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Abstract— To provide robots for a wide range of users,
there needs to be an easy and intuitive way to program
them. This issue is addressed by the robot programming by
demonstration paradigm, where the user demonstrates the task
to the robot. While there exist a lot approaches that use
multiple demonstrations for the learning procedure, single-shot
robot programming by demonstration is still a niche. Also, all
available approaches in this niche have severe drawbacks.
The main contribution of this work is a novel one-shot pro-
gramming by demonstration approach, that performs an online
adaption of a provided trajectory to a new situation. For that,
the system regards every sample of the trajectory and every
reference (object) in the scene as a particle. These particles
interfere with each other by forces and torques that arise from
inherent potential fields. Thus, in a new situation the trajectory
will adapt to the potential fields of the relocated references
and converge to a minimum energy state. We evaluated the
approach qualitatively and quantitatively using cross validation.

I. INTRODUCTION AND STATE OF THE ART

Robots should do useful work and serve people. In order

to reach this goal still a lot of issues need to be addressed.

One of these issues is the easy and intuitive programming of

robots. Since traditional robot programming is only feasible

for experts, there needs to be a simple way to program

new abilities to a robot. Programming by demonstration,

also known as Learning From Demonstration or Imitation

Learning is one such approach, where the user can teach new

skills to the robot by providing one or more demonstrations

of the task [1]. The system will extract relevant features and

generate a generalized version of the task, which allows the

robot to reproduce the task in a new situation.

If the user provides a set of demonstrations, machine learning

algorithms can be applied to extract relevant features from

the demonstrations. The most promising and widely used

approach is the parameter estimation of Gaussian mixtures.

By providing demonstrations with altering variance over

time, the system can distinct between relevant and irrelevant

parts. The reproduction is achieved through statistical

regression techniques. The approach can be supplemented in

many directions. Recent research includes subtask extraction

[2], the combination with dynamic movement primitives

[3], incremental online learning of the mixtures [4], the

incorporation of redundancy [5], the integration of forces
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Fig. 1. Online adaption of a demonstrated trajectory using oriented
particles. The original demonstration (green) and the adaption (red) is
projected into the RGB-D image of the scene. Also, the robot is overlaid
with its model for better visualization.

by adding virtual springs [6] and the augmentation with

an obstacle avoidance [7]. All of the approaches demand

from the user to provide a set of distinct demonstration, so

the system can recognize relevant parts indicated by a low

variance. If the number of demonstrations is not sufficient,

the algorithms are not able to generalize.

To facilitate the programming of the robot, many approaches

try to lower the number of demonstrations. A widespread

approach is the use of so called (dynamic) movement

primitives or action primitives. Here, the programming is

carried out as a two-step process. In a first step, action

primitives are demonstrated, which act as building blocks. In

a second step, the user demonstrates a complete task, which

allows the system to identify the required primitives. There

exist approaches to generate dynamic movement primitives

from a single demonstration [8] [9] [10]. But only few work

has been done on coordinating these primitives in order to

recognize the complete task [11] [12] [13] [14].

A niche in the field of programming by demonstration is

one-shot learning, where the robot adapts a complete task

to a new situation from a single demonstration. One of the

previously proposed approaches is only suitable for mobile



robots [15]. The adaption of the trajectory using fluid

dynamics is only capable of two-dimensional trajectories

and requires manual post-processing [16].

Also, a global warping mechanism can be used to adapt a

trajectory [17]. But it is computationally expensive (O(n3))
and cannot handle the orientation of the robot. The approach

in [18] uses a so called non-rigid registration to transfer

a trajectory. But the authors state, that the approach relies

on strong assumptions about the registration and may fail

in complicated situations. Although there exist promising

ideas, none of the approach satisfies our demands.

In order keep the work for the user as small as possible, we

will investigate if we can teach the robot useful tasks with

just a single demonstration. The authors in [19] state, that

generalizing observations into a set of intrinsic parameters

limits the ability of user interaction, therefore we will

concentrate on the trajectory level.

The contribution of our work is a new approach to adapt

online a single user-provided demonstration online to a new

situation. In contrast to existing work in this niche, neither

an existing library of primitives nor manual post processing

is required and the algorithm is capable of adapting not

only the position of the robots tool center point, but also

the orientation in 3D space to the new scene. Furthermore

our approach provides a natural integration of a collision

avoidance, to adapt the trajectory in dynamic environments.

II. PROBLEM FORMULATION

The goal of the approach is to enable the robot to execute

an adapted version of a task in a new situation. We regard

a new situation as changed object positions and orientations

and a changed starting pose of the robot. The user provides

just one demonstration of the task. The approach should

adapt the demonstration to the new situation. The robot

should not only fulfill the task in the new situation but also

the generated motion should be similar to the demonstration.

Furthermore the reproduced motion should be identical to a

demonstration under unchanged conditions, since it reflects

the ground truth provided by the user.

In this work, we regard robotic manipulators mounted e.g.

on a table with a certain range to operate. A demonstration

consists of a trajectory T and a set of 6-dimensional refer-

ences R. The trajectory T = {t0, . . . , tn−1} represents the

n ∈ N samples(via-points) of the robot’s tool center point

ti in homogeneous 3D coordinates, including position and

orientation. A reference ri of R = {r0, . . . , rm−1} with m ∈
N represents the position and orientation of e.g. an object or a

marker in homogeneous 3D coordinates. A sample ti carries

additional information, like gripper operations. A reference

ri carries additional features for identification.

In order to adapt a demonstration to a new situation, we need

a matching of every reference ri ∈ RD of the demonstration

to the set of available references R in the current scene.

This can be achieved by feature matching or an object

recognition. The trajectory should then be bent accordingly

to the new positions and orientations of the references in

the environment. Additionally the bent trajectory should not

collide with obstacles in the new situation.

III. APPROACH

In this section we will describe our particle-based ap-

proach. In brief, we regard the user-demonstrated trajectory

as a set of particles. Each of these particles has an inherent

potential field. This potential field applies forces and torques

only on linked particles. To model the influence of the envi-

ronment, we also consider objects (references) as particles,

which influence the particles of the trajectory (Figure 2). We

Fig. 2. Trajectory as particle chain (blue), partially linked to objects ri
represented by particles (green), too.

consider the provided demonstration as an equilibrium of

all particles. When the demonstration is adapted to a new

situation, the changed object positios will apply forces and

torques to the particles since the equilibrium is disturbed.

The trajectory of particles will adapt to the new situation

by converging to a minimum energy state, which will also

maintain the overall shape of the trajectory. A collision

avoidance is easily integrated by adding repulsive potentials

to obstacles each represented as one or multiple particles.

A. Particle Dynamics

As stated, we consider every sample of the demonstrated

trajectory and each object as an oriented particle [20]. For

every trajectory particle ti we apply the standard Newtonian

equations of motion

ai =
Fi

mi

αi = I−1
i τi

vi = ȧi ωi = α̇i

pi = v̇i qi = ω̇i

where pi is the position and qi is the orientation of the

particle. The mi is the particles mass, Ii is the rotational

inertia, ai and vi are the acceleration and velocity, and αi

and ωi are the angular acceleration and velocity.

We calculate the forces Fi and torques τi for each particle i

as:

Fi =
∑

j 6=i

Fs,i(j) +
∑

r∈R

Fr,i(r) +
∑

o∈R

Fc,i(o)− FV D

τi =
∑

j 6=i

τs,i(j) +
∑

r∈R

τr,i(r)− τV D



where Fr,i and τr,i arise from the changed constraints of

the scene and its references R. The Fs,i and τs,i denote

forces and torques, that arise from the trajectory particles.

Additionally we add damping terms FV D and τV D and a

collision avoidance force Fc,i.

B. Force And Torque Calculation

The forces and torques are calculated upon different

potentials. Each particle inherits a shape potential φs, that

tries to replicate the shape of the trajectory. In other words,

a particle tries to remain its position and orientation from

the demonstration w.r.t. its neighbors.

Thereto, we analyze the interconnections of the particle ti to

its neighbors tj . We re-project every particle tj as t
j
i , based

on the initially demonstrated relationship tDi and tDj .

t
j
i = tj · t

D
j

−1
tDi

We denote p as the position of t and q as the orientation of

t in quaternion notation.

The resulting force Fs,i on particle pi is calculated as

Fs,i(pj) = −∇pφs = |pji − pi|
2 · (pji − pi).

The torque is calculated as

τs,i(qj) = −∇qφs = |qji · q
−1
i |2 · (qji · q

−1
i ).

The force and torque will push the particle ti back to

its relative position and orientation w.r.t. particle tj from

the demonstration. The force and torque will increase with

growing displacement between demonstrated and current

position. This will result in a global maintaining of the

trajectory.

To adapt the trajectory to the constraints of the current

situation, a reference potential φr is applied. It tries to repli-

cate the trajectory w.r.t. each reference within the situation.

Therefore the force Fr,i and the torque τr,i are applied to

the trajectory particles. We calculate the forces analogously,

but for all linked reference particles tr.

tri = tr · t
D
r

−1
tDi

Fr,i(pr) = −∇pφr = |pri − pi|
2 · (pri − pi) · ψ(p

D
i , p

D
r )

Analogously for the torque:

τr,i(qr) = −∇qφr = |qri · q
−1
i |2 · (qri · q

−1
i ) · ψ(pDi , p

D
r )

Where ψ is a weighting term, calculated as:

ψ(pDi , p
D
j ) =

dmax − |pDi − pDj |

dmax

In our case, we want to make sure that positions of the tools

center point w.r.t. objects are reproduced more exact with

lower distance. I.e. contact states must be identical, while

approaching motions may vary with increasing distance. The

estimation of parameter dmax will be discussed in the next

section.

A collision potential φc shall avoid collisions of particles

with obstacles o in the scene. Since we only want to avoid

the collision, we do not need to alter the orientation. We

calculate the force Fc,i between particle position pi and

obstacle position po as

Fc,i = −∇φc =
1

|pi − po|2
· (pi − po)

We also apply a damping realized through viscous drag to

avoid high translation and angular velocities. The damping

force and torque are calculated as

FV D = −v · sV D

τV D = −ω · sV D

with a scalar damping factor sV D.

Fig. 3. Force Fs,i(j), denoted as Fij resulting from the re-projection of

tDi w.r.t. tj as t
j
i

C. Particle Links

In particle simulations usually all particles within a

certain range influence each other. I.e. the distances between

all particles are calculated and scaled forces are applied

to each particle. This often leads to a run-time complexity

of O(n2). Since in our case the particles have a strict

temporal order, we do not need to calculate all possible

combinations. We only calculate and apply the forces and

torques to linked particles. We choose links complying with

our domain and link particle ti with its succeeding particle

ti+1. This will attempt to maintain the overall shape of

the trajectory. We also link some of the trajectory particles

with reference particles. This refers directly to ”what has

to be learned” of the five-W problems from Section I. In

the machine learning approaches, the problem is usually

solved implicitly. An approach, that deals particularly with

the problem can be found in [2]. Since it is not the focus

of this paper, we will use the regular way of particle

simulation and link all trajectory particles within a certain

range dmax to the object particle. This is valid since in

pick-and-place and manipulation tasks, different parts of

a demonstration usually relate to different objects. We set

dmax = 2 · smax, where smax is the largest diameter of

each of the reference objects bounding spheres. We use this

high threshold because of the possible usage of an object as

a tool. More domain-specific approaches could be exposed

in future work.



We also link all trajectory particles dynamically to obstacles

in the scene to apply the collision avoidance force. As an

obstacle, we regard every reference in the scene, which was

not linked to the particle due to the demonstration. A link

for collision avoidance is created, if a particle’s distance

is lower than twice of the obstacle’s bounding sphere. The

link is removed again, if the distance exceeds this threshold.

To conclude, we do not link each and every particle.

Usually there are more trajectory particles than references

and obstacles in the scene. Therefore the complexity reduces

to a maximum of O(2n+ rn+ on) ≈ O(n) if we link all n

particles only to their successor particle, to all o obstacles,

and to all r references.

D. Numerical Integration

The commonly used Euler integration in simulations suf-

fers from numerical instabilities and drift, especially with

bigger step sizes. We use a Runge-Kutta method instead to

overcome the issues in numerical integration. We estimate

the position p(t+ 1) as

p(t+ 1) = p(t) +
1

6
· dt · (vk1 + 2vk2 + 2vk3 + vk4)

with

pk1 = p(t) vk1 = v(t)
pk2 = p(t) + 1

2
mvk1 vk2 = v(t) + 1

2
mFk1

pk3 = p(t) + 1
2
mvk2 vk3 = v(t) + 1

2
mFk2

pk4 = p(t) + 1
2
mvk3 vk4 = v(t) + 1

2
mFk3

The orientation is calculated analogously from the torques

and the angular velocities.

As soon as the positions and orientations of the reference

particles are updated according to the new situation infor-

mation, the trajectory starts to adapt to it. The adaption ends

if the kinetic energy E in the system reaches a manually set

threshold of E < ǫ. The kinetic energy E of the system is

calculated from the velocity and the angular velocity of all

particles as

E =
∑

i

1

2
mv2 +

∑

i

1

2
Iω2

IV. EXPERIMENTAL RESULTS

A. Experiments

We tested our approach in an experimental setup using a

Kuka LWR IV Robot equipped with a Schunk PG70 gripper.

An overhead RGB-D camera (Softkinetic DepthSense 325)

was used to detect objects in the workspace, which were

identified through augmented reality (AR) markers. The

trajectory was obtained while the user guided the robot

through the task. A filtering was applied to the trajectory

to remove neighboring samples with zero distance.

We evaluated our approach in various experiments. We

performed a quantitative cross validation against human

demonstrations in Experiment 1 similar to those in [17]. We

also performed a qualitative validation of the approach in

Experiment 2. A preliminary video, which shows the online

adaption of a trajectory, is available on our website1.

1) Experiment 1: The first experiment aims at a quanti-

tative evaluation of the approach. Like [17], we went for a

general grasping, which is often used in robotic applications.

We demonstrated the task, denoted as T1, in 5 different ways

(series S1 to S5) with 20 repetitions each. This results in

100 · 100 = 10.000 cross validations. The task T1 consists

of the following five series:

• Series S1 is a straight and direct grasping movement.

• Series S2 is based on S1, but the whole scenario is

rotated by 90◦ around vertical up vector.

• Series S3 is based on S1, but only the target is rotated

by 90◦ around up.

• Series S4 is a grasping with arbitrarily chosen 3D

orientations and positions of the robot and the target.

• Series S5 is is based on S1, but with an obstacle on the

way to the target.

We did a pair-wise comparison of each demonstration and

every possible reproduction. Therefore we took the refer-

ences RD
input of a demonstration (input) and adapted an-

other demonstration to this new positions (output). This was

achieved by setting the references RD
input from the input as

references for reproduction to the output Routput = RD
input.

Afterwards, we compared the reproduced output trajectory

with the human demonstrated input trajectory and calculated

two performance metrics. In analogy to [17] we calculated

the mean squared difference MSD as

MSD =
1

N

N
∑

i=1

||pri − pi| |

where pri is the position of the reproduced sample (output)

and pi is the input sample position. The calculated values

give insight on how close the reproduced trajectory is to a

human demonstration.

We also calculated the correlation coefficient R2 as

R2 =

∑N

i=1(pi − p̄) · (pri − p̄r)
√

(
∑N

i=1(pi − p̄)2) · (
∑N

i=1(p
r
i − p̄r)2)

where p̄ and p̄r are the arithmetic means of pi and pri . The

correlation coefficient indicates how similar a reproduced

path is to a human demonstration.

Both metrics require that the input vectors being the same

length. To guarantee that, we interpolated the shorter trajec-

tory using a Hermite spline.

2) Experiment 2: The second experiment was meant to

evaluate the qualitative results of the approach. Therefore

we provided various demonstrations, which were adapted to

new situations afterwards. The demonstrations were divided

into simple (T2) and a more complex task (T3). The goal

of the experiments is the reproduction of the tasks with

changed orientations and positions of the targets while the

characteristic movements are kept. In T2 we demonstrated a

bow to a target and an arrowhead-like movement at the target

1http://ai3.uni-bayreuth.de/projects/introp



(Figure 4). In the adaption phase, we displaced and rotated

the targets. In T3 we demonstrated the ironing of a piece of

cloth to the robot. Afterwards we displaced and rotated the

iron and the ironing board (Figure 6).

Since robots often work in places with a highly dynamic

environment, we also investigated the capabilities to adapt a

demonstration to a new situation in the presence of obstacles

in task T4. Therefore we placed an obstacle in the way of

an adapted trajectory (Figure 5).

B. Results

Regarding Experiment 1, for the case of the 100 self-

mappings, where a demonstration is adapted to identical

references, we consequently receive MSD = 0 and R2 = 1.

The system will act like in playback mode, which was one

of our requirements in Section II since it perfectly reflects

the users intended trajectory.

Tables I and II show the arithmetic mean of the performance

metrics for each group of input / output series. In

TABLE I

MSD FOR ADAPTED SERIES OF T1

input

output S1 S2 S3 S4 S5

S1 0.000921 0.000532 0.00293 0.00316 0.0118

S2 0.00064 0.000212 0.00475 0.00322 0.0141

S3 0.00371 0.00495 0.00155 0.00592 0.00784

S4 0.00444 0.00127 0.00655 0.00109 0.016

S5 0.0123 0.00663 0.00555 0.0143 0.00116

TABLE II

R2 FOR ADAPTED SERIES OF T1

input

output S1 S2 S3 S4 S5

S1 0.995 0.988 0.938 0.968 0.926

S2 0.994 0.998 0.911 0.962 0.905

S3 0.955 0.808 0.974 0.918 0.961

S4 0.96 0.967 0.901 0.989 0.892

S5 0.928 0.817 0.956 0.887 0.987

both tables, we can recognize reasonable results of our

approach. We receive pretty low MSD, which indicates

only few aberration to the human demonstrations. But more

important, we receive a minimum correlation coefficient of

R2 = 0.808 and a maximum of R2 = 0.994 off the diagonal.

Furthermore 84% show a value of above 0.9 This means,

the overall shape of the reproduction shows great similarity

to the human demonstrations. Of course, the coefficients

are lower on S4 and S5. The task is more complicated and

therefore, the human provided demonstrations differ more

from each other.

We can recognize that the algorithm is able to adapt a

demonstration to a new situation with changed starting

position of the robot and with arbitrary changed object

positions and orientations even in the presence of an obstacle.

(a)

(b)

Fig. 4. 3D Demonstration (trajectory red, objects green) and reproductions
with changed positions and orientations (trajectory and objects blue) of T2
with dmax = 0.2 (a) and dmax = 0.4 (b)

The quality of the data shows, that the reproduction is

similar to the motion a human would perform under these

conditions.

Figures 4 to 6 show the qualitative results of the approach.

As one can see in Figure 4, the typical bow-motion of T2 is

maintained, as well as the arrowhead, which was drawn at

the target location. While the arrow adapts to the orientation

of the target marker, the bow is stretched. If we alter the

the parameter dmax, the transfer-bow will slightly change

and lose its straight motion with increasing dmax, but the

adaption will speed up. If we lower dmax, the adaption

will take longer since less particles are directly linked

to the environment, but as long as some of the particles

are linked, the target motion is maintained. The figures

additionally show the adaption to different z-levels, which

is also handled very well by the algorithm.

In Figure 6 one can see the adaption of the ironing task

T3. For better visualization, the robot model is reprojected

into the scene. Part (a) shows the demonstration process,

while parts (b) - (d) show the reproduction of the adapted

trajectory. Parts (e) - (h) show the step-wise adaption of the

trajectory. One can recognize that the particles, which are

directly linked to the environment, are adapted at first. By



(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. T4: The first row shows the evolving of a demonstration (green trajectory) to a new situation (red trajectory). The second row (e - h) shows the
evolution of the trajectory in the presence of an obstacle.

(a) Demonstration of the task (b) (c)

(d) (e) (f) Reproduction of the task

Fig. 6. The task is demonstrated to the robot via kinesthetic teaching (a), adapted to the new situation (b-e) and reproduced by the robot (f)

and by the remaining particles adapt to the new situation. It

is noteworthy, that dmax is limited to dmax = 0.35m, since

the ironing board is that big. The amount of displacement

is limited due to the workspace of the robot. Since the tool

operations are attached to the particles, the robot is able to

manage pick and place operations, like with the iron.



In Figure 5 we can see the adaption of the particles in the

case of an obstacle (T4). The trajectory is adapted to the

new situation and immediately bend around the obstacle to

avoid a collision. By and by the bulge of the trajectory is

smoothed out, resulting in a cleaner motion. In our case, we

only consider the robot tool center point, but the approach

could easily be extended to take into account a complete

robot model.

The figures of the qualitative reproduction confirm

the quantitative results. The produced trajectories have

obviously high similarity with the human demonstrated,

while simultaneously being able to solve the task.

Although we applied the mentioned filtering of the trajectory,

we can still observe a positive effect of the time-discrete

sampling. Motions, that need precision, are demonstrated

more slowly, yielding in more samples with lower distance

in between. Motions that are executed faster and more

vague, like the bowed transfer in T2, have weaker links.

If the user demonstrates parts very fast, he is most likely

aware of being inaccurate. Since these are the parts, which

are not required to be reproduced very precise, the system

should be allowed to adapt these parts stronger. And this

is exactly how the system behaves. The slower parts have

stronger links, hold together more tightly and are therefore

reproduced more exactly than the loosely linked particles

due to fast user motions.

V. CONCLUSIONS AND FUTURE WORK

This paper presents a new approach to programming by

demonstration through a single demonstration. The approach

regards every sample of a trajectory and every reference as

an oriented particle in a particle simulation. We defined the

necessary forces and torques to adapt a demonstration to a

new situation. The approach adapts a demonstration based

on the defined references. In contrast to existing work, the

algorithm only expects a single demonstration and is capable

of adapting the orientation of the robot. No manual post-

processing is required and a collision avoidance is integrated.

The adaption works online, i.e. the trajectory is updated

whenever the references change position or orientation. We

provided qualitatively and quantitatively results by compar-

ing the adaption with human ground truth data.

The experiments show, that the approach is able to learn and

generalize a task from a single demonstration. Although the

tasks may seem trivial in robotics, one has to remember the

constraints of the algorithm. The system only expects one

demonstration from the user and it is not aware of what

has been shown. It does not recognize, that for example

a pick and place task has been demonstrated. It is also

completely unaware of the effects it is triggering. There

is neither deduction of the actions nor a priori knowledge.

Nevertheless, the system is able to adapt a demonstration

to a new situation with just one demonstration and a set of

references.

The approach can be easily extended by additional forces

and torques to match the requirements of other robots and

their applications. I.e. a collision avoidance force could be

added which takes the complete robot model into account.

Further work may focus on the initialization of the parti-

cle links and on the integration of the approach into our

behavior-based system [23] [21] [22].

REFERENCES

[1] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey
of robot learning from demonstration,” Robotics and Autonomous

Systems, vol. 57, no. 5, pp. 469–483, May 2009.
[2] D. H. Grollman and O. C. Jenkins, “Incremental learning of subtasks

from unsegmented demonstration,” 2010 IEEE/RSJ Intelligent Robots

and Systems (IROS), pp. 261–266, Oct. 2010.
[3] S. Calinon and Z. Li, “Statistical dynamical systems for skills

acquisition in humanoids,” Humanoids, 2012.
[4] T. Cederborg, A. Baranes, and P.-Y. Oudeyer, “Incremental local

online Gaussian Mixture Regression for imitation learning of multiple
tasks,” Intelligent Robots and Systems (IROS), Oct. 2010.

[5] A. Wrede, Sebastian Emmerich, Christian Grünberg, Ricarda Nord-
mann, A. Swadzba, and J. Steil, “A User Study on Kinesthetic
Teaching of Redundant Robots in Task and Configuration Space,”
Journal of Human-Robot Interaction, vol. 2, no. 1, pp. 56–81, 2013.

[6] L. Rozo, S. Calinon, D. Caldwell, P. Jim, C. Torras, and I. D. Rob,
“Learning Collaborative Impedance-based Robot Behaviors,” AAAI

Conference on Artificial Intelligence., 2013.
[7] G. Ye and R. Alterovitz, “Demonstration-guided motion planning,”

International Symposium on Robotics, 2011.
[8] S. Schaal, J. Peters, J. Nakanishi, and A. Ijspeert, “Learning

movement primitives,” Robotics Research, pp. 1–10, 2005.
[9] J. Peters and S. Schaal, “Policy learning for motor skills,” Neural

Information Processing, pp. 233–242, 2008.
[10] P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal, “Learning and

generalization of motor skills by learning from demonstration,”
Robotics and Automation (ICRA), pp. 763–768, May 2009.

[11] R. Dillmann, O. Rogalla, M. Ehrenmann, R. Zollner, and M. Borde-
goni, “Learning from Human Demonstration and Advice: the machine
learning paradigm,” Robotics Research, vol. 9, pp. 229—-238, 2000.

[12] R. Zollner and M. Pardowitz, “Towards cognitive robots: Building
hierarchical task representations of manipulations from human
demonstration,” Robotics and Automation (ICRA), 2005.

[13] R. Zollner, T. Asfour, and R. Dillmann, “Programming by
demonstration: dual-arm manipulation tasks for humanoid robots,”
Intelligent Robots and Systems (IROS), vol. 1, pp. 479–484, 2004.

[14] S. Niekum, S. Osentoski, G. Konidaris, and A. G. Barto, “Learning and
generalization of complex tasks from unstructured demonstrations,”
Intelligent Robots and Systems (IROS), pp. 5239–5246, Oct. 2012.

[15] P. E. Rybski, K. Yoon, J. Stolarz, and M. M. Veloso, “Interactive Robot
Task Training through Dialog and Demonstration,” Forbes, 2007.

[16] H. Mayer, I. Nagy, and A. Knoll, “Adaptive control for human-robot
skilltransfer: Trajectory planning based on fluid dynamics,” Robotics

and Automation (ICRA), pp. 10–14, 2007.
[17] Y. Wu and Y. Demiris, “Towards One Shot Learning by imitation

for humanoid robots,” in Robotics and Automation (ICRA), 2010, pp.
2889–2894.

[18] J. Schulman, J. Ho, C. Lee, and P. Abbeel, “Learning from
Demonstrations Through the Use of Non-Rigid Registration,”
International Symposium on Robotics Research, 2013.

[19] H. Friedrich, R. Dillmann, and O. Rogalla, “Interactive robot
programming based on human demonstration and advice,” Sensor

Based Intelligent Robots, 1999.
[20] M. Müller and N. Chentanez, “Solid simulation with oriented

particles,” ACM SIGGRAPH 2011 papers on - SIGGRAPH ’11,
vol. 1, no. 212, p. 1, 2011.

[21] C. Groth and D. Henrich, “Multi-Tasking of Competing Behaviors on
a Robot Manipulator,” in Intelligent Robots and Systems (IROS), 2013.

[22] C. Groth and D. Henrich, “Single-Shot Learning and Scheduled
Execution of Behaviors for a Robotic Manipulator,” in 41st

International Symposium on Robotics, 2014.
[23] C. Groth and D. Henrich, “One-shot Robot Programming by Demon-

stration by Adapting Motion Segments,” in Robotics and Biomimetics,
2014.


