
In: 12th International Symposium on Measurement and Control 
in Robotics (ISMCR02), June 20-21, 2002 Bourges/France 

Figure 1: Enumeration of all possible contact state 
transitions. [Remde99] 

NE / V V / E

E / EE / F V / F

VIRTUAL ROBOT PROGRAMMING FOR DEFORMABLE LINEAR OBJECTS: 
SYSTEM CONCEPT AND PROTOTYPE IMPLEMENTATION 

 
Björn KAHL and Dominik HENRICH 

 
Embedded Systems and Robotics Lab. (RESY) 

Faculty of Informatics, Building 48 
University of Kaiserslautern, D-67653 Kaiserslautern, Germany 

E-Mail: [kahl | henrich]@informatik.uni-kl.de, Http: //resy.informatik.uni-kl.de/ 

 
Abstract. In this paper we present a method and system for 
robot programming using virtual reality techniques. The 
proposed method allows intuitive teaching of a manipulation 
task with haptic feedback in a graphical simulation system. We 
focus on the manipulation of deformable linear objects (DLOs), 
although the concepts also work with rigid objects. Based on 
earlier work, our system allows even an operator who lacks 
specialized knowledge of roboticsto automatically generate a 
robust sensor-based robot program that is ready to execute on 
different robots, merely by demonstrating the task in virtual 
reality. 
 

1. INTRODUCTION 
 
The ability of industrial robots to execute a programmed task 
repeatedly, very precisely, and quickly allows efficient largescale 
production of industrial manufactured goods. But the complex 
and expensive task of creating a robot program renders 
automated production of a small series or single items 
impossible due to economic constrains. 

Robots can perform only a limited set of precisely defined 
instructions. Motions are specified by sets of exact coordinates, 
rotational angles and other parameters. Humans normally do not 
think in co-ordinates. They think in (small) sub-tasks (called 
"skills" in some works) such as "grip cable form table”, “move to 
hole”, “push into plug". 

Manipulating deformable linear objects (DLOs) 
additionally involves the problem that target coordinates are 
unknown per definition, as a deformable object changes shape 
due to contact and gravity forces. We can conclude that the main 
problem with current robot programming is the need to describe 
the robots task exactly by means of coordinates, orientations, 
velocity and path shape.  

 Our idea is to describe the assembly task in a more natural 
way without precise coordinates. Of course, the robot must 
somehow know roughly in which direction to move. To solve 
this problem, we suggest that the programmer performs the 
assembly task in virtual reality. Then, the software analyzes this 
demonstration and generates a sequence of elementary skills 
(like "establish contact" or "move to edge") together with 
approximated coordinates showing where to execute the skills. 
This resulting skill sequence is then executed by a robot 

In the rest of this paper, we present the related work in 
Section 2, give a system overview in Section 3, introduce our 
prototype implementation in Section 4, and provide 

experimental results in Section 5. 
2. RELATED WORK 

 
The proposed system consists of two parts: a method to generate 
a skill-based description of an assembly task and a method for 
robotic implementation of such a sequence of skills. 

As for the second part of the system, Henrich et al. 
introduced a set of contact states that enumerates all possible 
single contact situations between a DLO and a rigid convex 
polyhedron [Henrich99] and analyzed the possible transitions 
between these contact states [Remde99]; see Figure 1. 
Schlechter presented a library of macros for performing such 
transitions between contact states ("skill"), using an industrial 
robot equipped with a wrist-mounted force/torque sensor and 
detecting characteristic features in the force/torque signal for 
each skill [Schlechter01]. A demonstration video showing the 
execution of a robot program given such a sequence of skills can 
be found at [RESY01]. 

The first part of the proposed system can be considered a 
programming by demonstration (PbD) system. Ikeuchi et al. 
computed an assembly plan from visual observations of a human 
manipulation task [Ikeuchi92]. Onda et al. extracted a sequence 
of skills for manipulating rigid objects by observing a 
demonstration of the manipulation task with a master arm 
[Onda95]. Dillmann et al. presented a PbD system capable of 



 

2 

monitoring a pick & place operation and mapping this operation 
to different target robots [Dillmann99]. Ehrenmann showed an 
approach to extract user actions from a demonstration by fusion 
of visual data with force, position and orientation data obtained 
from a data glove [Ehrenmann01a]. In [Ehrenmann01b], a 
system based on neural networks is presented, which classifies a 
human demonstration (observed by a vision system and a data 
glove with tactile force sensors) in up to 16 different grasp types 
and three types of basic movements. Zöllner describes a multi-
sensor system that extracts fine motions (such as a screwing 
action) [Zöllner02].  

However, all of these methods monitor a real demonstration 
performed in the physical world. This has the disadvantage of 
requiring  difficult image processing along with other sensor 
data acquisition and analysis. By working in virtual reality, we 
circumvent these difficulties. In this paper we focus on the 
extraction of a sequence of skills from a human demonstration 
performed in virtual reality. 

 
3. SYSTEM CONCEPT 

 
The task to program and control an industrial robot for 
manipulation tasks can be divided into an off-line and an on-line 
phase. During the off-line phase, the users demonstrates the 
manipulation tasks within an virtual environment. This 
demonstration is used to automatically generate a sensor-
independent robot program, which is executed during the on-line 
phase by an industrial robot using its specific sensors. Both of 
these phases are themselves subdivided into three steps (see 
Figure 2). These steps are motivated in the off-line phase; the 
continuous user input is discretized first according to the 
geometry (work piece states) and then according to the time 
(contact state transitions). In the on-line phase, this time- and 
state-discrete robot program is converted back into a continuous 
and therefore executable representation, first according the 
geometry (expected sensor signal curves) and then according the 
time (robot motions). The first three steps are discussed later in 
full detail. The single steps are the following: 

During the off-line phase, the robot environment and the 

work piece (DLO) are modeled in a 3D 
graphical simulation system. In the task 
simulation step, the user moves the DLO by 
means of a 6 DOF haptic device in a 3D 
graphical simulation and demonstrates the 
assembly tasks to be automated to the 
system (e.g., establishing contact with face 
F and drawing over edge E). In the contact 
state extraction step, the contact situation 
between the DLO and the environment 
objects is observed over time (e.g., 
resulting in distances δ1, ..., δ4) and a 
sequence of contact states for the 
demonstrated assembly is derived (e.g., N, 
V/F, V/E, N). From this state sequence, the 
program generation step determines the 
necessary state transitions and relates them 
with the involved geometric primitives 
(e.g., N→N, ..., V/F→V/E→N). 
Additionally, to obtain an executable 
program, a suitable library function has to 
be found for each state transition (e.g., 

TransferTo() for N→N) and supplied with the necessary 
parameters. These parameters include the goal positions of 
transfer motions (e.g., p2 or p3) or the motion direction and 
object orientation of assembly motions (e.g., M1 and F).  

During the on-line phase and the macro execution step, the 
generated program is executed by the robot control unit. The 
embedded sensor-based macros abstract from the sensors 
currently being used. The actually available robot sensors 
determine which library (providing the above mentioned macro 
operations) is linked to the program. The feature extraction step 
determines for each macro and its parameters with which sensor 
signal S and by which feature L(a,b,c,d) the state transition will 
be detected. In the case of a force/torque sensor, the best linear 
combination α1, ..., α6 of the three forces Fx, Fy, Fz and the three 
torques Mx, My, Mz determines the signal and a piecewise linear 
function L(a,b,c,d) characterizes the possible features. Then, the 
robot moves in the prior fixed motion direction M until the 
transition detection step observes a state transition at time t0. 

In summary, our method includes the programming and 
control of robot manipulation tasks based on a basic set of 
robust, sensor-based, and reusable robot operations. For a more 
detailed discussion, the off-line phase (first three steps above) is 
subdivided into the following eight modules as shown in Figure 
3. 

The assembly motion is demonstrated by a human operator 
using a 6 DOF input device with 3 DOF force feedback. The 
system maintains position and orientation of a virtual gripper 
point, identified with the effect point of the 6 DFO input device. 
The operator can monitor his action in a 3D graphical 
simulation. Both haptic input and 3D graphics are called user 
interface in Figure 3. In the shape calculation module, we 
calculate the shape, position and orientation of a gripped DLO 
based on a simple physical model. In this step, we calculate all 
forces acting on the virtual gripping point. These forces result 
from contacts between the DLO and rigid world objects that are 
handled in the contact detection module. The forces are sent 
back to the haptic input device. In the same loop of calculating a 
shape, testing this shape for contact with world objects and 

Figure 2: Illustration of the overall process for programming and execution of 
sensor-based robot programs. 

on-line
off-line

F E

p1

t

L(a,b,c,d)

δ1

δ4

δ2 δ3

Macro executionTransition detection

Transition(a,b,c,d,S):

Program generationContact state extractionTask simulation

α1Fx + ...+α6Mz

tt0

Feature extraction

N_V/F(M, F):

REPEAT
MoveS(∆M);

UNTIL Transition(a,b,c,d,S);

S = (α1, ..., α6)

F:

t

δ(t)
N

V/E
V/F

E:

N → N
N → V/F
V/F → V/F
V/F → V/E → N

p2

p3

TransferTo(p2);
N_V/F(M1, F);
TransferTo(p3);
V/F_V/E_N(M2, E);

Mi: Motion Direction



 

3 

possibly recalculating a new shape, the 3D graphical 
representation of the virtual reality scene is updated. 

In the contact state detection module, all possible contact 
states between the DLO and the world object are determined, 
based on calculations done during contact detection. We use the 
contact state model described in Figure 1. Several uncertainties 
and ambiguities are resolved by taking into account the history 
of the assembly motion and by weighting different states against 
each other in the contact state selection module. The result is 
one well-known contact state best describing the current 
situation. 

In the state transition extraction module, the resulting 
sequence of contact states is compiled (combined) into a 
sequence of contact state transitions (called "skills"). The 
possible contact state transitions are shown in Figure 1. This 
sequence of contact state transition is further filtered and 
validated against constraints from the world model. This 
transition validation module eliminates unwanted transitions 
that can result from vibration while using the input device. 
Finally, based on the sequence of contact state transitions and 
geometrical information describing the world objects, a program 
is generated. The program contains both skill library calls and 
ordinary move and control instructions. The move instructions 
move the gripper somewhere near the point where a skill has to 
be executed. In addition, routines to deal with failed skill 
execution are added. 
 

4. PROTOTYPE IMPLEMENTATION 
 
Currently, we implement a prototype in C++ language 
[Bonnermann02]. The software is build around a Phantom input 
device made by the US company Sensable. The haptic and 
graphical feedback is done using the GHOST software 
development kit shipped with the Phantom. 

 In the current stage, the world objects are limited to convex 
polyhedrals, and the DLO is modeled as a piecewise linear 
function. Tests are done only with a one-piece DLO, which is 
effectively a rigid linear object (“RLO”). The contact detection is 
based on the GJK-algorithm [Cameron97] to fast compute 
distances between the RLO and the world objects. A series of 
two or three contact states is composed into one contact state 
transition, depending on what contact states are involved. The 
prototype emits these contact state transitions. Currently, we do 
not generate a real program. 
 

5. EXPERIMENTAL RESULTS 
 
To test our system, we have created a small example scene as 
shown in Figure 4, consisting of a plate to the left, a block, and 
another plate with a hole in it. Additionally, there is a second 
block to the right, where our RLO is initially located. The task is 
to move the RLO through the hole and place it on top of the left 
block, while its left vertex touches the left wall. To do so, we 
taught the following sequence: (a) pick up the RLO, (b) move 
towards the plate-with-hole until the left vertex of the RLO 
touches the plate, (c) find the hole by moving across the surface 
until the surface is lost, to be in a known state, continue until the 
opposite edge of the hole is found, (d) move to the top of the 
hole, (e) move to the left of the scene until the left plate is 
touched by the left vertex of the RLO (in this situation we have 

three contacts: with the top edge and back edge of the hole and 
with the surface of the left plate), (f) move down until the RLO 
lies on top of the left block. 

The detected contact states are listed in Table 1. Initially the 
RLO lies on top of world object number seven (E/F,7 = Edge of 
RLO has contact with Face of world object 7). After losing 
contact (N, contact state number 1 to 24), the left vertex of the 
RLO contacts the surface of the plate, world object numbers 3 to 
6, in short V/F,4. The other rows of the table follow the motion 
description above in the same way. In the next step, these 
contact states must be combined into a sequence of contact state 
transition that could be executed by our online assembly system 
as shown in [RESY01]. 

While developing these test cases, some questions or 
problems have developed: first, it is very difficult to hold the 
Phantom “still”, as is necessary to achieve stable contacts that do 
not oscillate between state “N” (no contact) and some other 
state. Therefore, we need a powerful method to eliminate 
unwanted contact state transition. Second, it is sometimes 
difficult to decide which feature of an object should be used to 
calculate a contact state. This especially holds true for complex 
objects like our plate-with-hole. While teaching the move to the 
upper back corner of the hole (Figure 4d), the system repeatedly 

Figure 3: Dataflow in the ViRop core 

User Interface

Contact State Selection

Shape Calculation

Contact Detection

Contact State Detection

State Transition Extraction

Transition Validation

Programm Generation

W
orld

M
odel

Position&
Orientation

ShapeDistance

Force

Distance

All Contact States

Main Contact state

Transition

Filtered TransitionPr
og

ra
m

ge
ne

ra
tio

n
St

at
e

ex
tra

ct
io

n
Ta

sk
sim

ul
at

io
n



 

4 

detected an unstable E/E-l contact (that is, the long edge of the 
RLO is lined with some edge of an world object). Therefore, we 
need a better way to deal with composed world objects. 
 

6. SUMMARY AND FUTURE WORK 
 
We have presented a system concept and prototypical 
implementation of a new approach for industrial robot 
programming. Based on previous work describing how to 
reliably execute manipulation tasks with sensor-based skills, our 
concept allows for intuitive and cost efficient programming of 
industrial robots, as the programmer does not require special 
knowledge about robot programming. While the current 
prototype is rather simple, first experiments with uncomplicated 
test cases have shown useful results. 

Further investigations of the program generation are 
required. Other questions include how to perform a more 
realistic simulation of the DLO and how to improve the contact 
state classification and contact state transition validation. 
 

REFERENCES 
 
[Bonnermann02] Bonnermann J.: "Virtuelle Roboter-programmierung: 

Entwurf eines Prototypen mit haptischem Eingabegerät". Master 
Thesis, Informatics Faculty, Universität Kaiserslautern, 2002 

[Cameron97] Cameron S.:”Enhancing GJK: Computing Minimum and 
Penetration Distance between Convex Polyhedron”. Int. Conf. 
Robotics and Automation (ICRA97), Albuquerque, New Mexico, 
April 1997 

[Dillmann99] Dillmann R., Rogalla O., Ehrenmann M., Zöllner R., 
Bordegoni M.: “Learning Robot Behaviour and Skills based on 
human demonstration and advice: the machine learning paradigm”. 
9th Int. Symp. of Robotics Research (ISRR), October 9-12 1999, 
Snowbird, USA, pages 229-238 

[Ehrenmann01a] Ehrenmann M., Knoop S., Zöllner R., Dillmann R.: 
„Multi Sensor Fusion Approaches for Programming by 
Demonstration”. Int. Conf. on Multi Sensor Fusion and Integration 
for Intelligent Systems (MFI), pages 227-232, August 19-22 2001, 
Baden-Baden, Germany 

[Ehrenmann01b] Ehrenmann M., Rogalla O., Zöllner R., Dillmann R.: 
"Teaching service robots complex tasks: Programming by 
Demonstration for Workshop and Household Environments”. Int. 
Conf. on Field and Service Robots (FSR), June 11-13 2001, 
Helsinki, Finnland, pages 397-402 

[Hasegawa92] Hasegawa T., Suehiro T., Takase K.: "A model-based 
manipulation system with skill-based execution". In: IEEE Trans. on 
Robotics and Automation, vol. 8, no. 5, pp. 535-544, Oct. 1992. 

[Henrich99] Henrich D., Ogasawara T., Wörn H.: "Manipulating 
deformable linear objects – Contact states and point contacts". In: 
1999 IEEE Int. Symp. on Assembly and Task Planning (ISATP'99), 
Porto, Portugal, July 21 - 24, 1999. 

[Ikeuchi92] Ikeuchi K., Suehiro T.: “Towards an Assembly Plan from 
Observation Part I: Assembly Task Recognition using Face-Contact 
Relations (Polyhedral Objects)”. In: Proc. of 1992 IEEE Int. Conf. an 
Robotics and Automation, Nice, France May 1992 

[Morrow97] Morrow J. D., Khosla P. K.: "Manipulation task primitives 
for composing robot skills". In: Proc. of the IEEE Int. Conf. on 
Robotics and Automation (ICRA'97), Albuquerque, New Mexico, 
April 1997, pp. 3354-3359.  

[Onda95] Onda H., Hirukawa H., Takase K.: "Assembly motion teaching 
system using position/force simulator – Extracting a sequence of 
contact state transition". In: Proc. of the IEEE/RSJ Int. Conf. on 
Intelligent Robots and Systems (IROS'95), vol. 1, pp. 9-16, 1995.  

[Remde99] Remde A., Henrich D., Wörn H.: "Manipulating deformable 
linear objects – Contact state transitions and transition conditions". 
In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems 
(IROS'99), Kyongju, Korea, October 17 - 21, 1999. 

 [RESY01] Henrich D., Schlechter A., Schmidt T., Yue S.: “Complete 
manipulation task of a leaf spring”. AVI-File (MPG4 encoded), 
http://resy.informatik.uni-
kl.de/projects/RODEO/Files/manipulation_task_315.avi, 2001 

[Schlechter01] Schlechter A., Henrich D.: "Manipulating deformable 
linear objects: Characteristics in force signals for detecting contact 
state transitions". In: 10th Int. Conf. on Advanced Robotics 
(ICAR'01), Budapest, 22.-25. August, 2001 

[Zöllner02] Zöllner R., Rogalla O., Dillmann R., Zöllner M.: 
“Understanding Users Intention: Programming Fine Manipulation 
Tasks by Demonstration”. Submitted to: IEEE/RSJ Int. Conf. on 
Intelligent Robots (IROS02), September 2002 

(a) (b)  (c) 

 

(d) (e) (f) 

 

Index State, Object 
0 E/F,7 
1 N 
24 N 
25 V/F,4 
37 E/F,4 
38 E/F,4 
39 N 
52 N 
53 E/F,5 
76 E/F,5 
77 E/F,5 & E/F,6 
87 E/F,5 & E/F,6 
88 V/F,1 & E/F,5 & E/F,6 
90 V/F,1 & E/F,5 & E/F,6 
91 V/F,1 & E/F,5 
97 V/F,1 & E/F,5 
98 V/F,1 & E/F,2 & E/F,5 
102 V/F,1 & E/F,2 & E/F,5 

Figure 4: Screen shots of a demonstration of an example assembly task 

 
 Table 1 Generated contact states


