
Multi-Tasking of Competing Behaviors on a Robot Manipulator

Christian Groth and Dominik Henrich
Angewandte Informatik III

Robotik und eingebettete Systeme
Universität Bayreuth, D-95445 Bayreuth, Germany

E-Mail: {christian.groth | dominik.henrich}@uni-bayreuth.de

Abstract— Behavior-based robotic manipulators are very
flexible since they can perform many different tasks without
reprogramming. Unfortunately none of the existing approaches
is able to interweave multiple manipulation tasks and execute
them reliably at the same time, enabeling e.g. an intuitive
human-robot cooperation. To bridge this gap, we suggest a novel
reactive behavior-based architecture. For this, we transfer the
multitasking concept from modern computer operating systems
to the robot and use a resource based approach to coordination
and synchronization. With this, we are able to safely run
multiple competing behaviors on a robot. Due to the design
of the behaviors, new behaviors can easily be added to the
system. The behaviors can be interrupted by other behaviors
in order to react properly to a dynamic environment. Later,
the interrupted behaviors are resumed in such a way that the
system keeps a consistent state.

I. INTRODUCTION AND RELATED WORK

In order to introduce robots into the household domain
or small and medium enterprises (SME) they must be
able to perform a lot of different tasks without the need
of reprogramming every time. We refer to a task as a
definite piece of work in order to reach a certain goal.
Robot manipulators are usually set up for one specific task,
which is time consuming to change. On the other hand
mobile robots can react differently with respect to varying
situations because of the widespread behavior-based archi-
tecture. These can often perform a lot of tasks by combining
different basic programs (behaviors), which run concurrently
and cooperate or compete to generate an emergent system
behavior. So the robot is able to react properly, according
to the changing environmental conditions. Behavior-based
systems have gained great success on mobile systems [1].
Even some commercial household and entertainment robots
use a behavior-based approach or provide possibilities to
do so ([2], [3]). Although behavior-based systems are not
widespread among manipulating robots, there exist some
approaches.They can be divided into two groups.
In the first group, many behaviors perform one specific
manipulation task. This approach is as an action fusion of
active behaviors. It is achieved if behaviors generate different
constraints. Behaviors can be executed in parallel as long
as they keep the constraints of other behaviors consistent.
An example is the CBFM in [4], where a door is opened
with different behaviors. Another example is [5], where
various coworker scenarios are demonstrated, like holding
a box or a light source while some constraints are kept.

There also exist fuzzy-based approaches [6], [7],[8] or force-
based approaches [9], [10], [11] where the output of several
behaviors is merged to perform a certain task.
In the second group, there is one behavior for each task or
sub task. This is used in [12], where different manipulating
behaviors on a mobile manipulator perform interactions with
a human, like hugging or playing a game. In [13] a mobile
manipulator moves around taking pictures of humans and
looking for objects with a pan-tilt camera. Other approaches
rely on the Subsumption Architecture [14], like Connell’s
soda can retriever [15] or Edsingers two-armed manipulator
[16]. The two-armed robot can grasp objects with human
help, stack them inside each other, and deploy them. In [17] a
behavior-based manipulator is used to write letters on a wall.
Every behavior represents a letter or a part of a letter. Another
approach applies so called policies, which are often used with
Programming by Demonstration [18]. Here, observations are
mapped to actions, i.e., the same observation will always
generate the same action.
All of these systems have their drawbacks. Either there are
very few resulting manipulation tasks, that can be performed.
If more tasks can be performed, they can mostly not be
interrupted and resumed. The only systems with interruptable
tasks are non-manipulating, i.e. the behaviors do not change
the environment. None of the known approaches addresses
the problem of several manipulating behaviors, which can
safely be interrupted and resumed, such that the behaviors
may be completed consistently later on.
In this paper we present a novel approach, where a behavior-
based manipulator performs various tasks. All behaviors can
be interrupted, resumed, and completed safely. We achieve
this by transferring the concept of Concurrent Sequential
Processes (CSP) from the computing domain to robotics.
Since we deal with manipulating behaviors, which can
change the environment, we will have to coordinate their ex-
ecution. We need to know when we can apply a behavior and
which behaviors are more urgent to execute. We also need to
know which behaviors can be executed in parallel, without
undesired side effects. We apply scheduling techniques to
resolve the execution sequence, and we use a resource based
synchronization for parallel behavior execution. The system
can easily be scaled by adding and deleting behaviors, even
at run time.
In the remainder of this paper, we present the design of
the behaviors, their execution, and coordination (Section II).

Then we describe the experiments and discuss their results
(Section III). Finally, we conclude and discuss future work
(Section IV).

II. BEHAVIOR-BASED MANIPULATION

A. Behavior Model

Our approach consists of various behaviors running in
parallel on a robot manipulator and performing different
tasks. According to [19], we concentrate on the reactive and
sequencing layer. There is no planning layer, that estimates
or valuates the result of an action. We concentrate on
a mechanism to switch between multiple behaviors on a
robotic manipulator. The behaviors need to be in a consistent
state, even if they are interrupted or resumed at a later
time. Therefore, a behavior is represented by basic stimulus-
response mechanism extended by an inner state.
The behaviors react according to stimulations from the
environment and the inner behavior status. In every time
step the robot determines the behavior, which fits best to
the current environmental situation, sensed by observers. An
observer is a system component, that senses the environment
and provides information about it. Since the robot changes
the environment by manipulating behaviors, which can be
quite complex and can have temporal or causal dependen-
cies, we need a memory, that is holding the state of a
behavior. Each behavior is modeled by a Mealy Machine
B = [S,C,A, δ, ω, s0, F], where S denotes a set of states,
including the initial state s0 and the final states F . A denotes
a set of actions and C a set of conditions. The transition
function δ is given as δ : S×C → S and the output function
ω is given as ω : S × C → A. For a behavior to change
state from si to sj , the conditions cik with k = 0..n at
a transition T (si, sj) have to match corresponding stimuli
γik ∈ Γ, which are provided by the observers. The states
are associated with different information regarding the robot,
the behavior execution, and the environment. Examples for
conditions are certain poses reached by the robot or certain
objects recognized by sensors. The matching function is
shown in Equation 1. We define the first condition ci0 of
a transition as the main condition and ci1..cin as constraints.
Usually the main condition refers to objects, that will be
manipulated and the constraints to robotic components,
which are necessary to enable the execution. We call the
conditions c0k, which are attached to the transition T (s0, si)
originating from the initial state s0 primary conditions. The
matching stimuli γ0k for this conditions are called primary
stimuli, since these stimuli are responsible for the behavior
to start working. The observers generate the stimuli from the
environment, which can then be used to match the transition
conditions (see Figure 1). In our work, we identify a core
set of three observers, which is needed for vision-based
robotic manipulation. We use a robot observer and a gripper
observer to observe the robot’s intrinsic properties and a
camera observer to observe the extrinsic stimulation from
the environment.
A robot observer provides information about the robot, thus

Fig. 1. Matching of the behaviors’ conditions and complying available
stimuli provided by observers

emitting γR. It holds information like the joint configura-
tions, joint speeds, tool center point transformation, tool
center point velocity etc.
A gripper observer emits γG. It holds information like the
configuration of the gripper, velocities of the fingers or jaws,
etc.
The camera observer detects the objects, which are seg-
mented from the background. Each of these detected objects
represents a stimulus γci = [pos, intr], where pos is the
object’s extrinsic features, like position and orientation in
world coordinates and intr are the intrinsic features like
object type, shape, dominant color, etc.
We define a condition c ∈ C as c = [fl, fu]. The parameters
fu = fu0 ...fun and fl = fl0 ...fln set the upper and lower
bounds of the features. Therefore we can define a simple
matching function

match(c, γ) =

{
true, if ∀i : fli < γi < fui

false, else.
(1)

In the case of camera stimuli, this is tested for every currently
sensed object, which is a stimulus γci . Of course, other
matching functions are possible. If the condition is matched
by a stimulus, the corresponding action of the transition is
executed.
The action a ∈ A is a function of the executing elements,
their current configuration and the corresponding stimulus
of the main condition. It can be a low level action, like the
opening and closing of the gripper, a robot movement, or
a high-level action, like a trajectory or the grasping of an
object. The actions are separated into three classes according
to [20]. There are absolute actions, actions relative to the
current robot-pose, and actions relative to an object. After
the action is completed, the current state is changed. To
enable the achievement of different goals, several competing
behaviors are executed on the robot. Hereby a complete
action is emitted from every behavior at each transition.
Many of this behaviors have conflicting goals, which can not
just be summed up. So we need a mechanism for consistent
behavior execution.

B. Behavior Execution

To enable safe interrupt, change, and resume of the
active behavior, even within the execution of an action,

we apply methods taken from modern operating systems.
These are well known concepts within the computing domain
and they are able to handle multiple processes on single-
core platforms. This is analogous to one robot executing
multiple behaviors. To do so, all behaviors are wrapped
into processes [21]. I.e. we look at the former defined
behavior as a program and execute one or more instances
of it as processes. The processes are managed by four
different priority lists, according to their process status:
ready,blocked,active,terminated.
Each process needs resources. The resources R of the system
contain all stimuli Γ and all executing components ζ of the
robot. The resources R = Γ ∪ ζ can be divided into two
subsets R = Rnp ∪ Rp. Here, Rp denotes all preemptive
resources and Rnp all non-preemptive. Preemptive resources
can be withdrawn from a process and can be assigned
to another process. Non-preemptive resources cannot be
withdrawn from a process, thus, a lock is kept on the
resource until process termination (see Figure 2). Preemptive
resources are usually the robot arm, the gripper, not manip-
ulated objects, and all kind of information stimuli, since we
can restore their current state. Non-preemptive resources are
all real-world objects, that are manipulated by the robot, so
a former state may not be restore-able. We define the set
of resources held by process i as Hi and the set of free
resources as V . Furthermore, there exists a set of resources
Ni,k, which is needed by process i to execute the action
a of it’s current transition with condition ck. The set of
resources Ni,k is a subset of R. It is defined by the matching
function of the main condition c0 and the n− 1 constraints
of the current transition. For every of this conditions ck with
k = 0 . . . n we define Ĥi,k ⊆ Hi as the subset of Hi through

Hi
match(ck,γj),a−−−−−−−−−−→ Ĥi,k. This means Ĥi,k consists of all

resources γj that satisfy the condition ck and are held by
process i. Further, we define analogous V̂k ⊆ V as the subset

of V though V
match(ck,γj),a−−−−−−−−−−→ V̂k, which consists of all free

resources that satisfy the condition ck. Now we can define
Ni,k as Ni,k = V̂k + Ĥi,k.
Since there are n conditions for a transition, there may be
some identical conditions. Imagine an action that includes
two similar objects. Therefore we can group the identical
conditions of a transition. Let the transition have groups Gg
containing mg similar conditions cg . Since all conditions in
a group are equal, any element cg of a group is representative
for the group. For every group Gg let Hi,g be the set of the
needed and already held matching resources. Let also be Vg
the needed matching and free resources . Using these sets
we can determine the status of a process.
A process is active, if the equation

mg ≤ |Ĥi,g|+ |V̂g| (2)

for every group Gg , that contain mg conditions of type cg
is satisfied. It means, there are enough resources to satisfy
every condition of every group of the current transition.
The resources can either be already held (Ĥi,g) or still
available (V̂g). Since all conditions are satisfied, the process

Fig. 2. Process synchronization by mutex locks on non-preemptive
resources

can immediately acquire all necessary free resources and can
be executed.
A process is ready, if the equation

mg ≤ |Ĥi,g|+ |V̂g|+ |
⋃
h6=i

Ĥh,g ∩Rp| (3)

for every group Gg , that contain mg conditions of type cg
is satisfied. That means, we can match the conditions with
already held resources (Ĥi,g) and free resources (V̂g), like
in Equation 2. But we would need to withdraw preemptive
resources Ĥh,g from other processes.
A process is blocked, if neither Equation 2 nor Equation
3 can be satisfied.
A process is terminated if the current state sc of the
inherent behavior has reached the end state (sc = F).
A scheduling algorithm can be used to choose which of the
ready processes is executed. This is discussed in Section II-E.

C. Behavior Synchronization

If an active process at time step t − 1 is also active
in time step t the current action is kept on execution. If
the active process changes, we need to store the context
of this process and restore the new process context. This
means, we have to store the status of all resources Hi,
that are held by process i in the process context. This
is straightforward for all kind of information and intrinsic
resources, like the robot configuration, which can easily be
stored. Remember that non preemptive resources hold locks.
So even if manipulated objects stay in the working area,
no other process can preempt these. Preemptive resources
may be withdrawn from the process. The preemption of
manipulating devices is more expensive since they must be
fully available for other processes. For example, if an object
is held within the gripper, it must be stored reliably, so it
can be restored later. Therefore special areas are provided,
where objects can be deployed. The corresponding deploy
position is also stored.
The context restoring of the process to executed next is
done in reverse order. First eventually deployed objects are

grabbed again and the last pose is restored. If there is an in-
complete action, this is resumed and execution is continued.
If resources have been withdrawn from the process, then
resources matching the corresponding condition within the
state machine are acquired again.
Releasing the resource lock on process termination yields
to a steadily growing set of resources Hi, held by process
i while execution. The lock is kept that long because of
consistency reasons. Usually most of the elements in a
robotics application are preemptive. Exceptions are objects,
that are manipulated by the robot. We only have to define
once, which resources belong to which subset of R for every
behavior.
To allow a temporal coordination of behaviors, we need to
know, which behaviors were already applied to a resource.
We also need a mechanism telling us, in which order we
can apply behaviors to a resource. Therefore we extend
the resource’s feature vector γc. We store which behavior
was already applied and how often it was applied. Now we
can easily add already applied behaviors as required to a
condition c and we can also define an upper limit how often
a behavior can be applied to a resource. For this we define a
vector X of the length of all known behaviors in the system.
Whenever a behavior i acquires the resource, the counter
at the corresponding position i is increased. The extended
feature vector of a resource is γc ⊕X . Analogous, we add
lower and upper limits of applied behaviors to the condition
limits fl and fu as defined in Section II-A.

D. Behavior creation

As already stated, there can be more multiple instances
(processes) of the same type of behavior to handle different
objects in the real world. But sometimes it is not useful to
have multiple processes of the same type. For example, two
search processes will probably not get a better result than
one. For this reason we define two classes of behaviors:
regular and singleton. While there can be many processes
of a regular behavior, there is at most one process at a time
of a singleton. We keep a list of the behaviors B, the system
shall know. The list is divided in the regular behaviors Bns
and the singleton behaviors Bs.
We hold a process for every of these behaviors. These
processes are usually immediately blocked, since there are
no matching primary stimuli present. Whenever a processes
of a regular behavior changes from blocked to ready we
create a new process of this behavior type, so the system
can react to the environment. That means, we satisfy the
condition:

∀b ∈ Bns∃pb ∈ Pb with status(pb) = blocked

Where pb is one process instance representing behavior b
and Pb is the set of all processes representing behavior b.
While the instance creation of regular behaviors works as
described, singleton behaviors are represented by only one
process at a time, thus satisfying

∀b ∈ Bs∃pb ∈ Pb with sc /∈ F.

As defined in Section II-A, sc is the current state, and F
is the set of final states of the behavior. A new behavior
instance is only created if a possibly already existing instance
is terminated.
Following this strategy there is a process for every task, that
has to be done by the robot. Through a scheduling algorithm,
we can choose the best action at the moment. The list of
behaviors can be changed at run time. If new behaviors
are included, processes of this behaviors are also created. If
behaviors are removed, already existing processes are kept
to avoid inconsistencies.

E. Scheduling Strategies

If there are multiple processes ready for execution, then so
called scheduling strategies need to decied which process is
executed next. There exist many scheduling algorithms from
the operating systems domain. But just a few look promising
to be used in a robotic applications. Since we strive for a
reactive system, only scheduling strategies for preemptable
processes are applicable. Additionally, a context switch with
deployment of an object will probably be expensive. It should
occur as rarely as possible but as often as necessary. For this
reason our first choice falls on Highest Priority First (HPF).
Here, new processes with a higher priority replace processes
with lower priority. The processes’ priorities are assigned
at their creation time and match the behaviors’ priorities.
By assigning the priorities to the different behaviors, we
can easily determine which behaviors are preferred by the
system.
Our second approach is a modification of the Highest Re-
sponse Ratio Next algorithm, called MHRN. The original al-
gorithm is used for non-preemptive scheduling. The priority
is calculated by taking the estimated run time test and the
wating time twait in equation

p =
twait + test

test
.

That means the priority will be higher for shorter processes
and increase while the process is not executed to prevent
processes from starvation. Since the algorithm is designed
for non-preemptive scheduling, just applying it to preemptive
scheduling would end up in a head to head race with
permanent context changing. Thus, we will adapt the idea
and calculate the priority p as

p = pinit + k1 ·max(0, tr − td)k2

where pinit, k1, k2 and td are predefined behavior variables.
They influence the process execution in different ways. By
setting the initial priority pinit an initial ordering of the
behaviors can be achieved, so more important behaviors are
more likely to be executed. The variables k1 and k2 influence
the increase rate of the priority and therefore the time a low
prioritized behavior will take until it will replace another
active process. The variable tr is the time the process is
ready (again). The time td prevents a process from becoming
active again immediately after it was suspended.

TABLE I
EXPERIMENTS OVERVIEW

Experiment Behaviors Priority Scheduling
1 Stir 1 HPF

Pour(cup) 2
2 Wipe 1 HPF

Move 2
3 Stir 3 MHRN

Pour(milk bag) 2
Pour(cup) 1

III. EXPERIMENTAL RESULTS

To present the experimental results, we first describe the
behaviors used and the experimental setup. Then we provide
and discuss the experimental results.

A. Behaviors

We use a set of four behaviors for our experiments, which
are adapted from everyday housework. In particular, we
have chosen a kitchen-based environment, other applications
scenarios will need other behaviors. We implemented the
following behaviors:

Wipe
If an object of type sponge is present, it is picked
up by the robot and it is used to clean the table.

Move(Object o, Destination d)
Different pick-and-place behaviors are available,
where an object of type o is transported to it’s
destination d.

Stir
If an object of type spoon is present, it is picked up
by the robot. Afterwards, if an object of type bowl
is present, the robot uses it to stir in the bowl.

Pour(Object o)
If an object of type o is present, it is picked up
by the robot. If a bowl is present, it will pour the
content of object o into the bowl.

The Wipe as well as the Stir behavior is representative for
the use of an object, while the robot moves along a specific
trajectory. The Move behavior is parametric in it’s conditions
and it’s destination. We use this behavior, because many of
the useful tasks a robot can do, are some sort of combined
pick-and-place actions, like e.g. sorting objects. Finally there
is the Pour behavior, which is also parametric in its object
type, because not every object can be grasped and poured in
the same way.

B. Test setup

Our experiments are performed on a Kuka LWR IV robot
with seven degrees of freedom. The robot is mounted on
a table, where all our experiments take place. A Microsoft
Kinect is placed near the table to detect the objects. To
analyze the images, the Point Cloud Library (PCL) is used.
We perform a set of experiments with different settings
(Table I). Experiment 1 shows a cooking scenario (Figure
3). A bowl and a spoon are initially provided. After some
time, ingredients are added to the scene. The robot shall stir

Fig. 4. left:id of the active process (PID) over time t in Experiment 1;
right: amount of ready processes(red line), blocked processes (green line)
and terminated processes (blue line) over time t in Experiment 1

the content of the bowl until ingredients are present. Then
it shall grasp and pour them into the bowl. Afterwards the
robot shall continue stirring. Experiment 2 shows a cleaning
scenario. When a sponge is present, the robot shall wipe the
table with it. Whenever objects are placed on the table, the
robot shall put them away into a deploy-area. New processes
get an offset for the deployment position to avoid collisions.
Experiment 3 equals to Experiment 1 with the exception that
we use MHRN.

C. Results

The system performs well in the given situations. It reacts
fast and correctly to all provided objects. The results of
Experiment 1 are shown in Figure 4. On the left the process
ID (PID) of the current active process is shown, where PID
0 refers to Stir and PID 1 and 2 are Pour behaviors. If no
process is active the PID is set to -3. When a process context
is stored the PID is -2, when a context is restored the PID is -
1. On the right an overview of the number of processes sorted
by their state is given. The amount of ready processes
increases with every new recognized object, which matches
a primary stimulus. A spoon, which is the primary stimulus
of Stir, is present from the beginning. As shown in Figure 3
the robot grasps it. In the meantime a bowl is placed in
the scene and the robot starts stirring. At time t = 55s
two cups are added. The system reacts to them. The first
blocked Pour process is set to ready because of the existing
primary stimulus. Immediately after the first Pour process
is not blocked anymore, a second process of the Pour
behavior is created, which also becomes ready because of
the second cup. Immediately after the second Pour - process
is ready another one is created, which stays blocked to
be able to react to future stimuli. Due to the higher priority
of the Pour processes, the context of Stir is stored. I.e. the
spoon is deployed back and the current position is stored.
The Pour processes are executed. After both Pour processes
are finished (t = 120s), the context of Stir is restored. I.e.
the spoon is grasped again, the stored robot pose is restored,
and Stir is resumed.
The results of the second experiment can be seen in Figure 5.
PID -3, -2, and -1 have the same meaning as in Experiment 1.
While Wipe is active, it is interrupted because of the higher

Fig. 3. Overview of Experiment 1: The Stir-behavior is interrupted by two Pour-behaviors and resumed afterwards. Image ordering goes from left to
right and from top to bottom.

Fig. 5. left:id of the active process (PID) over time t in Experiment 2;
right: amount of ready processes(red line), blocked processes (green line)
and terminated processes (blue line) over time t in Experiment 2

prioritized Move process, which becomes ready. The pro-
cess context of Wipe is stored and Move becomes active.
After deployment of the cups, the Wipe context is loaded
again and the process continues to clean the table at the point
it was interrupted. Both experiments show, how versatile the
behavior-based approach is. The robot can handle different
situations with some very basic behaviors. Figure 6 shows the
results of Experiment 3, which is again the cooking scenario
but with the MHRN scheduling strategy. The negative PIDs
keep the meaning of the former experiments. PID 0 is the

Stir behavior, which is slightly modified. Instead of stirring n
rounds, the robot stirs forever. PID 2 refers to the Pour(milk
bag) behavior and PID 1 to the Pour(cup) behavior. At
time t0 = 25s the cup and the milk bag are added to the
scene. The corresponding processes become ready and their
priorities begin to rise. At t2 = 45 and t3 = 135s their
priority exceeds the priority of Stir and the objects’ contents
are poured into the bowl. This scheduling guarantees, that a
process that has been suppressed for a long time, because of
a lower initial priority, will finally manage to be executed.
While our experiments take place in a cooking scenario, the
scheduling can be applied to a lot of recurrent behaviors.

D. Experiment discussion

Although we use quite simple hand-written behaviors, they
show the principle of the system. Just like on a computer,
different tasks, which compete for the existing resources,
can be executed on a robot. The behavior-based approach
allows adding and removing of tasks, which is needed for
future work. The process-based scheduling from operating
systems helps to reach reasonable response times and allows
consistent switching between the behaviors. The object based
memory prevents behaviors from manipulating an object
more often than desired.
The outcome of the experiments is quite predictable in the

beginning. And we think this is exactly what the user wants,
when having a robot by his side. While many approaches
with a behavior fusion mechanism have quite unpredictable
outcome, this can be not helpful for the user or even danger-
ous. Nevertheless, some points are not exactly predictable
yet. Looking at Experiment 1, two cups are placed in the
scene. Since these are recognized at the same time, it is not
predictable for the user, which cup will be poured first. More
generally speaking, if two behaviors with the same priority
are triggered at the same time, it is not transparent for the
user which one will be executed first.
This also leads to the question, how the priorities should
be set. In our experiments the priorities are set manually.
So the priority scheduling strategy will perform as desired.
When it comes to a scenario, where much more behaviors
are involved, like the complete laying of a table, this can
probably not be useful anymore.
An attempt adjust the priorities automatically, was done with
the MHRN scheduling in Experiment 3. But we see, that
an automatic setting of priorities has to be examined much
more, to enable a fair scheduling. We cannot just take known
scheduling algorithms from operating systems. Most of them
assume negligible costs for context switching. But when we
take a look at Table II, which shows the time consumption
for context switching, we recognize this is different in
robotic applications. Designing a good scheduling strategy,
that allows fair behavior execution, fast response times and
low flow times with automatic priority setting will be a key
issue for future work. Maybe user interaction can be taken
into account for this or statistics of former process runtimes.
A decision making component could assist the scheduler, to
choose the current best behavior or even to achieve a goal
by combining behaviors.
When we take a closer look at Table II, we can recognize
more problems in context switching. The time fraction tp is
the ratio of absolute time for context switching tabs divided
by the whole experiment’s time tc. In Experiment 1 and 2
tc is the time between the first process being active and
the last active process becoming terminated. In Experiment
3 we choose tc = 225 because Stir will never terminate.
Although the storing and restoring works good, it takes time.
It obviously takes longer, when the objects are deployed far
away from the current position of the tool center point. In our
experiments we used the initial object position as the deploy
position. But instead the robot should deploy the object to the
nearest free position. In Experiment 2 we face the problem,
that although the sponge is already lying on the table, the
robot deploys it on it’s initial position.
When considering, that the stored tool center point position
should be restored again or moving to the current action’s
goal directly, one should take a look at Experiment 2. Here,
it is crucial to continue the process at the last stored position.
Otherwise, the table would not be cleaned completely. So if
we do not know anything about the task, we will have to
restore the position.

TABLE II
TIME CONSUMPTION IN SECONDS FOR CONTEXT SWITCHING WITH THE

ABSOLUTE TIME tabs , THE AVERAGE TIME tavg AND THE FRACTION tp

OF THE OVERALL EXPERIMENT DURATION.

Experiment # switches tabs tavg tp
1 2 27.58 13.79 16.0 %
2 2 28.02 14.01 12.4 %
3 4 60.08 15.02 28.9 %

Fig. 6. left:id of the active process (PID) over time t in Experiment 3;
right: process priorities p over time t in Experiment 3; used parameters for
PID 0: k0 = 0 k2 = 0 td = 0, for PID 1: k1 = 20−2 k2 = 2.0 td = 0,
for PID 2 k1 = 2 ∗ 1103,k2 = 3,td = 0

IV. CONCLUSIONS

Most existing behavior-based manipulation systems
rely on an action fusion mechanism. A task can only be
accomplished, if all behaviors are well coordinated. In this
paper a behavior-based robot manipulator was presented,
which is able to execute multiple tasks. The system can
interrupt and resume the execution of the tasks consistently.
This is achieved by transferring well known concepts
from the computer operating systems domain to the field
of robotics. We introduce processes and scheduling to
execute and coordinate the sequence of the behaviors on
a robotic manipulator. We use process contexts to switch
between behaviors consistently. Therefore the robot is able
to do a multitasking of different manipulating behaviors
in parallel. A resource based synchronization approach
guarantees a consistent execution. The resource based
synchronization approach can also be used with different
task representations. The approach is not limited to reactive
behaviors. Behaviors can also be high-level controller.
The main contribution of this work is the ability of a
robotic manipulator to consistently switch between multiple
manipulating tasks.
The experiments show the flexibility and versatility of the
approach. But they also show that further improvements
may design better scheduling strategies, that address the
demands of robotics applications. It should contain the
automatic assignment of process priorities and optimize the
context switching. It may also take into account statistics of
already executed processes, since everyday tasks are usually
recurrent.
The experiments also show, that powerful observers are

needed. The better these observers are, the more powerful is
our approach. If these observers are able to analyze objects,
then the degree of similarity of the objects to the conditions
within the state machine can also be used to influence the
scheduling.

REFERENCES

[1] R. Arkin, Behavior Based Robotics. Cambridge, Massachusetts: MIT
Press, 1998.

[2] B. Bagnall and R. Glassey, “Programming Behavior with leJOS
NXJ.” [Online]. Available: http://lejos.sourceforge.net/nxt/nxj/tutorial/
Behaviors/BehaviorProgramming.htm

[3] T. E. Kurt, Hacking Roomba: ExtremeTech. Indianapolis: Wiley
Publishing Inc., 2006.

[4] S. Huang, E. Aertbeliën, and H. V. Brussel, “A Constraint-Based
Behavior Fusion Mechanism on Mobile Manipulator,” in 2008 ECSIS
Symposium on Learning and Adaptive Behaviors for Robotic Systems
(LAB-RS). IEEE, Aug. 2008, pp. 83–88.

[5] C. Lenz, M. Rickert, G. Panin, and A. Knoll, “Constraint task-based
control in industrial settings,” in 2009 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, Oct. 2009, pp.
3058–3063.

[6] Z. Wasik and A. Safiotti, “A fuzzy behavior-based control system for
manipulation,” in IEEE/RSJ International Conference on Intelligent
Robots and System, vol. 2. IEEE, 2002, pp. 1596–1601.

[7] ——, “A Hierarchical Behavior-Based Approach to Manipulation
Tasks,” in Proceedings of 2003 IEEE international conference on
robotics and automation, Taipei, 2003, pp. 2780–2785.

[8] P. Dassanayake, K. Watanabe, K. Kiguchi, and K. Izumi, “Robot
manipulator task control with obstacle avoidance using fuzzy
behavior-based strategy,” Journal of Intelligent and Fuzzy Systems,
vol. 10, no. 3, pp. 139–158, 2001.

[9] A. C. Smith, E. Rafael, and T. Jara, “Sensitive Manipulation,” Ph.D.
Thesis, Massachusetts Institute of Technology, 2007.

[10] T. Williams, “Behavioural modules for force control of robot manip-
ulators,” In Proc. IEEE Int. Symp. on Robot Control, 2000.

[11] N.-H. Park, Y. Oh, and S.-R. Oh, “Behavior-based control of robotic
hand by tactile servoing,” International Journal of Applied Electro-
magnetics and Mechanics, vol. 24, no. 3-4, pp. 311–321, 2006.

[12] N. Mitsunaga, C. Smith, and T. Kanda, “Robot behavior adaptation
for human-robot interaction based on policy gradient reinforcement
learning,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS 2005), 2005, pp. 1594–1601.

[13] T. Taipalus, “An Action Pool Architecture for Multitasking Ser-
vice Robots with Interdependent Resources,” in Proceedings of the
8th IEEE international conference on Computational intelligence in
robotics and automation. Piscataway, NJ, USA: IEEE Press, 2009,
pp. 228—-233.

[14] R. Brooks, “Intelligence without Representation,” Artificial Intelli-
gence, vol. 47, pp. 139–159, 1991.

[15] J. Connell, “A behavior-based arm controller,” IEEE Trans. on
Robotics and Automation, vol. 5, no. 6, pp. 784–491, 1989.

[16] A. Edsinger and C. C. Kemp, “Two Arms are Better than
One : A Behavior Based Control System for Assistive Bimanual
Manipulation,” Artificial Intelligence, pp. 345–355, 2008.

[17] B. Waarsing, M. Nuttin, and H. Van Brussel, “Behavior-based
mobile manipulation inspired by the human example,” in 2003 IEEE
International Conference on Robotics and Automation, vol. 1. IEEE,
2003, pp. 268–273.

[18] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey
of robot learning from demonstration,” Robotics and Autonomous
Systems, vol. 57, no. 5, pp. 469–483, May 2009.

[19] E. Gat, “On three-layer architectures,” Artificial intelligence and
mobile robots, pp. 195–210, 1998.

[20] B. Siciliano and O. Khatib, “Robot Programming by Demonstration,”
in Springer Handbook of Robotics, B. Siciliano and O. Khatib, Eds.
Springer, 2008, vol. 15, no. 3, ch. 59, pp. 1371—-1389.

[21] A. S. Tanenbaum, Modern Operating Systems. Upper Saddle River,
NJ, USA: Prentice Hall Press, 2007.

