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Abstract
This paper is based on a path planning approach we re-

ported earlier for industrial robot arms with 6 degrees of
freedom in an on-line given 3D environment. It has on-
line capabilities by searching in an implicit and descrete
configuration space and detecting collisions in the Carte-
sian workspace by distance computation based on the
given CAD model. Here, we present different methods for
specifying the C-space discretization. Besides the usual
uniform and heuristic discretization, we investigate two
versions of an optimal discretization for an user-predefined
Cartesian resolution. The different methods are experimen-
tally evaluated. Additionally, we provide a set of 3-
dimensional benchmark problems for a fair comparison of
path planner. For each benchmark, the run-times of our
planner are between only 3 and 100 seconds on a Pentium
PC with 133 MHz.
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1 Introduction

The issue of robot path planning has been studied for a
couple of decades and many important contributions to the
problem have been made [Hwang92]. Path planning algo-
rithms are of great theoretical interest, but are rarely used
in practice because of their computational complexity
[Kamal96]. Here, we make a step in the direction of prac-
tical path planning.

Many of the future robotic tasks (e.g. recycling, robot
guidance, tele-operation, assembly and disassembly, medi-
cal surgery) can often only be completed in dynamic envi-
ronments. Therefore, powerful on-line path planners for
industrial robots with six degrees of freedom (DOF) are
needed. The on-line capability1 means that the planner
does not require any time-consuming off-line computa-
tions in order to directly react to dynamic changes in the
environment.

An introduction to motion planning in dynamic envi-
ronments is given in [Fujimura91]. In several examples,

                                                
1 Here, "on-line" does not include to meet given time constrains as

required for "real-time".

different approaches especially for mobile robots are pre-
sented. In [Fiorini96], a motion planner for industrial
robots based on velocity adaptation is discussed. It plans
only for a 2 DOF workspace for two robots and their off-
line known movements. In [Ralli96], a potential-field
approach based on the explicit calculation of the work-
space and the C-space is proposed. When a new object is
detected, the new path is sought within a few seconds, but
the planner works only with 5 DOF in a very small search
space, which is unfavorable for industrial applications.

In summary, to date, no planners for 6 DOF robots ex-
ist, which can deal with dynamic environments and have
low on-line computation times. Our aim is to develop a
path planner satisfying these requirements for robots with
up to 6 DOF. We focus on industrial robots, which con-
stitute a considerable fraction of all robots used currently
and in future.

The remainder of the paper is organized as follows: In
Section 2 the basic approach of our on-line path planner is
introduced. Section 3 describes and compares different
methods for C-space discretization. Section 4 introduces a
set of benchmark problems for robots with 6 DOF based
on 2 DOF examples. Experimental results are given in
Section 5. The paper closes with the conclusion and an
outlook to the future research in Section 6.

2 Basic approach

Most of the off-line path planners are based on some
explicit representation of the free C-space. This representa-
tion can either be retrieved by transforming the obstacle
into the C-space and approximating the free-space or by
randomly sampling the C-space and interconnecting the
samples by collision-free links. Both approaches are very
time consuming and not suited for on-line calculations,
especially, if a full geometric CAD model for the robot
and the obstacles is used. In order to avoid these time
consuming calculations, one can search in an implicitly
represented C-space and detect collisions in the workspace.
This strategy enables the planner to cope with on-line
provided environments. See Figure 1 and 2.



For searching in the implicit C-space, any best-first
search mechanism can be applied. We choose a variation
of the well known A*-search algorithm [Hart68]. Robot
configurations (nodes) still to be processed are stored in
OPEN, while already processed nodes are stored in
CLOSED. Contrasting to the original A*, here, no re-
opening of nodes in CLOSED is performed. As evaluation
function f(n) = (1–w) g(n) + wh(n) is used, where g(n) is
the number of nodes of the path from the start node to
node n, and h(n) is the Airplane distance in C-space be-
tween node n to the goal node. Increasing the weight w ∈
[0, 1] beyond 0.5 generally decreases the number of inves-
tigated nodes while increasing the cost of the solutions
generated. To improve the on-line capabilities of the path
planner, our search is strongly directed to the goal by
setting w = 0.99 [Sandmann97].

Collisions are detected by a fast, hierarchical distance
computation in the 3D workspace, based on the polyhedral
model of the environment and the robot provided by
common CAD systems [Henrich92, Henrich97e]. With
the help of the "MaxMove Tables", introduced in
[Katz96], the Cartesian distances are then transformed into
joint angles in order to determine whether the current
configuration collides or not.

3 C-space discretization

As mentioned previously, the path planning takes place
in a discretized configuration space of the robot manipula-
tor. The resolution settlement of discretization is also an
important issue. There is a trade-off in the granularity of
discretization or resolution: too fine will increase the
search space and too coarse may result in failing to find a
path even if there exists one.

Formally, for the i-th coordinate qi of the C-space, let
Ni be the number of intervals along qi. Then we can de-
termine Ni by2
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max and qi

min are the limits of joint motions and ∆qi

is the resolution of joint i. The question is now how to
determine the ∆qi’s.

3. 1 Discretization methods

We now investigat different methods to determine the
discretization resolution ∆q = (∆q1, ..., ∆qD) of a D-
dimensional C-space. In the most simple method, the user
specifies a uniform discretization for all joints of the robot
manipulator, thus, ∆qi = c for some constant c. With a
reasonable joint resolution of one degree, the uniform
discretization result in huge C-spaces. For example, a
discretization of the Puma260’s joints with ∆q = (1°, 1°,
1°, 1°, 1°, 1°) results in a C-space with 2.13*1015 states.

To avoid the huge search space of uniform discretiza-
tion, usually a heuristic discretization is applied. Here,
reasonable ∆qi are estimated by the user to balance the
resulting Cartesian movement ∆xi when the different
joints i are moved for ∆qi. The underlying problem is
illustrated in Figure 3a. For the Puma260, one may
choose ∆q = (1°, 2°, 3°, 4°, 5°, 6°) . In this way, generally,
the nearer a joint is to the base the finer the discretization
resolution is for the corresponding joint angle.

Instead of having a uniform or a heuristic resolution
along each configuration coordinate, an optimal discretiza-
tion can be calculated. Therefore, the resolution along each
coordinate is set according to the maximum movement of
the robot endeffect at each step the robot moves along this
coordinate. The result of this discretization is illustrated in
Figure 3b. Analytically, this can be achieved by setting

                                                
2 Here, x denotes the next smaller integer of x.
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Figure 1: A 2D illustration of the path search in the im-
plicit C-space from the start qS to the goal qG using a
transformation δ(d) of the obstacle distance d for collision
detection.

d

Figure 2: Collision detection in the explicit workspace by
computing the minimum distance d between robot and
obstacles
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where li is the distance between the center of joint i to the
farthest point the endeffect can reach, and MaxMove is a
pre-set distance the robot may move at one step along the
coordinate [Qin96b].3 Altogether, the optimal discretiza-
tion results in Cartesian movements ∆xi of joint i which
meets the condition ∆xmax ≤ MaxMove, where ∆xmax =
max{∆xi, ∀i }. For MaxMove = 10 mm of a Puma260,
the optimal discretization equals to ∆q = (0.96°, 0.98°,
1.40°, 2.83°, 2.84°, 10.33°). The size of the corresponding
C-space is 1.88*1013 states. This is two magnitudes less
than for the uniform discretization (∆qi = 0.964°) applying
the same maximum movement.

Additionally to the optimal discretization with the strict
condition ∆xmax ≤ MaxMove, this condition can be re-
leased to ∆xmean (MeanMove, where ∆xmean = mean{∆xi,
∀i}.5 This is interesting in applications where it is not
necessary to meet a given upper bound for the Cartesian
movement of the robot. Instead, it may be sufficient that
the robot’s Cartesian movement equals to the pre-defined
value MeanMove in average.

The ideal discretization would result in ∆xi =
MaxMove, for all i. Unfortunately, the ∆xi depend on the
current configuration. Thus, a variable resolution along

                                                
3 This kind of geometric reasoning was used by [Lozano87] to build up

the approximation of the configuration space by calculating the
maximum movement of links. Similarly, [Beer92] used this idea to
provide analytical formulae for a specific robot model to reason on
the occupancy of C-obstacles.

4
5 Please note, that the ∆xi depent on the current configuration of the

robot. We have omitted this in the formalism for a better clarity.
Anyhow, in the most formulae, the worst case is assumed, which
restricts the robot to some straight configuration.

each coordinate is necessary. This cannot be achieved for
an implicit representation of the C-space as needed here for
on-line path planning. In the case where an explicit repre-
sentation of the C-space is applicable, a configuration
dependent resolution of C-space can be calculated. For
example, a neural network representation of the C-space
can be adapted in a training phase to achieve a good C-
space discretization [Ralli96].

3. 2 Experimental comparisons

To give a better insight to the effects of the different
discretization methods, experimental comparisons are
presented in this subsection.

The most important property of C-space discretization
for path planning is a small number of configuration
states while meeting a given (Cartesian) accuracy of ro-
bot’s motion. This can be achieved by balancing the reso-
lution of the joint discretization such that the resulting
Cartesian movements ∆xi are similar for the different
joints i. As indicator for this balance, we use the ratio
∆xmax/∆xmin, where ∆xmin = min{∆xi, ∀i } and ∆xmax is
defined as above. The ratios for the different discretization
methods are shown in Figure 4. The ratios differ about a
factor of ten between uniform and optimal discretization.

The resulting number of states in the discrete C-space
for different resolutions are given in Figure 5. There is
only a small difference between the MaxMove and Mean-
Move discretization. Huge differences in C-space size
occure between the optimal and the other discretization
methods. One can clearly improve the resolution when
changing from uniform to heuristic to optimal discretisa-
tion without changing the C-space size.
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Figure 3: (a) The uniform discretization (∆qi = ∆qj) results
in different Cartesian movements ∆xi ≠ ∆xj when different
joints i, j are moved. (b) The optimal discretization results
in equal maximum Cartesian movement ∆xi = ∆xj when
different joints i, j with distance li, lj to the endeffect are
moved. [Beeh97]
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Figure 4: The ratio of maximum to minimum Cartesian
movement (∆xmax/∆xmin) of a robot in the worst case
configuration when different joints i are moved for ∆qi.
The different discretization methods are indicated by A
through E.



The above discussed movement ratios and C-space sizes
assume the worst case. For industrial robots, the worst
case holds true when the endeffect has the greatest distance
to the currently regarded joint, thus, the manipulator is in
some straight configuration. For most applications of
path planning, the robot is far from being in this worst
case configuration all the time. There are many other type
of configurations adopted in the average case. Thus, it is
interesting how well the discretization methods work in
the average case.

For both optimal discretization approaches (MaxMove
and MeanMove), a histogram of the configuration depend-
ent ratios is given in Figure 6 and Figure 7. Therefore, all
configurations of a Puma260 which result in different
Cartesian movements per joint are regarded. For these
configurations, each joint i is moved by ∆qi and the re-
sulting Cartesian movement ∆xi calculated. The ∆xi can
be determined by the maximum distance between two
corresponding points of the robot in the two configura-
tions.6 Then the ratio ∆xmax/∆xmin is clustered into inter-
vals of size 0.1 for rendering.

We can observe that by using the optimal discretization
with condition ∆xmean ≈ MeanMove, many more ratios are
nearby one. Thus more of the robot movement are similar
to the pre-defined MeanMove. Of cause, there will be
movements greater than MeanMove and neither a maxi-
mum number of such moves nor an upper bound for this
moves is guaranteed. The ideal discretization achieves per
definition the best ratio of one for all configurations.

                                                
6 Actually, we approximate this calculation by a pre-computed

„MaxMove Table“ to look up the ∆xi’s only for the first three joints
[Katz96].

4 Benchmark problems

As a basis for an objective evaluation of the path plan-
ner, a set of test environments with corresponding prob-
lem specification (benchmark problem) is used. Here, the
problem emerges that the planner may use different ro-
bots. Since the robots differ in their construction (e.g.
geometry and kinematic), one cannot compare a problem
specification for a robot A in a test environment with the
same problem specification for a robot B in the same test
environment. Therefore, the test environments are not
specified in the workspace but schematically in a 2D
configuration space with increasing level of difficulty.

The levels of difficulty SIMPLE, STAR, and
BOTTLENECK were presented in [Hwang96]. A new
level of difficulty DETOUR is introduced including a
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step for optimal discretization ∆xmax ≤ MaxMove
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Figure 7: Histogram H of ratios of maximum to mini-
mum Cartesian robot’s movement (∆xmax/∆xmin) per joint
step for optimal discretization with ∆xmean ≈ MeanMove



shorter path nearby obstacles and a longer path staying
away from obstacles. This enables us to investigate the
path planner’s ability to find a reasonable trade-off be-
tween fast7 and short paths.

Based on these schemes, corresponding test environ-
ments together with their problem specification have to be
prepared for each type of robot. In Figure 8, examples for
a Puma260 in the robot simulation tool ROBCAD are
shown.8 More details about the generation of test envi-
ronments based on the presented levels of difficulty can be
found in [Katz96].

5 Run-time results

We have implemented the path planner on a PC work-
station with a 133 MHz Intel Pentium processor and 64
Mbytes of main memory. To compare the run-times, we
have run every benchmark problem 12 times, deleted the
lowest and highest planning times, and computed the
average of the remaining 10 values. A optimal discretiza-
tion with MaxMove = 20 mm is used, which leads to the
discretization ∆q = [1.91°, 1.96°, 2.79°, 5.66°, 5.66°,
20.66°] for a Puma260. According to the upper and lower
joint limits of the Puma260, the C-space consists of
2.99*10

11

 states.

                                                
7 „Fast“ in the sense of robot execution time
8 These benchmark problems can be downloaded from the Web page

at http://wwwipr.ira.uka.de/~paro/gkatz/benchmark.html

The planning times for the benchmark problems are
presented in Figure 9. Three of four planning times were
below 30 secs. Only the benchmark problem DETOUR
needs little more planning time [Sandmann97].

6 Conclusion and future work

In this paper, we have introduced a new approach to
path planning for industrial robot arms with 6 DOF. The
algorithm works in an implicit and discretized C-space and
the collision detection is done in the Cartesian workspace
by distance computation. This avoids the time- and mem-
ory consuming obstacle transformation and C-space calcu-
lation. The method is based on the A*-search algorithm
and needs no essential off-line computation. This approach
enables the path planner to work reasonably fast in dy-
namic environments.

By using the optimal discretization method, the C-
space resolution can be determined automatically based on
one pre-defined Cartesian value. This leads to smaller
search spaces with a unchanged solution accuracy. Addi-
tionally, the optimal discretization leads to a better exploi-
tation of the available free-space, when distance computa-
tions are used for collision detection.

The method of optimal discretization can be improved
by using a more accurate estimation of the Cartesian
movement. The linear approximation is sufficient for
small movements as they occur in our application. For
larger movements per step, an error correction according to
[Baginski97] may be appropriate.

Figure 8: The 3-dimensional test environments for a Puma260 with 6 DOF. Top row: SIMPLE and STAR, bottom row:
BOTTLENECK and DETOUR



Based on these results, we focus next on developing a
path planner which is able to cope with moving objects,
such as gripped workpieces.  To further increase the speed
of the algorithm, we are currently working on a hierarchi-
cal on-line discretization of the C-space, further reducing
the enormous size of the search space. The planning strat-
egy can also be enhanced by a multi-directional or parallel
search. Additionally, for executing the computed trajecto-
ries with a real robot, we are developing a path smoothing
method.
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