
 = OK

i ∩ Fi
 = OU

i
 ∩ 

Fi
 = ∅ and OK

i ∪ OU
i ∪ Fi = F for each camera i. The concrete structures of the 

sets Vi, OK
i, OU

i depend directly on the used camera type with its detection 
capabilities. 

In order to describe our formalism for a specific camera type (here color-/grayscale 
cameras), we use the concepts of rays and segments in the Euclidean Space. A ray(S, 
E) and a segm(S, E) are point sets and are defined by 

},,|)({:),(ray 0
nEStSEtSES ER ∈∈−⋅+= +  (3) 

},   ,10|)({:),(segm nESttSEtSES ER ∈≤≤∧∈−⋅+=  (4) 

Furthermore, a distance function dist(P, Q), with P, Q ∈ En exists, since the 
Euclidean Space is a metric space. Having the visibility and the occlusions, sets 
containing the most distant visible points and the nearest occluded points (per viewing 
direction) can be specified by 

)},(dist{max),(dist|{
),(ray

yCxCVxB i

xCVy

iii
F ii ∩∈

=∈=  (5) 
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),(ray
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ii
K

i
O ii
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ii
U

i
U ii

U ∩∈
=∈=  (7) 

Using color or grayscale cameras, conventional background subtraction methods 
can be utilized. These methods segment an image into foreground and background 
based on the known appearance and a current image of the surveyed scene. If an 
unknown object resides in the scene and is not occluded by the known environment, it 
is marked as foreground in the segmented image. But usually the dynamic known 
objects are also – if not occluded – identified as foreground in the segmented image. 
Thus, the detection of unknown objects in front of a dynamic known object is not 
possible. Since the change detection method is not able to decide whether the cone 
between the camera and the dynamic known object is free or contains unknown 
objects, it must be interpreted as known occlusion. Thus, the visibility is described by 

)))},(dist),(dist

),(ray),(ray(

),(ray(

),(segm|{

),(ray),(ray
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ii
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(8) 

As detailed above, the known occlusions are formulated by ii
K VFO \= . Since 

depth values are not available for unknown objects with this sensor type, unknown 
occlusions start at the camera: 

}),(ray|{ ∅≠∩∩∈= iiii
U VUxCVxO  (9) 

2.3   Simultaneous Use of Several Cameras 

 

Fig. 3. Illustration of combining several camera views. (a) setup; (b) partitioning of the space; 
(c) Occluded parts with occlusion-tuples. 

Using several cameras with different perspectives onto the surveyed scene, each 
camera that is used provides a different occlusion and visibility situation, as 
discovered in the previous section that now has to be merged. 
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For every camera i, a collection of sets can be provided describing the known and 

unknown occlusions as well as the surveyed free space by },,{ ii
U

i
K

i FOOQ =  

The partitioning of the free space via the reconstruction step can be described by 

})1()0(,]1,0[::,

|...{ 1

yfxfAfAyx

QqqqAR iiN

=∧=→∃∈∀
∧∈∩∩==

 
(10) 

In words, all different labeled regions of all cameras are intersected among each 
other. Furthermore, the resulting intersections are grouped into connected 
components. All these connected components are contained by R (Fig. 3 b). Again, it 
can be stated that A∈R A = F. 

Volumes in the free space of the surveyed scene which are actually seen as free (cf. 
Fi) by at least one camera are not further considered, since no unknown object can 
reside there. This results in (Fig. 3 c): 

}:},...,0{|{' ∅≠∧∉=∀∈= xFxNiRxR i  (11) 

To each set of R’ a tuple (o, u) can be assigned, containing the number of seen 
known occlusions and unknown occlusions (Fig. 3 c). 

2.4   Plausibility Checks 

In the majority of applications some information like size, volume, etc. about the 
unknown objects is available. Several sets of R’ actually cannot contain an unknown 
object. Thus, plausibility checks are used to eliminate those occlusions which do not 
contain unknown objects. The mentioned plausibility checks aim for a quasi-static 
consideration. Another kind of plausibility checks can utilize temporal considerations, 
like “an unknown object can not suddenly appear in and surrounded by free space”. 

Note plausibility checks can apply to the whole scene or only to a part of the scene. 
In the following, a couple of quasi-static plausibility checks are discussed. 

Minimum Volume: If only unknown objects like humans with a typical volume of 
0.075 m³ should be detected, one might set a maximum volume for occlusions to be 
eliminated to 0.05 m³. Thus, all connected sets of R’ obtained as described in the 
previous section with a volume smaller than 0.05 m³ can be safely removed. Only 
unknown objects with a specified minimum volume remain. 

Maximum Distance to Ground: Typically, objects do not hover but have contact 
with the ground. If this can be guaranteed, all connected sets of R’ with no contact to 
the ground S or D can be eliminated. More general, all objects with a distance larger 
than a specified maximum distance to the ground can be eliminated. Thus, setting the 
maximum distance to 1 m also a jumping human can be detected and is not removed 
by this plausibility check. 

Surveillance Zones: In most cases, only certain parts of the whole surveyed scene 
are actually interesting so that unknown objects outside this part can be eliminated. 

Occlusion parameter θ: If it can be guaranteed, that an unknown object can be 
completely occluded by the known environment in a maximum number of θ cameras, 
all regions where more than θ cameras see a known occlusion can be eliminated if no 
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other region is connected to it with equal or less than θ cameras which see a known 
occlusion, since no unknown object can reside within this region. For more details 
about θ, see [10]. 

3   Reconstruction Algorithm 

In this section we provide a voxel-based reconstruction algorithm, which works on the 
surfaces of the objects and is capable to deal with occlusions. Regarding the camera 
model, we only assume a two-dimensional field of connected pixels, with their back 
projected volumes also connected. Furthermore, the position and geometry of the 
pixels and the back projected volumes have to be known. Thus, we assume neither a 
pinhole camera model nor undistorted images. 

3.1   Surface Voxel Determination 

Given several calibrated cameras and images segmented into free, known and 
unknown and a voxel space, surface voxels can be determined by the following 
algorithm. Then the result is a voxel space with voxels marked according to the 
occlusions of all perspectives and a list containing all these voxels. At first, the 
needed functions are explained. 

The classification value (free, known or unknown) of a pixel P is provided by the 
function classification(P). Assuming that two adjacent pixels are separated by a pixel 
edge E, a list of voxels that are intersected by the back projection of this pixel edge E 
down to its visibility depth is provided by the function voxelList(E). The function 
neighborClassification(E) for a pixel edge E provides the value unknown, if one of 
the two pixels is classified as unknown. It provides known, if one pixel is classified as 
known and the other as free. In all other cases, it provides free. For each voxel, the 
pixels it projects to in all cameras are needed. For simplification, here we only use the 
center of the voxels with the consequence, that objects that are smaller than the half of 
the voxel diagonal may be reconstructed incorrectly. Thus, it is necessary to choose 
an appropriate small voxel size. (Another voxel-like but camera centric-representation 
called conexels [1] could be applied, which avoids this drawback). The pixel of the 
projection of the voxel center V into a camera image C is provided by the function 
projectVoxelCenter(V, C). The distance for a voxel center V to a camera C is provided 
by the function distance(V, C). Per pixel P, the visibility depth (distance to Bi

F) and 
the occlusion depth (distance to Bi

O) as described in Section 2.2 is provided by the 
functions visibleDepth(P) and occlusionDepth(P). The function 
markVoxelAndAddToList(V, OK, OU) marks the voxel V in voxel space by the two 
counter variables OK, OU representing the number of known and unknown occlusions 
respectively, and adds it to a list containing all surface voxels. 

foreach camera C do 
  foreach silhouette pixel edge E do 
    foreach voxel V in voxelList(E) do 
      counter OU = 0, F = 0, OK = 0 
      if neighborClassification(E) == unknown 
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        OU = 1 
      else if neighborClassification(E) == known 
        OK = 1 
      endif 
      foreach camera C’ != C do 
        pixel P = projectVoxelCenter(V, C’ ) 
        if classification(P) == known 
           or distance(V, C’ ) ≥ occlusionDepth(P) 
          OK++ 
        else if classification(P) == unknown 
           and distance(V, C’ ) ≤ visibleDepth(P) 
          OU++ 
        else 
          F++ 
        endif 
      done 
      if F == 0 
        markVoxelAndAddToList(V, OK, OU) 
      endif 
    done 
  done 
done 

In summary, each camera provides lists of potential surface voxels due to the 
segmentation. These voxels are sequentially tested in all other cameras. If no camera 
marks a voxel as free, it actually is a surface voxel. All actual surface voxels are 
stored in a list and marked in voxel space by the tuple (OK, OU). 

Since the surface is not necessarily closed at the known objects, one may use a 
constrained flood fill algorithm to close it. Furthermore, completely occluded regions 
exclusively caused by the static environment are not revealed by this algorithm but 
can be determined in an initialization step by testing each voxel for visibility against 
the static environment in all cameras. 

Having the surface voxels, partitions of related voxels, i.e. voxels with the same 
known and unknown occlusion counter can be built. Then, the sorted plausibility 
checks can be applied according to the costs and success probability. Dependent on 
the plausibility check additional information like volume of a partition, has to be 
calculated. 

Besides pixel discretization, the accuracy of the voxel based algorithm depends on 

the voxel size and can be described by 32/ ⋅±= ve , with v length of a voxel edge, 
while the quality of the reconstruction depends on the scene and camera positions, i.e. 
the visibility and the occlusions. 

3.2   Memory Consumption 

Some of the used functions can be implemented as look-up tables to enable fast 
calculations. In order to give a memory consumption estimation M of these look-up 
tables, the following variables are introduced: A voxel space with dimensions X, Y 
and Z is used and the resolution of N cameras is provided by W and H. 



Multi-View Reconstruction of Unknown Objects within a Known Environment      9 

The visibility depth and occlusion depth per pixel has a memory consumption for 
all images of: 

M1 = 2 · N · W · H (12) 

The memory consumption for the voxel lists per pixel edges and for all cameras 
can be estimated by: 

M2 ≤ N · [((H + W + 2)) · E  + ((W + 1) · (H − 1) + (W − 1) · (H + 1))  · G ],  
with G = X + Y + Z and E = Z · Y + Z · X,  X ≤ Y ≤ Z 

(13) 

Furthermore, the distances for each voxel to all cameras results in a memory 
consumption of: 

M3 = 2 · N · X · Y · Z (14) 

Thus, the overall memory consumption is bounded by M ≤ M1 + M2 + M3. As an 
example the parameters are set to N = 4, W = 320, H = 240 and X = Y = Z = 100, with 
a typical camera placement and voxel-, pixel-addresses and floating point variables of 
4 bytes, results in an upper bound of M ≤ 907 MB and actually of 411 MB. 

4   Experiments 

 

Fig. 4. Our test environment  (a), the simulated one (b) and four frames of the experiment (c-f). 

In order to evaluate our methods and algorithms, we set up a test environment (Fig. 4 
a), with five color cameras mounted around the scene to survey. It is available in a 
virtual simulation environment, too (Fig 4. b). 

4.1   Hardware and Software Configuration 

The computer contains an Intel Core™2 Quad CPU, with 2.6 GHz, 6 MB Cache 
and 4 GB RAM, but currently only one core of the CPU is utilized by our 
implementation. The graphics card is an NVIDIA GeForce 9600 GT with 512 MB and 
it is CUDA enabled. The operating system is a SUSE 11.0, with the gcc/g++ compiler 
suite version 4.3.1. The cubical volume of the test environment is 76 cm × 76 cm × 76 
cm. Five Unibrain FireWire Fire-i™ Digital Board Cameras with 15 and 30 fps and a 
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resolution of 640x480 Bayer Pattern are used. The calibration results, obtained by [14] 
for the images with a resolution of 640x480 have a low 3D position projection error 
(mean deviation < 1.6 pixels and standard deviation < 1 pixel). 

The following performance tests for the reconstruction uses the virtual test 
environment, based on the real test environment providing a virtual object (here: 
sphere with a radius of 6 cm) and its segmented camera images. Additionally, a 
surveillance zone and a static object are included (Fig 4. b). 

4.2   Performance tests 

 

Fig. 5. Diagram of the computation times (gray area) for reconstructing the sphere using five 
cameras with a resolution of 320x240 and a voxel space of 152x152x138 voxels. Additionally, 
the number of tested voxels is described by the upper curve and the voxels that actually lie on 
the surface are described by the lower curve. 

The unknown object in the virtual test environment is moved on a circular path 
around and through the static known object in the middle of the scene. The virtual 
object is projected into all camera images simulating a conventional background 
subtraction. The segmented images are used to reconstruct the unknown object within 
the predefined surveillance zone and in consideration of the occlusions. Two cycles of 
this movement with a total of 1200 frames have been recorded. Fig. 4 c-f illustrates 
four interesting frames of the recorded sequence. The white dots represent voxels 
which have been tested for being surface voxels. The resulting surface voxels are 
shown containing the visibility tuples. 

Dependent on the position of the unknown object, different numbers of pixels and 
voxels are marked and thus, different computation times are needed. The diagram in 
Fig. 5 shows the computation time for reconstructing the unknown object. Further it 
shows the number of tested voxels and the number of voxels that actually lie on the 
surface. Obviously, the calculation time corresponds to the number of potential 
surface voxels which have to be tested for each camera. Furthermore, the number of 
actual surface voxels must always be smaller or equal to the number of potential 
surface voxels. The calculation time is high, if the unknown object is seen by all 
cameras, such that many potential voxels have to be tested (frame# 250). Although 
the unknown object may be outside the surveillance zone, potential surface voxels 
have to be tested because of the absent depth information of this unknown object. 
Only the number of actual surface voxels is zero (frame# 450). In Fig 4. d the lower 
part of the sphere is only seen by the rightmost camera. Thus, the complete cone of 
potential surface voxels within the surveillance zone caused by that camera actually 
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results in surface voxels. In this case, the ratio between actual surface voxels and 
potential surface voxels is relatively high. 

Table 2. summarizes the measured computation times by comparing the average 
values of different configuration pairs. A and B use a camera resolution of 320x240, a 
voxel space resolution of 152x152x138 and two different number of cameras – 3 and 
5. C and D use four cameras, a voxel space of 152x152x138 and two different camera 
resolutions – 160x120 and 320x240. E and F use four cameras, a camera resolution of 
320x240 and two different voxel space resolutions of 76x76x69 and 152x152x138. 

The quintessence of this table is that although multiplying the number of pixels or 
voxels by a factor, the average time increases slower. This behavior is due to the 
consideration of surfaces and silhouettes instead of volumes and areas, respectively. 

Table 2. Comparison of different configuration pairs for reconstructing the sphere. 

5   Conclusions 

For the first time, a general and consistent formalism for describing the visibility 
and occlusions within a camera surveyed scene with a known environment is provided. 
To do so, objects are classified as known/unknown and static/dynamic. A voxel-based 
algorithm constructing the visual hull, which works on surfaces using grayscale/color 
cameras in combination with a conventional background subtraction method, has been 
presented. The experimental results show that the computation time for the 
reconstruction step depends mainly on the number of tested surface voxels. 
Additionally, the measurements show that the computation time increases slower than 
the camera resolution and voxel space resolution, due to the surface and silhouette 
consideration. 

In the future, the plausibility checks especially the temporal ones will be 
considered more intensively, since these promises a valuable enhancement in the 
reconstruction of unknown objects. The plausibility checks will be integrated into the 
voxel-based algorithm. Furthermore, the presented algorithm can be parallelized, such 

 # cameras Avg. number of 
potential surface voxel tested 

Avg. number of actual 
surface voxel tested 

Avg. 
time [ms] 

B 5 89021 8281 15.74 
A 3 52488 9168 9.88 

B/A 1.667 1.696 0.903 1.593 
     

 # pixel    

D 172800 99095 11536 19.06 
C 19200 51821 6166 9.01 

D/C 9 1.91 1.87 2.11 
     

 # voxel    

F 10760688 134968 15717 24.43 
E 398544 31175 3674 5.9 

F/E 27 4.33 4.28 4.14 
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that potential surface voxels are tested simultaneously. For this, NVIDIAs CUDA 
seems to be suited. In addition, non-voxel-based approaches will be investigated. 
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