
One-shot Robot Programming by Demonstration
by Adapting Motion Segments

Christian Groth and Dominik Henrich†
Lehrstuhl für Angewandte Informatik III

Universität Bayreuth, D-95445 Bayreuth, Germany

Abstract— In order to provide robots for a wide range of
users, they must be easily programmable. This is addressed by
various approaches of programming a robot by demonstration,
where the user guides a robot through the task.
We propose an approach that adapts a once demonstrated
trajectory to a new situation. The system extracts the relevant
reference frames using a weighting function. Then, the demon-
strated trajectory is segmented with respect to these frames
and different frame-dependent strategies for reproduction are
applied. The approach is capable of adapting simple point-to-
point paths, more complex tasks like pick-and-place operations,
and manipulations where objects are used as tools. Additionally,
the system extracts the required resources for a task to integrate
the approach into a behavior-based system, which manages
new programmed behaviors and selects a suitable behavior
in a new situations. The approach is computationally efficient
and comprehensible for the user. We evaluated the approach
qualitatively and quantitatively using cross validation.

I. INTRODUCTION AND STATE OF THE ART

Since traditional robot programming is tedious and only
feasible by experts, there is a strong need for concepts
to easily program a robot. Programming by Demonstration
(PbD) is such an approach, which allows even non-experts
to program a robot just by guiding it through the task.
The system extracts relevant task features, allowing the
reproduction of the task in new situations.
The demonstration can be provided on a symbolic level or
on a trajectory level. On the symbolic level, often predefined
primitives are used, such as (dynamic) movement primitives
or skills, which act as building blocks for complex tasks.
The challenge is to identify these primitives, find appropriate
parameters, and compose them [1] [2] [3]. This has been
investigated for just one demonstration in [4] [5] and [6].
If multiple demonstrations are available, the recognition
of primitives may be improved and even alternative task
executions can be provided [7] [8]
On the trajectory level, usually multiple demonstrations are
available. This allows the application of various machine
learning algorithms. A good survey is provided by [9]. More
recent research can be found in [10] [11] [12] [13] [14].
Only little research addresses the problem of adapting the
trajectory of a single demonstration to a new situation. But,
existing approaches rely either on additional information like
speech input [15] [16] or on manual post-processing of the

†This work has partly been supported by the Deutsche Forschungsge-
meinschaft (DFG) under grant agreement He2696/15 INTROP.

trajectory [17]. A very promising approach in [18] uses a
computationally expensive global warping technique to adapt
a path to a new scene, but it is not able to adapt the robots
orientation.
Since predefined primitives may limit the space of motions
that can be programmed, we concentrate on the trajectory
level. In order to reduce the teaching burden for the user, we
investigate how we can program useful tasks to the robot,
using just a single demonstration. In contrast to existing
work, we give an analytic solution to trajectory adaption,
that utilizes local features. I.e. not all of the features from
the demonstration must be present to allow the reproduction
to begin. Instead, the system adapts the demonstration piece-
wise to the new situation.
Additionally, we want to integrate the approach in a
behavior-based system. Contrasting, in most approaches the
execution is triggered by the user. Exceptions can be found
in the mobile robotics domain [19] [20]. Since a useful robot
in the household should not need to learn the task over and
over again before execution [21], it has to store the behaviors
and select a suitable behavior for each situation by itself.
Therefore we will integrate the approach into our behavior-
based system [22].
Summarizing, many approaches to Programming by Demon-
stration that rely on multiple demonstrations exist. Ap-
proaches based on a single demonstration are computation-
ally expensive, cannot adapt the robot orientation, require
manual post-processing, or can only recognize predefined
actions (primitives). Additionally, the execution is mostly
triggered by the user. In this work, the main contribution
is a Programming by Demonstration approach on trajec-
tory level that gives an analytic solution to adapt a single
demonstration to a new situation. The algorithm is able to
cope with new robot configurations and new object positions
and orientations. Furthermore, the systems stores previous
demonstrations and is able to select a demonstration, that is
suitable to be adapted to the new situation.
The remainder of this paper is organized in a quite standard
manner: Problem Formulation, Approach, Experimental Re-
sults, and Conclusions.

II. PROBLEM FORMULATION

The aim of the approach is to enable the robot to execute
an adapted version of a task in a new situation under
new constraints, like a changed starting pose and changed

object positions and orientations. The user provides just one
demonstration for every task. The adapted trajectory should
fulfill the task in the new situation and have similarity with
the corresponding demonstration. Furthermore, the repro-
duced motion should be identical to a demonstration under
unchanged constraints, since it is the ground truth from the
user.
In this work, we regard robotic manipulators mounted e.g. on
a table or a mobile platform with a certain range to operate.
A demonstration consists of a 6-dimensional trajectory T =
{t0, . . . , tn−1} with n ∈ N of the robot’s tool frame ti
in 3D space and a set of 6-dimensional reference frames
F = {f0, . . . , fm−1} with m ∈ N, where each frame defines
a position and rotation in 3D space. A sample (via-point) ti
can carry additional tool operations, like the gripper position.
A single reference frame fi is defined by, e.g., an object,
a marker, or a part of the robot. We will denote reference
frames defined by objects as object frames.
In order to adapt a demonstration to a new situation, we need
a mapping of every sample ti ∈ T to the set of relevant
frames F̃i:

∀ti ∃ F̃i ⊆ F

This mapping tells us to which frames the current sample
is related to. We realize this mapping via a m × n weight
matrix W where each matrix element wij carries the weight
of a frame fi with respect to a sample tj . Thus, W provides
the relevance of each frame w.r.t. every sample.
Moreover, we need a function rep() that calculates a robot
trajectory T r from a demonstrated trajectory T , the existing
frames in demonstration F , and the corresponding frames F r

in the new situation, which may have changed positions and
orientations. Of course this function will need W to calculate
the new trajectory:

T r = rep(T, F, F r,W)

Based on a demonstration, this function will generate a
trajectory in the new situation while considering the weight
of each frame to every sample. The calculation of W and
the rep() function are discussed in the next section.

III. APPROACH

A. Concept

As mentioned in Section II we need to calculate W in
order to allow the function rep() to reproduce the trajectory
to the new situation. Of course there is no free lunch. If we
provide less information, we need to make some assumptions
to calculate W .
First assumption: Most of the useful robot activities involve
objects. Objects can be manipulated or act as tools to
manipulate other objects. Thus, here every object’s initial
position and orientation in the scene will define a reference
frame. Another frame will be defined by the robot’s tool of
the initial pose.
Second assumption: Every sample point tj of the demon-
stration can be associated with only a single reference frame

fi:

∀j : tj → fi.

This will ease things a lot, because now we may divide the
trajectory into segments with every segment being exclu-
sively related to an object or to the robot itself.
With these assumptions, we can calculate the weight of a
reference frame fi with respect to a sample tj by means of
a distance function dist(fi, tj) ≥ 0. The distance function
may be based on spatial features like the Euclidean distance
between tj and fi, on temporal features, on a global homo-
geneity criteria or even on social cues.
We consider reference frames with smaller distance to be
more important. Therefore we define a m × n reference
matrix R with elements rij by:

rij =
1

1 + dist(fi, tj)

Exploiting the second assumption, we use R and define a
m× n segmentation matrix U with elements uij by

uij =

{
1, if rij = min

k
(rkj) and rij < dmax

0, otherwise

We assume rij 6= rkj for i 6= k. For the unlikely case of
an identical distance of a sample to different frames, we
select by random. The threshold dmax discards the influence
of a too distant frame fi. This means, the reference frame
with the smallest distance within a threshold dmax is con-
sidered relevant for the sample and all others are considered
irrelevant. The computation of dmax will be discussed in
Section IV-A. In U , some of the columns will only consist
of zeros. We have to decide which reference frames are
relevant for these. We assume that these trajectory samples
belong to transfer motions between the preceding and the
subsequent reference frame. Therefore, we have to assign
these samples to the preceding and subsequent frame by
adjusting the matrix elements which refer to these frames.
Based on U , we can finally define W . We define for every
c the column wc of W by

wc =

{
uc, if

∑m−1
i=0 uic = 1

0.5 · up + 0.5 · us, otherwise

Here, up denotes the nearest preceding column and us the
nearest subsequent column. These columns are defined by

m−1∑
i=0

uip = 1, |p− c| = min, p < c

and
m−1∑
i=0

uis = 1, |s− c| = min, s > c

The columns up and us determine the relevant frames for the
transfer. For better understanding, we give a short example

of W as

W =

1 0.5 0.5 0 0 0
0 0 0 0 0 0
0 0.5 0.5 1 0.5 0.5 ...
0 0 0 0 0 0
0 0 0 0 0 0

For the first sample t0, the relevant reference frame is f0. For
sample t3 it is f2. Between these samples a transfer motion
is assumed and a weighting of 0.5 for frames f0 and f2 is
set. If there is no subsequent frame, the samples are assigned
to the last referenced frame, since it could be some detach-
movement from an object.
As we assume that we can assign every sample to one
reference frame, we will introduce transfer frames, which
are calculated from the subsequent and preceding reference
frame if the mapping is ambiguous. The construction of these
transfer frames will be shown in the next section.
Now, if we assign every sample to the highest weighted refer-
ence frame and the ambiguous samples to the transfer frames,
we receive a segmented trajectory. Some of the segments are
related to existing frames alternated with transfer segments.
The segmentation may seem over-complicated at first glance.
But there are some advantages against a conventional dis-
tance based segmentation. First, we do not have to care if
the trajectory starts or ends in an object frame or in a transfer
frame. We can just apply the calculation rules. Second, if the
trajectory leaves an object frame at tk and returns to it at tm,
the algorithm will also assign the samples between tk and tm
to the object frame. This is e.g. useful if the robot executes
handling on an object and has to depart from the object for
the handling.
The adaption of the segments is described in the next
sections.

B. Demonstration Phase

As described in the last section, we segment the demon-
strated trajectory into subtrajectories, each associated to
either an object frame or to a transfer frame.
All samples within the distance threshold are assigned to
an object frame fi. As stated, every frame holds at least
a spatial coordinate system. We use the coordinate system
inherent to the object, which is unambiguous in our case. The
system should reproduce the trajectory segments associated
to objects in a very exact way, since the object could be
manipulated by this motion.
All samples that are not mapped to object frames, are mapped
to transfer frames (Figure 1). We denote the set of all transfer
frames as V . The reproduction of the transfer motion must
satisfy the constraints of the new situation. Since a transfer
motion depends on the preceding and subsequent frame, we
calculate the transfer frame from the origins Op and Os of
these frames. We also make use of the cutting points pcut,s
and pcut,p of the object frames’ hulls, defined by dmax, and
the connection line between Op and Os. The transfer frame
is an orthogonal right hand coordinate system xV , yV , zV

with its origin at pcut,p and calculated as

xV = pcut,s − pcut,p

xV ⊥ yV, xV ⊥ zV, yV ⊥ zV

‖yV‖ = 1, ‖zV‖ = 1

∠ (zV, g) = min

where g is the negative gravity vector pointing up.
After having calculated the object and transfer frames,

Fig. 1. 2D example of generated frames using a spatial distance function.
The demonstration consists of two objects O1 and O2 and the first tool
center point O0. The blue parts of the trajectory are transfer motions, while
the red parts relate to the objects. The associated frames are marked in the
same colors.

we transform each sample tj of the demonstrated tra-
jectory T into its frame. First we separate the trajec-
tory into the segments of points 〈Tk〉frame by T =
〈T0〉world 〈T1〉world ... 〈Tn−1〉world. I.e. all points remain rel-
ative to the world coordinate system. Each segment Tk
represents the membership to the same frame, which is
provided by the weight matrix W . Now we can transform the
points into the object frames F and transfer frames V . We
use the transformations fiMworld for each frame fi ∈ F ∪V
and denote the new transformed segments Tk as

〈Tk〉fi = fiMworld 〈Tk〉world .

C. Reproduction Phase

In reproduction phase we extract the reference frames
F r for all objects that correspond to the objects of the
demonstration by means of a matching function, which is
described in [22]. The transfer frames V r are created analo-
gous to the demonstration phase in Section III-B. Afterwards
we extract the transformations F r

Mworld for all frames F r

analogous. With this, we can reproduce the trajectory in the
new situation by transforming the segments Tk from the
frames into the world frame by

〈Tk〉world = fr
iMworld

−1 〈Tk〉fi
with f ri ∈ F r ∪ V r.
When reproducing the trajectory in a new situation, we
may encounter some harsh changes due to strongly rotated

or displaced objects. To generate smooth trajectories, we
introduce a blending between the transfer frames and the
object frames (see Figure 2). For this, we reuse the distance
function from Section III-B with a higher threshold dblend,
which will enlarge the space. For all transfer samples which
would be mapped to the object frame with threshold dblend
but are not mapped with threshold dmax, we blend the
trajectory according to the transfer frame and the trajectory in
the object frame. Thus, for all tj with dmax < dist(fi, tj) <
dblend we recalculate the reproduced sample point trj as

trj = blend(dnorm) · v
r

Mworld
−1 · vMworld · tj+

(1− blend(dnorm)) · worldMfr
i
· fiMworld · tj

The v and vr are the transfer frames in the demonstration
and reproduction. The fi ∈ F and f ri ∈ F r are the object
frames in the demonstration and in the reproduction. The
first term is the position in the transfer frame. The second
term is the original sample, treated as if it was related to the
object frame.
The normalized distance dnorm is calculated from the sam-
ple’s distance to the origin of the nearest object frame fi
as

dnorm =
dist(tj , F

r)− dmax

dblend − dmax
.

To get a smooth transit, we use the sigmoid function with
empirically determined parameters

blend(dnorm) =
1

1 + e−16·(dnorm−0.5)

with a relevant range of values between 0 and 1. When
the trajectory is reproduced by the robot, we will need
an interpolation of the trajectory due to eventually large
distances from the scaled trajectory points. We use piece-

Fig. 2. 2D example of the blending (dark green) between an object frame
(red) fo,2 and a transfer frame (blue).

wise linear interpolation, due to a high number of available
samples.
Summarizing, the adaption of a demonstrated trajectory is
accomplished as follows: First, the demonstrated trajectory
is divided into segments, based on the reference frames. Each
segment is assigned to a reference frame or a transfer frame.
In reproduction, the segments are transformed according to
their displaced and rotated reference frames. This causes the
segments, which belong to transfer frames not only to be

rotated and displaced as well, but also to be stretched or
shortened. The blending will take care of smooth transitions
between the reproduced segments.

D. Multiple Behaviors

In [22] we already presented a behavior-based system,
where concepts from modern operating systems domain
have been adapted to the robotics domain. The system is
able to execute state-machine-based behaviors by concurrent
resource management. It is possible to interrupt and to
resume behaviors safely. Here, we transform the sequence of
subtrajectories into a behavior. Multiple of these behaviors
can be triggered and executed in parallel by our system.
In brief, a behavior is modeled as a Mealy machine B =
[S,C,A, δ, ω, s0, sF], where S denotes a set of states, s0
and sF denote the initial and final state, A denotes a set of
actions and C a set of conditions. The transition function δ
is given as δ : S×C → S and the output function ω is given
as ω : S×C → A. In this application every action a ∈ A of
a state stores the current subtrajectory in the corresponding
frame (ak = 〈Tk〉fk). As transition condition c, we take
the objects from the demonstration which were used to
construct the corresponding frame (ck = {fk, [fk+1]}). If
it is an object frame, we set the second condition [fk+1]
to the empty condition ε. In execution, the system uses
matching techniques, which are described in [22], to identify
the corresponding objects needed for the transition condition.
In this case it will return objects of the same type as in
the demonstration. It will extract the frames and reproduce
the trajectory according to the new frames. The system can
switch between these behaviors by saving the current state
and preemption of needed resources. It will also care for the
blending between the frames.
The system is also capable of executing available tasks
segment-wise. I.e. if we cannot reproduce the complete
demonstration due to missing objects, the system will re-
produce the task as far as possible, switch to another task,
and resume to the prior task, when the rest of the demon-
stration can be reproduced. Through the segmentation of the
trajectory and the explicit mapping to a frame, we can make
full use of the approach in [22].

IV. EXPERIMENTAL RESULTS

A. Experiments

We tested our approach in an experimental setup contain-
ing a robotic arm mounted on a table. This setup is favorable
for applications in domains like laboratories, households, and
workshops. All experiments are performed by a Kuka LWR
IV Robot with 7 degrees of freedom equipped with a Schunk
PG70 gripper. A top-mounted RGB-D camera is used to
detect objects in the workspace. The trajectory is recorded
while the user guides the robot through the task.
To evaluate the approach even with a simple distance func-
tion, we use the spatial Euclidean distance as criteria:

dist(tj , fi) = ||tj −Ofi ||

where Ofi is the origin of the reference frame fi in 3D
space. We set dmax = min(2 · smax, omin), where smax is
the largest diameter of each of the objects bounding spheres
and omin = min ||0.5 · (Ofi − Ofk)|| for ∀i, k, i 6= k.
We choose 2 · smax because of the possible usage of an
object as a tool (see the cooking experiment), but we have
to avoid ambiguous assignments of samples to reference
frames. The blending threshold is not crucial since it will
only provide smooth transitions. An empirical estimated
value of dblend = min(1.5 ·dmax, omin) works fine in typical
tabletop applications. Future work may also calculate dblend
from the magnitude of change in orientation and position
compared to the demonstration.

Fig. 3. Kuka LWR used in our experiments.

We performed two types of experiments: a quantitative
cross validation against human demonstration of the ap-
proach (Experiment 1) and a qualitative evaluation (Exper-
iment 2). A video with further applications is available on
our website1.

1) Experiment 1: The first experiment is meant to give
a quantitative evaluation of the approach. Two different
tasks were demonstrated by the user. The first task is a
general grasping. The second one is a pick-and-place task.
We demonstrated task T1 in four different ways (series
S1 - S4) with 20 repetitions each and task T2 in three
different ways (series S5 - S7) with 20 repetitions each. This
results in 80 · 80 + 60 · 60 = 10.000 cross validations. The
series of T1 are inspired by [18] but modified due to the
partially algorithmic-specific character. Task T1 consists of
the following 4 series:

• Series S1 is a straight and direct grasping movement.
• Series S2 is based on S1, but the whole scenario is

rotated by 90◦ around vertical up.
• Series S3 is based on S1, but the target is rotated by

90◦ around up.
• Series S4 is a grasping with arbitrarily chosen 3D

orientations and positions of the robot and the target.
In every series, the constraints stay the same, but variations
due to the different user demonstrations arise. In addition to
T1, the series of task T2 shall demonstrate the applicability
of the approach in more complex tasks.

1http://www.ai3.uni-bayreuth.de/projects/introp/

• Series S5 is a typical pick-and-place task where the
robot returns to the initial position.

• Series S6 is based on S5, but the targets are relocated
on the table and rotated arbitrary around up.

• Series S7 is based on S5, but with arbitrary chosen 3D
positions and orientations of the targets and the robot.

We do a pair-wise comparison of each demonstration and
every possible reproduction of both tasks. Therefore we
take the reference frames Finput of a demonstration (input)
and reproduce another demonstration to these new positions
(output). This is achieved by setting the reference frames
Finput from the input as reference frames for reproduction
to the output F r

output = Finput. Afterwards, we compare the
reproduced output trajectory with the human demonstrated
input trajectory and calculate two performance metrics. In
analogy to [18] we calculate the mean squared difference
MSD as

MSD =
1

N

N∑
i=1

||pri − pi| |

where pri is the position of the reproduced sample (output)
and pi is the input sample position. The calculated values
will give insight on how close the reproduced trajectory is
to a human demonstration.
We also calculate the correlation coefficient R2 as

R2 =

∑N
i=1(pi − p̄) · (pri − p̄r)√

(
∑N

i=1(pi − p̄)2) · (
∑N

i=1(pri − p̄r)2)

where p̄ and p̄r are the arithmetic means of pi and pri . The
correlation coefficient will indicate how similar a reproduced
path is to a human demonstration.
Both metrics require input vectors of the same length. There-
fore we interpolate the shorter trajectory using a hermite
spline.

2) Experiment 2: The second experiment is meant to
evaluate the qualitative results of the algorithm. We pro-
vided three different demonstrations. First: A user gives a
demonstration, where a pen is used to draw an arrow on
a target (T3). The second demonstration shows a pick-and-
place task, with a curling movement between the origin and
destination (T4). The third demonstration shows the stirring
of a cooking application (T5). A spoon is picked and used
to stir the ingredients in a bowl. The spoon is placed back
afterwards. The goal of the experiment is the reproduction
of the tasks with changed orientations and positions of the
targets while the characteristic movements are kept.

B. Results

Regarding Experiment 1, for the case of the 140 self-
mappings, where a demonstration is adapted to identical
reference frames, we consequently receive MSD = 0 and
R2 = 1. The system will act like in playback mode, which
was one of our requirements from Section II since it reflects
perfectly the users intended trajectory.
Tables I to IV show the arithmetic mean of the performance
metrics for each group of input / output series.

TABLE I
MSD FOR ADAPTED SERIES OF TASK T1

input
output S1 S2 S3 S4

S1 0.000238 0.00421 0.00369 0.00324
S2 0.00428 9.89e-05 0.00815 0.00895
S3 0.00405 0.00767 0.000648 0.00385
S4 0.00385 0.00564 0.0045 0.000638

TABLE II
R2 FOR ADAPTED SERIES OF TASK T1

input

output S1 S2 S3 S4

S1 0.996 0.935 0.909 0.904
S2 0.951 0.998 0.811 0.868
S3 0.851 0.923 0.981 0.883
S4 0.892 0.896 0.909 0.974

Regarding task T1, we notice a minimum correlation
coefficient of R2 = 0.81. This result gives an impression of
how similar and close the adapted trajectories are to human
demonstrated grasping. We received the best results for the
adaption of series S1, but still get very good results for the
adaption of the most complex case of series S4.
Regarding task T2, we receive lower correlation, but still
78% show results of R2 ≥ 0.7. The problem is the length
of the task. The demonstrations differ much more from
each other than in the simple grasping case. Therefore we
instantly get lower R2 and higher MSD. But nevertheless,
the algorithm produces satisfying results and is able to adapt
the execution of the task to a new situation even with changed
starting position of the robot. The results show, that one-
shot programming can be useful, when it comes to robot
programming by demonstration.
We are not able to cross-validate demonstrations from task
T1 to task T2 due to the nature of the algorithm. The
algorithm expects the resources from the demonstration to be
present in the reproduction, because it utilizes the resource
inherent reference frames for adaption. Since more objects
are involved in task T2 than in task T1, we cannot adapt the
trajectory. This may be a point for future work.

TABLE III
MSD FOR ADAPTED SERIES OF TASK T2

input

output S5 S6 S7

S5 0.00202 0.017 0.0277
S6 0.0168 0.00243 0.0102
S7 0.0267 0.0101 0.00172

Figure 4 and 5 show the qualitative results of the approach
for demonstrations T3 and T4. Figure 4 shows the reproduc-
tion for displaced and rotated targets. The distance between
the reference frames increases counter-clockwise for each

TABLE IV
R2 FOR ADAPTED SERIES OF TASK T2

input

output S5 S6 S7

S5 0.965 0.733 0.51
S6 0.789 0.954 0.784
S7 0.588 0.811 0.968

reproduction. One can still recognize the curling very well,
what indicates a good preservation of the transfer motions.
The orientation of the robot is also adapted accordingly to
the corresponding frames. Although the relevant objects are
displaced and rotated, the trajectory near them stays the
same. This can be observed even better in Figure 5. After a
bowed transfer to the target, an arrow is drawn on the target.
Here, we can observe the reproduction of the desired motion
near the target while keeping the characteristic bow of the
transfer motion. The figures additionally show the adaption
to different z-levels, which is also handled very well by the
algorithm. In Figure 6 we can see the result for the adapted

Fig. 4. Demonstration (trajectory red, objects green) and reproductions
with changed positions and orientations (trajectory and objects blue) of T3

(a) (b)

Fig. 5. Demonstration (red) and reproductions with changed positions and
orientations (blue) of T4

stirring task. The system is successfully able to pick up the
spoon and stir inside the bowl. Additionally it is capable
of reproducing the trajectory segment-wise. I.e. as long as
only the spoon is present for reproduction, it will approach
and pick up the spoon. As soon as the bowl is present,
the transfer to the bowl is calculated and the execution is
continued. This integrates very well into out behavior-based

approach [22]. The overall computation effort is small, thus,

(a) (b)

Fig. 6. Top view (a) and side view (b) of demonstration (red) and
reproductions with changed positions and orientations (colored segments)
of T5

the adapted trajectory is available instantly as soon as a new
situation is presented to the programmed system. In future
work, the system could easily be extended to generate a real-
time adaption for dynamic scenes. This is also supported by
our segmentation of the trajectory. If only few objects in
a scene change their position, we can just recompute the
segments, which are related to the reference frames of these
objects. Otherwise, one would have to recalculate the whole
trajectory.

V. CONCLUSIONS

Most approaches to robot programming by demonstration
require multiple demonstrations to adapt a task to a new
situation. Todays one-shot approaches require prior training,
or manual post-processing, or are computationally expensive.
In this paper, we presented a one-shot method to adapt
a demonstrated trajectory to a new situation. Besides the
single demonstration, it only requires the scene objects’
positions and orientations. The relevant features are selected
by a distance-based heuristic. The system segments the
demonstrated trajectory and adapts each segment to the new
situation. The method is capable of adapting a demonstration
to new robot and object positions and orientations. We
evaluated the approach qualitatively and quantitatively in var-
ious tasks. The approach exactly reproduces a demonstration
under unchanged conditions, copying the users demonstrated
ground truth. The adaption is fast computable and easily
comprehensible by the user, which helps the user to provide
suitable demonstrations.
Future work may deal with adaption techniques, that map
a sample to more than one reference frame [23] [24]. One
could also concentrate on the management of the behaviors.
I.e. how the system can recognize and resolve contradictory
demonstrations and how the user can easily administrate the
adding and removing of behaviors.
Furthermore, the system could be upgraded by an obstacle
avoidance. To do so, the transfer frames could be divided
into several virtual frames. Then, in reproduction the affected
virtual frames could be moved away from the obstacle,
bending the trajectory around the obstruction.

REFERENCES

[1] S. Schaal, J. Peters, J. Nakanishi, and A. Ijspeert, “Learning
movement primitives,” Robotics Research, pp. 1–10, 2005.

[2] J. Peters and S. Schaal, “Policy learning for motor skills,” Neural
Information Processing, pp. 233–242, 2008.

[3] P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal, “Learning and
generalization of motor skills by learning from demonstration,” 2009
Robotics and Automation(ICRA), pp. 763–768, May 2009.

[4] R. Dillmann, O. Rogalla, M. Ehrenmann, R. Zollner, and M. Borde-
goni, “Learning from Human Demonstration and Advice: the machine
learning paradigm,” Robotics Research, vol. 9, pp. 229—-238, 2000.

[5] R. Zollner and M. Pardowitz, “Towards cognitive robots: Building
hierarchical task representations of manipulations from human
demonstration,” Robotics and Automation (ICRA), 2005.

[6] R. Zollner, T. Asfour, and R. Dillmann, “Programming by
demonstration: dual-arm manipulation tasks for humanoid robots,”
Intelligent Robots and Systems (IROS), vol. 1, pp. 479–484, 2004.

[7] M. Nicolescu and M. Mataric, “Natural methods for robot task
learning: Instructive demonstrations, generalization and practice,”
International joint conference on Autonomous agents and multiagent
systems, 2003.

[8] S. Niekum, S. Osentoski, G. Konidaris, and A. G. Barto, “Learning and
generalization of complex tasks from unstructured demonstrations,”
Intelligent Robots and Systems (IROS), pp. 5239–5246, Oct. 2012.

[9] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey
of robot learning from demonstration,” Robotics and Autonomous
Systems, vol. 57, no. 5, pp. 469–483, May 2009. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0921889008001772

[10] D. H. Grollman and O. C. Jenkins, “Incremental learning of subtasks
from unsegmented demonstration,” Intelligent Robots and Systems
(IROS), pp. 261–266, Oct. 2010.

[11] S. Calinon and Z. Li, “Statistical dynamical systems for skills
acquisition in humanoids,” Humanoids, 2012.

[12] T. Cederborg, A. Baranes, and P.-Y. Oudeyer, “Incremental local
online Gaussian Mixture Regression for imitation learning of multiple
tasks,” 2010 IEEE/RSJ International Conference on Intelligent Robots
and Systems, Oct. 2010.

[13] A. Wrede, Sebastian Emmerich, Christian Grünberg, Ricarda Nord-
mann, A. Swadzba, and J. Steil, “A User Study on Kinesthetic
Teaching of Redundant Robots in Task and Configuration Space,”
Journal of Human-Robot Interaction, vol. 2, no. 1, pp. 56–81, 2013.

[14] L. Rozo, S. Calinon, D. Caldwell, P. Jim, C. Torras, and I. D. Rob,
“Learning Collaborative Impedance-based Robot Behaviors,” AAAI
Conference on Artificial Intelligence., 2013.

[15] S. Iba, C. Paredis, and P. Khosla, “Interactive multi-modal robot
programming,” The international journal of robotics research, vol. 24,
no. 1, pp. 83–104, 2005.

[16] P. E. Rybski, K. Yoon, J. Stolarz, and M. M. Veloso, “Interactive Robot
Task Training through Dialog and Demonstration,” Forbes, 2007.

[17] H. Mayer, I. Nagy, and A. Knoll, “Adaptive control for human-robot
skilltransfer: Trajectory planning based on fluid dynamics,” Robotics
and Automation, pp. 10–14, 2007.

[18] Y. Wu and Y. Demiris, “Towards One Shot Learning by imitation
for humanoid robots,” in Robotics and Automation (ICRA), 2010, pp.
2889–2894.

[19] A. A. N. Kumaar and S. Tsb, “Mobile Robot Programming by
Demonstration,” Emerging Trends in Engineering Technology, vol. 24,
no. 4, pp. 206–209, 2011.

[20] M. Kasper, G. Fricke, K. Steuernagel, and E. von Puttkamer,
“A behavior-based mobile robot architecture for Learning from
Demonstration,” Robotics and Autonomous Systems, vol. 34, no. 2-3,
pp. 153–164, Feb. 2001.

[21] S. Nguyen and P.-Y. Oudeyer, “Active choice of teachers, learning
strategies and goals for a socially guided intrinsic motivation learner,”
Paladyn, vol. 3, no. 3, pp. 136–146, 2012.

[22] C. Groth and D. Henrich, “Multi-Tasking of Competing Behaviors
on a Robot Manipulator,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2013.

[23] C. Groth and D. Henrich, “One-Shot Robot Programming by Demon-
stration using an Online Oriented Particles Simulation,” in Robotics
and Biomimetics2, 2014.

[24] C. Groth and D. Henrich, “Single-Shot Learning and Scheduled
Execution of Behaviors for a Robotic Manipulator,” in International
Symposium on Robotics, 2014.

