
Single-Shot Learning and Scheduled Execution of Behaviors for
a Robotic Manipulator

Christian Groth, Universität Bayreuth, christian.groth@uni-bayreuth.de, Germany
Dominik Henrich, Universität Bayreuth, dominik.henrich@uni-bayreuth.de, Germany

Abstract
In order to introduce robots into the household domain, they must be easy to program and be able to perform various
tasks without being reprogrammed every time. In this paper, we address both issues. First, we present a behavior-based
architecture, which is capable of storing, executing, and switching between various manipulation tasks of a robotic
manipulator. Second, we present a single-shot learning from demonstration, to allow the user to extend the set of
known behaviors by guiding the robot through new tasks.

1 Introduction and Related Work

To make robots take over useful work in the household
domain, we are facing two issues. The first issue is, that a
robot must be able to perform a lot of different tasks with-
out the need of reprogramming. Since traditional pro-
gramming is very time consuming, the robot should in-
herit some long-time memory and choose the appropriate
action in new situations. This is addressed by behavior-
based architectures.
The second issue is, that traditional robot programming
is tedious and only feasible by experts. Therefore, there
is a strong need for concepts to easily program a robot,
in order to extend the set of executable tasks. This is
addressed by the Programming by Demonstration (PbD)
approach, which allows even non-experts to teach robots
by guiding the robot through the task.
Regarding the first issue, we can distinguish two groups
of behavior-based architectures for robotic manipula-
tors, through which coordination of multiple behaviors is
achieved. One uses action fusion, the other action selec-
tion. In the action fusion group, many behaviors are nec-
essary to perform one specific manipulation task. Exam-
ples are the CBFM [1] or fuzzy-based approaches [2],[3]
or force-based approaches [4], [5].
In the action selection group, a task can be performed by
a single but complex behavior. The most well-known ap-
proach in this category is the subsumption architecture
[6], on which several approaches rely [7] [8].
All of these systems have their drawbacks. None of the
known approaches addresses the problem of several ma-
nipulating behaviors, which can safely be interrupted and
resumed, so that the behaviors may be completed con-
sistently later on. In this paper, we present a novel ap-
proach, where a behavior-based manipulator performs
various tasks. All behaviors can be interrupted, resumed,
and completed safely. We achieve this by transferring the
concept of Concurrent Sequential Processes (CSP) from
the computing domain to robotics.
Considering the issue of teaching new behaviors to the
robot, there are several ways in PbD to extract relevant

features of the task, in order to generalize a demonstration
to a new situation. It depends on the number of demon-
strations and on the level at which the task is learned.
The demonstration can be provided on a symbolic level
or on a trajectory level. On the symbolic level, prede-
fined primitives are used like (dynamic) movement prim-
itives or skills, which act as building blocks for complex
tasks. The challenge is to identify these primitives and to
find appropriate parameters. This has been investigated
for just one demonstration in [9] [10] and [11]. When
multiple demonstrations are available, the recognition of
primitives may be improved and even alternative task ex-
ecutions can be provided [12].
On a trajectory level, information of given demonstra-
tions is extracted and a generalized version of the trajec-
tory under new conditions is reproduced.

Figure 1: Demonstration of new behaviors to the system
by kinesthetic teaching

A good survey on approaches using multiple demonstra-
tions is provided by [13]. More recent research can be
found in [14] or [15]. The few approaches that do learn-
ing from a single demonstration on trajectory level rely
on strong context knowledge [16] or on additional infor-

mation [17] [18], or on manual post-processing of the tra-
jectory [19]. Since we want to provide as little informa-
tion as possible, we concentrate on a single shot learning
on a trajectory level.
To sum up, in this work we will present a behavior-based
approach for robotic manipulators, which allows concur-
rent execution and consistent switching between manip-
ulation tasks. Every task is fulfilled by a single behavior.
New behaviors can be added to the system by a single
demonstration of the task.
The remainder of this paper is organized as follows: Our
behavior-based archtitecture is described in Section 2. In
Section 3, we describe, how new behaviors are taught to
the system. In Section 4, we evaluate our system and
conclude in Section 5.

2 Behavior-based manipulation

2.1 Behavior Model
Our approach consists of various behaviors running in
parallel on a robot manipulator and performing different
tasks. The focus lies on a mechanism to switch between
multiple behaviors. The behaviors need to be in a con-
sistent state, even if they are interrupted or resumed at a
later time.
The behaviors react according to stimulation from the en-
vironment and the inner behavior status. In every time
step the robot determines the behavior, which fits best
to the current environmental situation. Each behavior is
modeled by a Mealy MachineB = [S,C,A, δ, ω, s0, sF],
where S denotes a set of states, including the initial state
s0 and the final states sF . A denotes a set of actions and
C a set of conditions. The transition function δ is given
as δ : S × C → S and the output function ω is given as
ω : S × C → A. For a behavior to change state from
si to sj , the conditions cik with 0 ≤ k ≤ n at a tran-
sition T (si, sj) have to match corresponding resources
rik ∈ R, which are provided by the observers. The re-
sources R of the system contain all stimuli from the en-
vironment Γ, like objects in the scene and all executing
components ζ of the robot, like the arm or the tool. A
condition c ∈ C specifies a resource type, like a specific
object or a robotic component and additional features of
the resource. Therefore we can define a matching func-
tion match(c, r), that evaluates to true if and only if a
resource r satisfies all required features of c. If the con-
dition is matched by a resource, the corresponding action
of the transition is executed.
The action a ∈ A depends on the the matching resources
and the current robot configuration. Usually it is a robot
trajectory Tk with additional tool commands and a frame
fk, to which the trajectory refers. After the action is com-
pleted, the current state is changed.
To enable the achievement of different goals, several
competing behaviors are executed on the robot. Many of
these behaviors have conflicting goals, which can not just
be summed up. So we need a mechanism for consistent
behavior execution.

2.2 Behavior Execution

To enable safe interruption, change, and resume of the
active behavior, even within the execution of an action,
we apply methods taken from modern operating systems.
These are well known concepts within the computing do-
main and they are able to handle multiple processes on
single-core platforms. This is analogous to one robot ex-
ecuting multiple behaviors. To do so, all behaviors are
wrapped into processes [20]. I.e., we look at the former
defined behavior as a program and execute one or more
instances of it as processes. The processes are managed
by four different lists, according to their process status:
ready,blocked,active,terminated.
The resources R = Γ∪ ζ can be divided into two subsets
R = Rnp ∪Rp with Rnp ∩Rp = ∅. Here, Rp denotes all
preemptive resources and Rnp all non-preemptive. Pre-
emptive resources can be withdrawn from a process and
can be assigned to another process, like the robot or the
gripper. Non-preemptive resources cannot be withdrawn
from a process, like real-world objects, that are manipu-
lated by the robot, so a former state may not be restorable.
We define the set of resources held by process i as Hi

and the set of free resources as V . Furthermore, there is
a set of resources Ni,k ⊆ R, which is needed by pro-
cess i to execute the action a of its current transition with
condition ck. The set Ni,k is defined by the matching
function of the conditions ck with k = 0 . . . n of a tran-
sition. We define Ĥi,k ⊆ Hi as the subset of Hi through

Hi
match(ck,rj),a−−−−−−−−−→ Ĥi,k. This means Ĥi,k consists of all

resources rj that satisfy the condition ck and are held by
process i. Further, we define analogous V̂k ⊆ V as the

subset of V though V
match(ck,rj),a−−−−−−−−−→ V̂k, which consists

of all free resources that satisfy the condition ck. Now we
can define Ni,k as Ni,k = V̂k ∪ Ĥi,k.
Since there are n conditions for a transition, there may be
some identical conditions. Imagine an action of a tran-
sition that requires two identical objects. Therefore we
can group the identical conditions of a transition. Let the
transition have groups Gg containing mg similar condi-
tions cg . Since all conditions in a group are equal, any
element cg of a group is representative for the group. For
every group Gg let Hi,g be the set of the needed and al-
ready held matching resources. Also let Vg be the needed
matching and free resources . Using these sets we can
determine the status of a process.
A process is active, if the equation

mg ≤ |Ĥi,g|+ |V̂g| (1)

for every groupGg , that containmg conditions of type cg
is satisfied. It means, that there are enough resources to
satisfy every condition of every group of the current tran-
sition. The resources can either be already held (Ĥi,g)
or still available (V̂g). Since all conditions are satisfied,
the process can immediately acquire all necessary free re-
sources and can be executed.

A process is ready, if the equation

mg ≤ |Ĥi,g|+ |V̂g|+ |
⋃
h6=i

Ĥh,g ∩Rp| (2)

for every group Gg , that contain mg conditions of type
cg is satisfied. This means, we can match the conditions
with already held resources (Ĥi,g) and free resources
(V̂g), like in Equation 1. But we would need to withdraw
preemptive resources Ĥh,g from other processes.
A process is blocked, if neither Equation 1 nor Equa-
tion 2 can be satisfied.
A process is terminated if the current state sc of the
inherent behavior has reached the end state (sc = sF).
A scheduling algorithm can be used to choose which of
the ready processes is executed. We evaluate different
scheduling algorithms in Section 4.

2.3 Behavior Coordination

If an active process at time step t − 1 is also active in
time step t the current action is kept on execution. If the
active process changes, we need to store the context of
this process and restore the new process context. This
means, we have to store the status of all resources Hi,
that are held by process i in the process context.
This is straightforward for all kind of information and
intrinsic resources, like the robot configuration, which
can easily be stored. Remember that non-preemptive
resources hold locks. So even if manipulated objects
stay in the working area, no other process can use these.
Preemptive resources may be withdrawn from the pro-
cess. The preemption of manipulating devices is more
expensive since they must be fully available for other
processes. For example, if an object is held within the
gripper, it must be stored reliably, so it can be restored
later. Therefore special areas are provided, where objects
can be deployed. The corresponding deploy position is
also stored.
The context restoring of a process is done in reverse order.
First eventually deployed objects are grasped again and
the last pose is restored. If there is an incomplete action,
it is resumed and execution is continued. If resources
have been withdrawn from the process, then resources
matching the corresponding condition within the state
machine are acquired again.
To allow a temporal coordination of behaviors, we need
to know, which behaviors were already applied to a re-
source. Therefore we extend the resource’s feature vec-
tor. We store which behaviors were already applied and
how often they have been applied. Now we can easily
add already applied behaviors as required to a condition
c and we can also define an upper limit of how often a
behavior can be applied to a resource.

3 Programming by Demonstration

3.1 Trajectory Segmentation
To extend the set of known behaviors in a fast and
easy manner, we provide these through programming by
demonstration (Figure 1). The robot shall execute a gen-
eralized version of a task in a new situation under new
constraints. The user provides just one demonstration
for every behavior, which is adapted to the current situa-
tion and a generalized motion is generated. The motion
should meet the constraints of the current situation and
have similarity with the corresponding demonstration.
In this work a demonstration consists of a 6-dimensional
trajectory T = {t0, . . . , tn−1} with n ∈ N of the robot’s
tool center point ti in 3d space and a set of reference
frames F = {f0, . . . , fm−1} with m ∈ N. A sample
ti ∈ T can carry additional tool operations, like opening
or closing the gripper. A reference frame fi is defined
by each object’s initial position in the workspace and the
initial position of the robot’s tool center point. It consists
at least of a spatial coordinate system and may include
further information such as time.
In order to generalize a demonstration to a new situation,
we need a mapping of every sample ti ∈ T to the set of
relevant frames F̃i:

∀ti ∃ F̃i ⊆ F

We realize this mapping via a m × n weight matrix W
where each matrix element wij carries the weight of a
frame fi with respect to a sample tj . Thus, W provides
the relevance of each frame w.r.t. every sample. Since we
only take a single demonstration into account, we reduce
the problem to

∀j : tj → fi.

This will divide the trajectory into segments where every
segment is exclusively related to exactly one reference
frame.
We calculate the weight of a reference frame fi with re-
spect to a sample tj by means of a distance function
dist(fi, tj) ≥ 0. The distance function may be based
on spatial features like the Euclidean distance between tj
and fi, temporal features, or even high-level features like
instructions by speech or social cues.
We consider reference frames with smaller distances to
be more important. Therefore we define a m × n refer-
ence matrixRwith elements rij by three conditions each:

rij =
1

1 + dist(fi, tj)

Using R we define a m× n segmentation matrix U with
elements uij by

uij =

{
1, if rij = min

k
(rkj) and rij < di,max

0, otherwise

We assume rij 6= rkj for i 6= k. For the unlikely case of
an identical distance of a sample to different frames, we

select at random. The threshold di,max discards the influ-
ence of a too distant frame fi. This means, some of the
samples cannot be mapped to a frame. Therefore, some
columns will only consist of zeros. We assume that these
trajectory samples belong to transfer motions between the
preceding and the subsequent reference frame. Conse-
quently, we have to assign these samples to the preceding
and subsequent frame by adjusting the matrix elements
which refer to these frames. Based on U , we can finally
define W . For every c we define the column wc of W by

wc =

{
uc, if

∑m−1
i=0 uic = 1

0.5 · up + 0.5 · us, otherwise

Here, up denotes the nearest preceding column and us
the nearest subsequent column. These columns are de-
fined by

m−1∑
i=0

uip = 1, |p− c| = min, p < c

and
m−1∑
i=0

uis = 1, |s− c| = min, s > c

The columns up and us determine the relevant frames for
the transfer. If there is no subsequent frame, the samples
are assigned to the last referenced frame, since it could
be some detach-movement from an object.
Since we assume that we can assign every sample to one
reference frame, we will introduce transfer frames, which
are calculated from the subsequent and preceding refer-
ence frame. The construction of these transfer frames will
be shown in Section 3.2.
After applying these steps, we receive a segmented tra-
jectory consisting of segments related to existing frames
alternated with transfer segments (Figure 2). The gener-
alization of the segments is described in the next sections.

Figure 2: 2D example of a segmented trajectory into
transfer frames (blue) and object frames (red).

3.2 Motion generalization
All samples within the distance threshold are assigned to
an object frame fi. As stated, every frame holds at least

a spatial coordinate system. We use the coordinate sys-
tem assigned to the manipulated object, which is unam-
biguously by construction. The system should reproduce
the trajectory segments associated to objects very exact,
since the object could be manipulated by this motion.
All samples that are not mapped to object frames, are
mapped to transfer frames. We denote the set of all trans-
fer frames as V . The reproduction of the transfer motion
must satisfy the constraints of the new situation. Since a
transfer motion depends on the preceding and subsequent
frame, we calculate the transfer frame from the origins
Op and Os of these frames. We also make use of the
intersection pcut,s and pcut,p of the object frames’ hulls,
defined by di,max, and the connecting line between Op

and Os. The transfer frame is an orthogonal right-hand
coordinate system xV , yV , zV with its origin at pcut,p and
calculated as

xV = pcut,s − pcut,p

xV ⊥ yV, xV ⊥ zV, yV ⊥ zV

‖yV‖ = 1, ‖zV‖ = 1

∠ (zV, g) = min

where g is the negative gravity vector pointing up.
After having calculated the object and transfer frames,
we transform each sample tj of the demonstrated tra-
jectory T into its frame. First we separate the tra-
jectory into the segments of points 〈Tk〉frame by T =
〈T0〉world 〈T1〉world ... 〈Tn−1〉world. I.e. all points remain
relative to the world coordinate system. Each segment
Tk represents the membership to the same frame, which
is provided by the weight matrix W .
Now we can transform the points into the object frames
F and transfer frames V . We use the transformations
fiMworld for each frame fi ∈ F ∪ V and denote the new
transformed segments Tk as

〈Tk〉fi = fiMworld 〈Tk〉world .

In the reproduction phase we extract the reference frames
F r for all objects that correspond to the objects of the
demonstration by means of a matching function, which
is described in [21]. The transfer frames V r are created
analogous to the demonstration phase. Afterwards we
extract the transformations F r

Mworld for all frames F r

analogous. With this, we can reproduce the trajectory in
the new situation by transforming the segments Tk from
the frames into the world frame by

〈Tk〉world = fr
iMworld

−1 〈Tk〉fi
with f r

i ∈ F r ∪ V r.
Regarding our behavior based system from Section 2,
an action a ∈ A of a state stores the current subtra-
jectory with tool commands in the corresponding frame
(ak = 〈Tk〉fk). As transition condition c, we take the
objects from the demonstration which were used to con-
struct the corresponding frame (ck = {fk, [fk+1]}). If it
is an object frame, we set the second condition [fk+1] to
the empty condition ε. We also define all needed robot
resources, like arm or tool as a condition to this transi-
tion.

When adapting the demonstrated trajectory to a new sit-
uation, we may encounter some harsh changes due to
strongly rotated or displaced objects. To generate smooth
trajectories, we blend trajectories between the transfer
frame and the object frames by means of a sigmoid func-
tion. Details can be found in [21].

4 Experimental Results
We evaluated our system with a Kuka LWR 4 mounted
on top of a table. The objects are detected by a Microsoft
Kinect using the Alvar Library. The user guides the robot
through the task. The trajectory is recorded and stored
along with the information about the objects. In the re-
production phase, the information is loaded again and the
corresponding behaviors are generated. An example is
depicted in Figure 3. But in particular, we investigated
how efficient the scheduling algorithms from the operat-
ing systems domain are for robotic applications. The im-
plemented scheduling algorithms are: priority scheduling
(PS), shortest-job-first (SJF), and round-robin (RR). We
regard the length of the trajectory of a task as the job
length. Shortes-job-first is the only non-preemptive al-
gorithm. For the round-robin algorithm we chose time
slices of 20, 40, 60, 80 and 160 seconds.
We tested the scheduling algorithms with three pick-and-
place behaviors in two settings L within a simulation en-
vironment. All behaviors were programmed by demon-
stration. In the first setting, enough resources to create
two processes of every behavior are present from the be-
ginning. In the second setting, the same resources are
added one by one every 20 seconds. The priorities for PS
are different for each behavior.

E Scheduling t̄flow(s) t̄wait(s) ttotal(s) nsw

1 PS 238.2 152.0 1429.0 5
1 SJF 211.8 109.3 1271.0 5
1 RR(20) 360.7 44.4 2164.2 32
1 RR(40) 304.3 82.2 1825.9 15
1 RR(60) 284.4 122.1 1706.5 11
1 RR(80) 268.0 160.9 1608.2 9
1 RR(160) 261.4 179.9 1568.4 5
2 PS 239.8 87.3 1438.7 7
2 SJF 198.8 91.1 1192.7 5
2 RR(20) 319.3 17.7 1916.0 29
2 RR(40) 257.6 24.4 1545.8 16
2 RR(60) 235.8 57.8 1415.1 12
2 RR(80) 223.6 89.5 1341.4 10
2 RR(160) 178.8 106.2 1072.9 5

The results are shown in the table above. For each process
we have measured: the average flow time t̄flow, the av-
erage duration t̄wait between being ready and active
for the first time, and the number nsw of context switches.
We have also measured the total execution time ttotal,
which is the time between the first process becoming
ready and the last process terminating. Although all
time measurements are affected by variations due to the

generalization of the learned tasks, it is still obvious that
round-robin results the longest flow and total execution
times. In robotic applications, context switching is even
more expensive than in operating systems. The tasks are
executed by a robot, that can only move with a certain
velocity limiting the speed for context changing. Addi-
tionally, objects may have to be grasped or deployed, re-
sulting in an even more expensive context switch. With
longer time slices, t̄flow is reduced. At a length of 160s
each process fits into a time slice, what results in the mini-
mum of 5 context switches. The drawback of longer time
slices is a slower reaction to new objects, which is in-
dicated by a higher t̄wait. This can also be observed in
the priority scheduling, when long tasks with high prior-
ity are present. Considering t̄flow and t̄wait, shortest-job-
first is a viable alternative to priority scheduling. Unfor-
tunately, it is non-preemptive and, thus, short tasks may
be heavily delayed due to long running task (starvation).

Figure 3: A pick-and-place task with a spiral transfer
motion: The demonstration with trajectory (red) and ob-
jects (green) and the reproduction with trajectory (blue)
and objects (yellow), both starting at the same position.

In conclusion, one can say, that context switches should
occur as rarely as possible, but often enough to react to
new stimuli from the environment. Therefore priority
scheduling seems to be the best choice for robotic appli-
cations in the household domain. The system can imme-
diately react to new and more important stimuli, but will
not interrupt current tasks for less important ones. In our
learning from demonstration context, the choice of the
behavior priorities is still an open issue. Shortest-job-first
can be an alternative for small enterprises, where e.g. the
robot has to assemble batches of different parts. Choos-
ing the shortest-job-first minimizes the average flow time.

5 Conclusions
In this work, we presented a behavior-based system for a
robotic manipulator. All behaviors can be interrupted and
resumed consistently, even if they are changing the en-
vironment. Furthermore, we presented a single-shot ap-

proach for learning by demonstration on trajectory level.
Each demonstrated task can be added to the system as a
new behavior to extend the set of known behaviors.
In our experiments we investigated the efficiency of
scheduling algorithms for robotic applications. The re-
sults show that shortest-job-first and priority scheduling
are simple yet promising choices for robotic applications
in the household and small and medium enterprises.
Future work should improve the mapping between sam-
ples and reference frames. Also, the approach to map a
sample to multiple reference frames should be extended.
The integration of preview coordination for resources
[22] may also be a possibility to improve scheduling by
minimizing the number of context changes.

References
[1] S. Huang, E. Aertbeliën, and H. V. Brussel, “A

Constraint-Based Behavior Fusion Mechanism on
Mobile Manipulator,” in 2008 ECSIS Symposium
on Learning and Adaptive Behaviors for Robotic
Systems (LAB-RS). IEEE, Aug. 2008, pp. 83–88.

[2] Z. Wasik and A. Safiotti, “A Hierarchical Behavior-
Based Approach to Manipulation Tasks,” in 2003
IEEE International Conference on Robotics and Au-
tomation, Taipei, 2003, pp. 2780–2785.

[3] P. Dassanayake, K. Watanabe, K. Kiguchi, and
K. Izumi, “Robot manipulator task control with
obstacle avoidance using fuzzy behavior-based
strategy,” Intelligent and Fuzzy Systems, vol. 10,
no. 3, pp. 139–158, 2001.

[4] A. C. Smith, E. Rafael, and T. Jara, “Sensitive Ma-
nipulation,” Ph.D. Thesis, Massachusetts Institute
of Technology, 2007.

[5] N.-H. Park, Y. Oh, and S.-R. Oh, “Behavior-based
control of robotic hand by tactile servoing,” Inter-
national Journal of Applied Electromagnetics and
Mechanics, vol. 24, no. 3-4, pp. 311–321, 2006.

[6] R. Brooks, “Intelligence without Representation,”
Artificial Intelligence, vol. 47, pp. 139–159, 1991.

[7] A. Edsinger and C. C. Kemp, “Two Arms are Better
than One : A Behavior Based Control System
for Assistive Bimanual Manipulation,” Artificial
Intelligence, pp. 345–355, 2008.

[8] T. Taipalus, “An Action Pool Architecture for Mul-
titasking Service Robots with Interdependent Re-
sources,” in Computational Intelligence in Robotics
and Automation, Piscataway, NJ, USA: IEEE Press,
2009.

[9] R. Dillmann, O. Rogalla, M. Ehrenmann, R. Zoll-
ner, and M. Bordegoni, “Learning from Human
Demonstration and Advice: the machine learning
paradigm,” Robotics Research, vol. 9, pp. 229—-
238, 2000.

[10] R. Zollner and M. Pardowitz, “Towards cognitive
robots: Building hierarchical task representations of
manipulations from human demonstration,” Inter-
national Conference on Robotics and Automation
(ICRA), 2005.

[11] R. Zollner, T. Asfour, and R. Dillmann, “Program-
ming by demonstration: dual-arm manipulation
tasks for humanoid robots,” IEEE/RSJ Inter-
national Conference on Intelligent Robots and
Systems (IROS), pp. 479–484, 2004.

[12] M. Nicolescu and M. Mataric, “Natural methods
for robot task learning: Instructive demonstrations,
generalization and practice,” International joint
conference on Autonomous agents and multiagent
systems, 2003.

[13] B. D. Argall, S. Chernova, M. Veloso, and
B. Browning, “A survey of robot learning from
demonstration,” Robotics and Autonomous Systems,
vol. 57, no. 5, pp. 469–483, May 2009.

[14] D. H. Grollman and O. C. Jenkins, “Incremental
learning of subtasks from unsegmented demon-
stration,” IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 261–266, Oct.
2010.

[15] L. Rozo, S. Calinon, D. Caldwell, P. Jim, C. Torras,
and I. D. Rob, “Learning Collaborative Impedance-
based Robot Behaviors,” Proceedings of the AAAI
Conference on Artificial Intelligence., 2013.

[16] A. Dey, R. Hamid, and C. Beckmann, “A CAPpella:
programming by demonstration of context-aware
applications,” Proceedings of the SIGCHI con-
ference on Human factors in computing systems,
vol. 6, pp. 33–40, 2004.

[17] S. Iba, C. Paredis, and P. Khosla, “Interactive multi-
modal robot programming,” Robotics Research,
vol. 24, no. 1, pp. 83–104, 2005.

[18] P. E. Rybski, K. Yoon, J. Stolarz, and M. M. Veloso,
“Interactive Robot Task Training through Dialog
and Demonstration,” Forbes, 2007.

[19] H. Mayer, I. Nagy, and A. Knoll, “Adaptive
control for human-robot skilltransfer: Trajectory
planning based on fluid dynamics,” Robotics and
Automation, pp. 10–14, 2007.

[20] A. S. Tanenbaum, Modern Operating Systems. Up-
per Saddle River, NJ, USA: Prentice Hall Press,
2007.

[21] C. Groth and D. Henrich, “Multi-Tasking of
Competing Behaviors on a Robot Manipulator,”
IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2013.

[22] E. Scioni et. al., “Preview coordination: An en-
hanced execution model for online scheduling of
mobile manipulation tasks,” in IEEE/RSJ Intelligent
Robots and Systems (IROS), 2013.

