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ABSTRACT 

Today, real-time collision detection is a basic demand for many 
applications. While collision tests between known (modeled) ob-

jects have been around for quite a while, collision detection of 
known objects with dynamic, unknown (sensor-detected) objects 
remains a challenging field of research, especially when it comes to 
real-time requirements. The collision test described in this paper is 
based on several stationary, calibrated video cameras, each super-
vising the entire 3-dimensional space shared by unknown and 
known objects (e.g. humans and robots). Based on their images, 
potential collisions of the known objects in any of their (future) 

configurations with a priori unknown dynamic obstacles are de-
tected. Occlusions caused by known objects (such as the robot or 
machinery set-up within the workspace) are detected and addressed 
in a safe manner by exploiting the geometrical information of the 
known objects and the epipolar line geometry of the calibrated 
cameras in a decision fusion process. The algorithm can be param-
eterized to adapt to different application demands. Experimental 
validation shows that real-time behaviour is possible in the pres-

ence of highly dynamic unknown obstacles as they occur when 
humans and robots share the same workspace for the accomplish-
ment of a shared task. In effect, the vision-based collision test can 
safely be used for human-robot cooperation, intrusion detection, 
velocity damping, or obstacle avoidance. 

 
Index Terms—Vision, Collision Detection, Multi-Camera Im-

age Fusion 

 

1. INTRODUCTION 

Real-time collision tests with a priori unknown (sensor-

detected) objects are a basic precondition for numerous ro-

bot applications. For example, the basic robot skill of gross 

motions must be capable of taking the robot from the current 
configuration to a target configuration without colliding 

with dynamic obstacles present in the workspace, which 

provides safe coexistance with human operators. 

To achieve this goal, information about the current state 

of the shared workspace is required. Multiple video cameras 

are convenient sensors, as they are widely available and 

cost-effective with regard to various criteria, such as resolu-

tion and update rate. The problem is extracting a representa-

tion of objects in the environment from the camera images. 

The general problem can be specified as follows: The in-

put is the geometry and kinematics of an known object (such 
as the robot) in a static 3-dimensional (3D) environment that 

may contain work pieces and static obstacles with known 

geometry. Additionally, the on-line images of stationary, 

calibrated cameras are given, each supervising the complete 

workspace shared by robot and other dynamic obstacles 

(unknown objects) such as humans. For a specific set-up, the 

maximum number of cameras in which the dynamic obsta-

cles can simultaneously be occluded by the robot is known. 

Finally, the desired gross motions (transfer or pick-and-

place) are provided. Output is the decision whether there is a 
collision between the robot and human or any other dynamic 

obstacle for any specific (future) configuration or along a 

complete motion segment. 

This type of on-line collision test can be used in various 

applications. It provides the robot with additional capabili-

ties, such as intrusion detection, velocity damping, or obsta-

cle avoidance such as collision-free path planning. Most of 

them request the state of a configuration, after which the 

collision test returns either free if the robot can move safely 

into that configuration or occupied if a collision would oc-

cur. The collision test presented can determine the state of 

all possible robot configurations and not just the neighbor-
ing configurations of the current one, all of which is possible 

using a single set of images taken simultaneously. 

In the following, we discuss related work in the area of 

sensor-based collision detection (Section 2). Then, we pre-

sent our approach for detecting collisions during transfer 

motions (Section 3), which can be enhanced to detect colli-

sions for pick-and-place motions (Section 4). Both ap-

proaches are validated by the results of our experiment, 

which applied them in a simple path planner (Section 5).  

2. RELATED WORK 

In the past, several approaches have been discussed for 

sensor-based collision detection and avoidance. They can be 

distinguished according to their sensing domain, i.e. whether 

global 3D information or global non-3D information about 

the environment. 

2.1. Using global non-3D environment information 

Non-3D global environment information can be acquired 

by stationary range finders or vision systems. The sensors 

commonly used acquire either 1!D, 2D or 2!D informa-

tion. 

In [28] a laser range finder acquires 1!D distance infor-

mation within a plane just above the floor of the work cell. 

Any dynamic obstacles detected are assumed to be standing 

humans and are approximated by a vertical cylinder. The 
smallest distance between this cylinder and the robot limits 
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Fig. 1: To calculate the reference image for one camera, the 
three images (top-left, top-right, and bottom-left) showing the 
robot in different configurations are acquired. Then, the refer-
ence image (bottom-right) is calculated using the intensity me-
dian of all images for each pixel. 
 

the maximum robot velocity. However, other obstacles or 

humans in a stooping posture may not be correctly approxi-

mated. 

In [31] [29] a tri-ocular camera system acquires 2D color 

information of the shared workspace from above. This en-

ables a human and a SCARA robot to cooperatively assem-

ble small work pieces. The human’s hands and neck are de-

tected based on the characteristic color and texture features 

of the skin. The distance between these human body parts 

and the robot is used to limit the maximum robot velocity. 

However, collisions with other parts of the human, other 
obstacles or larger work pieces are not detected.  

In [27] [30] the above system was extended by a tri-

ocular stereovision system acquiring 2!D distance informa-

tion from above. However, it is unclear whether this method 

can cope with larger work pieces or obstacles other than 

bare human body parts. 

In summary, it is possible to apply simplified collision de-

tection strategies with non-3D global environment informa-

tion. However, for robots moving in all three dimensions or 

for manipulation of large work pieces, 3D environment in-

formation is necessary. 

2.2. Using global 3D environment information 

Global 3D environment information can be acquired by 

multiple cameras, with each camera monitoring the entire 

scene form different viewpoints. This technique is widely 

used in computer graphics to determine the physical extent 

of an object by fusing multiple images of a scene with the 
back-projection method (also called shape-from-silhouette 

or volume-intersection) [9] [10]. However, they focus on the 

precise reconstruction of an object in 3D space, including 

texture information. A detailed analysis of the unwanted 

enlargement of reconstructed objects as a side effect of the 

back-projection method can be found in [23]. However, nei-

ther high precision nor texture information is necessary to 

detect dynamic obstacles. Furthermore, this technique is 

only capable of reconstructing single objects correctly, 

while scenarios of human/robot cooperation contain at least 

two objects. 

To distinguish multiple objects in a 3D environment, the 
object information can be encoded by color. The following 

are examples of this approach: First, in [24] the back-

projection approach is extended by assuming that the corre-

spondence between pixels of different cameras can be re-

solved based on the object color. This assumption may hold 

true for small camera distances, but they in turn lead to large 

reconstruction errors. Second, in [19] the edges of the robots 

in a multi-robot system have a special color so they can be 

detected easily in the camera images. To detect collisions 

between the robots, the edges projected into the cameras are 

tested for intersections. However, even if the edges of other 
obstacles can be marked, this is hardly applicable to hu-

mans. Third, in [2] the robot and floor of the work cell are 

black while obstacles are white; the smallest distance be-

tween the projected robot tool center point and the obstacles 

in the images is used to detect collisions. 

The restrictive object color-coding technique can be 

avoided by applying a difference image approach in multi-

ple cameras. For each camera, the pixel-wise difference be-

tween the current image and the reference image is calcu-

lated. In [21] [22] [1] three grayscale cameras establishing 

multiple passive light barriers are used to detect collisions 

for a portal robot. Evenly distributed 3D points in the work-

space are mapped to monitored pixels in each camera. If the 

features of the pixel differ from the given background values 

beyond a certain threshold, the system assumes that the cor-
responding point in space is occupied by an obstacle. How-

ever, when multiple objects are present in the workspace, 

non-existent (pseudo) obstacles can be falsely detected, a 

problem that will be discussed in Section 3.4. Additionally, 

it is assumed that the robot is not visible in the cameras, 

otherwise it will appear as an obstacle hindering its own 

motion. In [4] this assumption is abandoned and instead, the 

pixels covered by the current robot configuration are identi-

fied with a mapping table and treated separately. To test 

whether a future robot configuration collides, a second table 

maps all (obstacle) pixels to robot configurations. Even if 
the table look-up is fast, however, the table construction can 

be time- and memory-consuming. A more efficient approach 

based on a geometric robot model is discussed in Section 

3.3. 

In conclusion, 3D environment information must be ac-

quired to exploit the full potential of robots moving in 3D, 

such as a complete gross motion collision test or collision-

free path planning. The back-projection method can be ex-

tended to reconstruct multiple objects with color-coding. To 

detect collisions, an enhanced difference image approach 

with a separate treatment for robot pixels is sufficient. 



 

3. COLLISION TEST FOR TRANSFER MOTIONS 

The hardware of the collision detection system presented 

consists of several stationary video cameras, each monitor-

ing the entire workspace shared by robot and unknown ob-

jects. The cameras are connected to a standard personal 

computer that processes their images. Additionally, the 
computer receives information about the current robot posi-

tion from the robot controller via network. 

The software generates a reference image of the work-

space for each camera in a preliminary setup step (Section 

3.1). Then an enhanced difference image method is applied, 

which compares the current workspace image with the ref-

erence image of the empty workspace (Section 3.2). This 

representation of the current workspace is then used in the 

basic collision detection algorithm (Section 3.3), which can 

be enhanced in three ways: First, the incomplete obstacle 

information can be refined with epipolar line information 

(Section 3.4). Second, the collision test itself can be en-

hanced by a refined collision condition (Section 3.5). Third, 

the collisions can be detected on a complete robot motion 
path by swept volumes (Section 3.6). 

3.1. Reference image generation 

Here, the reference image for a camera comprises the 

workspace containing only static obstacles, i.e. without ro-

bot and unknown objects. To avoid removal of the robot 

from the work cell, the reference image for each camera is 
calculated from multiple images including the robot [5]. For 

that purpose, images of the robot in various configurations 

are captured. The robot configurations are selected in such a 

manner that in each camera image and for all configurations, 

the robot covers as few common pixels as possible. Then, 

the reference image for each camera is created by calculat-

ing the median of the corresponding pixel values for all 

camera images. The median operation selects the pixel value 

present in the majority of the images, which represents the 

background. Thus, the mobile parts of the robot disappear in 

the reference image because the robot is visible only once in 
all configurations. The immobile robot base remains as a 

static obstacle (Fig. 1). Additionally, the cameras need to be 

calibrated so that the internal (focal length, distortion) and 

TABLE I:  
 PIXEL MAPPING FUNCTION TO CONSTRUCT THE OBSTACLE IMAGE 

Difference Image Current Robot Image Obstacle Image 

Background Background Background 

Foreground Background Obstacle 

Foreground Robot Unknown 

Background Robot Error 
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Fig. 3: The generated images for an example scene. The Differ-
ence Image and Current Robot Image are used to calculate the 
single-camera Obstacle Image according to Table I. 

Future

robot
configuration

Current
robot

configuration

a)

b)

c)

e)

k)

g)

l)

h)

i) j)

n)

o)

m)

d)

f)

Scene Image Feature Image

Difference Image

Obstacle Image

Intersection Image

Reference Image

Current Robot Im.

Future Robot Im.

Feature Image

  
Fig. 2: Pictograms illustrating the data flow for detecting collision between the robot and dynamic obstacles with a single camera  
 



 

external parameters (position, orientation) are known. The 

calibration is necessary to project the robot model into the 

cameras (Sections 3.3, 3.6) and to exploit the epipolar line 

information (Section 3.4). To achieve an automatic calibra-

tion process, the system needs to be able to detect known 3D 

positions within the cameras. A wide variety of camera cali-

bration methods exist; here, we used a blinking light bulb 

fixed in the robot gripper, which was then moved to the de-

sired 3D positions and could easily be found in the camera 

images [20]. 

3.2. Enhanced difference image calculation 

To calculate a robust difference image of the workspace, 

the current captured image (Fig. 2a) is evenly subdivided 

into non-overlapping tiles on a grid, so that each tile con-

tains several pixels. This subdivision is also applied to the 

corresponding reference image (Fig. 2b). Each tile corre-

sponds to a pixel in the difference image, which is thus of 
lower resolution. For each tile, several scalar features are 

calculated based on the pixel values in the tile (Fig. 2c, d). 

Examples for characteristic features are pixel value average, 

variance and contrast. Here, we used the average gray value 

and the y-coordinate of the gray value balance point, since 

they provide a good silhouette while using little computation 

time. 

These features are then compared to the corresponding 

features of the reference images in the following steps: First, 

the metric defined for each feature is used to measure the 

distance between each tile of the scene and the reference 
image. Then, this distance vector is used to classify each tile 

as background pixel if no significant changes to the refer-

ence image exist and as foreground pixel if significant 

changes do exist (Fig. 2e). Several classification methods 

and automatic classification parameter optimization have 

been investigated [3]. Linear and statistical Bayes classifica-

tion can achieve correct classification of ca. 97% of fore-

ground tiles. Finally, the morphological operator Close is 

applied in a 4-neighborhood of all foreground tiles, resulting 

in the difference image (Fig. 2f). 

3.3. Basic collision detection algorithm 

The collision detection requires a difference image con-

taining only obstacles, because the robot itself is not consid-

ered to be an obstacle. Thus, we have to eliminate any fore-

ground pixels caused by the robot from the current set of 

foreground pixels in each camera. Therefore, the current 

joint positions and an identifier of the gripped work piece is 
used (Fig. 2g). The 3D geometric and kinematic robot model 

(Fig. 2h) is parameterized by the current configuration and 

transformed to the current robot geometry (Fig. 2i). By 

means of the calibrated camera parameters, this geometry is 

then projected into each camera view, yielding the current 

robot image (Fig. 2j). This robot view is used to mask the 

robot within the difference image, resulting in an image con-

taining only obstacles, called the obstacle image (Fig. 2k). 

This masking operation is done according to Table I and 

will now be explained for a pixel-based example in Fig. 3. 

The binary pixels located at the same position in difference 

and robot image are used to determine one of the four values 

of the pixel in the obstacle image. If the difference and robot 

image pixels are set to background, the corresponding pixel 

in the obstacle image is also background. If the difference 

image pixel is foreground and the robot image pixel is back-

ground, the object seen in this pixel is an obstacle. If the 

TABLE III:  
PIXEL MAPPING FUNCTION TO REVISE THE OBSTACLE IMAGE 

(ASSUMING ! = 1) 

Obst. Image Another Obstacle Img. Revised Obst. Img. 

Background  Background 

Obstacle  Obstacle 

Unknown Epipolar line ! Obst. = " Background 

Unknown Epipolar line ! Obst. # " Possible obstacle 

Error Epipolar line ! Obst. = " Background 

Error Epipolar line ! Obst. # " Possible obstacle 

 
Obstacle Image:        Another Obst. Img.:  Revised Obst. Img.: 
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Fig. 5: The generated images for an example scene. Unknown 

and error pixels in the Obstacle Image are resolved by epipolar 
line information in Another Obstacle Image resulting in the 
Revised Obstacle Image according to Table III. One example 
pixel and the corresponding epipolar line are hatched. (Assum-
ing " = 1) 
 

TABLE II:  
PIXEL MAPPING FUNCTION TO CONSTRUCT THE INTERSECTION IMAGE 

Revised Obst. Im-
age 

Future Robot Image Intersection Image 

Background Robot False 

Obstacle Robot True 

Possible obstacle Robot True 

Background Background False 

Obstacle Background False 

Possible obstacle Background False 

 

Revised Obst. Img.:  Future Robot Img.:   Intersection Img.: 
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Fig. 4: The generated images for an example scene. The Revised 
Obstacle Image and Future Robot Image are used to calculate the 
Intersection Image according to Table II. 

 



 

difference image pixel is foreground and the robot covers 

this pixel, the obstacle image pixel is set to unknown, as 

there might be an obstacle in front of or behind the robot. If 

the difference image pixel is background but the robot 

should cover this pixel, the obstacle image pixel is set to 

indicate an error because we see the background in a loca-

tion where the robot should be. This error occurs either if 

the robot image is false due to an imprecisely determined 

robot position or a conservative robot model, or if an object 

in front of the robot or the robot itself has the same tile fea-
tures as the background. 

With the obstacle image and the robot model, we are able 

to check an arbitrary future robot configuration (Fig. 2l) for 

collisions with the current obstacle situation. The robot 

model (Fig. 2h) is transformed into the future robot geome-

try (Fig. 2m) and projection of this geometry into the camera 

view yields the future robot image (Fig. 2n). Then, the fu-

ture robot image is intersected with the obstacles recon-

structed from the scene image (Fig. 2k), resulting in the in-

tersection image (Fig. 2o).  

In a single-camera system, the future robot configuration 
can be considered as collision-free only if the intersection is 

completely empty, i.e. all robot pixels in the future robot 

image are background pixels in the obstacle image. Unfor-

tunately, in applications with a continuously moving robot, 

the intersection is rarely empty since the projections of the 

current and future robot configurations typically overlap to 

some extent, i.e. some robot pixels in the future robot image 

are unknown pixels in the obstacle image. 

A multi-camera system offers multiple perspectives of the 

(future) robot configuration, resulting in an improved ability 

to prove that a future robot configuration is collision-free. 

This proof depends on the number of cameras with no ro-

bot/obstacle intersections, which is determined by the 

maximum number " of cameras in which a dynamic obstacle 

can simultaneously be occluded by the robot [4]. For exam-

ple, if " = 2 then any dynamic obstacle is occluded by the 

robot in two cameras at most and a future robot configura-

tion is collision-free if it causes no intersection with obsta-

cles in more than two cameras. This number is called occlu-

sion threshold " in the following and is application-specific 

since it is influenced by the camera perspectives and the 

geometry of the obstacles and robot.  

3.4. Revised obstacle image generation 

The basic collision test has a major drawback: Even if 

there is an intersection of the future robot configuration with 
an obstacle in a camera, this future configuration will not 

necessarily lead to a collision. This may be the case when 

the robot only (partially) occludes the obstacle without con-

tacting it.  

To overcome this drawback, we need to further exploit 

the information from the other cameras. Most importantly, 

the portion of the robot that occludes the obstacle can 

probably be recognized as collision-free by a camera with 

another perspective of the scene if the epipolar line method 

is applied [12]. (A detailed overview of multiple-view ge-

ometry is provided in [25]). For this purpose, it is only nec-
essary to revise the computation step depicted in Fig. 2f, j, 

and k. The algorithm is now presented for two cameras in 

  
Fig. 6: Data flow of the revised obstacle reconstruction with two cameras illustrated by schematic images. The top-view of the scene is 
provided in (s) followed by the sequence of images corresponding to Camera 1 (a $ e) and Camera 2 (% $ &). Difference images (a resp. 

%) show the scene from perspective of Camera 1 resp. 2. The model information (b resp. ') identifies the unknown areas covered by the 

robot in the obstacle images (c, (). All data flow based on epipolar line information is illustrated in gray (d, )). In the revised obstacle 

images (e, &), the unknown areas are resolved resulting in possible obstacles and obstacles. (Assuming " = 1) 

 



 

Fig. 6 and later extended to the multi-camera case. 

Recall, that the current scene (Fig. 6s) and the resulting 

difference images for each camera are given (Fig. 6a and %, 

Fig. 2f). Furthermore, the current robot images are generated 

using the current robot configuration (Fig. 6b and ', Fig. 2j). 

Finally, the robot in the difference image is masked by the 

robot images, resulting in the obstacle images (Fig. 6c and 

(, Fig. 2k). Thus, the procedure is similar to the basic colli-

sion detection algorithm. 

The construction of the revised obstacle image is based on 

the obstacle images which contain areas occluded by the 

robot. For Camera 1, these occluded areas are resolved by 

projecting them in the obstacle image of Camera 2 using 

epipolar geometry (Fig. 6d). The same is done for Camera 2 

(Fig. 6)). If these projections intersect with obstacles, then 

the areas occluded by the robot may cover possible obsta-

cles, otherwise they cover background. This information is 

stored in the revised obstacle images (Fig. 6e and &). In the 

scene top-view, the areas of possible obstacles are hatched. 

At the pixel level, the revised obstacle image generation 

is done according to Table III and illustrated further for our 

example in Fig. 5. Recall that the area covered by the robot 

in the obstacle image results in unknown and error pixels 

which need to be resolved. To do so, each unknown or error 

pixel is projected into the obstacle image of the other cam-
era as an epipolar line. (In Fig. 5 one of these epipolar lines 

is represented by the hatched pixels and originates from the 

hatched robot pixel in the obstacle image.) Then, the epipo-

lar lines are checked for intersection with obstacle pixels, 

i.e. with any pixel that is neither a background nor robot 

pixel. If there is an intersection, then the corresponding pixel 

is an area where the robot may cover an obstacle. Thus, this 

pixel is labeled as a possible obstacle pixel, otherwise it is 

marked as a background pixel in the resolved obstacle im-

age. All the other pixels remain unchanged. 

In a multi-camera system with C cameras, all the cameras 
are used to resolve pixels. For each unknown or error pixel, 

the corresponding epipolar lines are projected in all other 

camera images and tested for intersections with obstacle 

pixels. If the number of cameras signaling an intersection is 

greater than or equal to C – !, then this pixel is labeled as a 

possible obstacle and otherwise as background. 

With the revised obstacle image, the collision test (Fig. 

2k, n, and o) is done according to Table II and illustrated in 

Fig. 4. The future robot configuration is projected in the 

camera and checked for intersection. In this example, the 

future robot configuration intersects with both obstacle and 

possible obstacle pixels; thus, the camera signals a collision. 

In general, the multi-camera system will consider a future 

robot configuration as collision-free if there is no collision 

in at least one camera, i.e. no intersections of the future ro-

bot configuration with either obstacle or possible obstacle 

pixels. 

3.5. Revised collision test condition 

The collision test mentioned above treats intersections 

with obstacles and possible obstacles equally. Unfortu-

nately, this may lead to robot immobility in cases where the 

robot contacts possible obstacles (Fig. 6e and &). In our ex-

ample, this originates in the fact that possible obstacles are 

reconstructed for both cameras. Therefore, any robot con-
figuration close to the current position results in intersec-

tions with possible obstacles and the robot remains immo-

bile. 

This problem can be solved with a more elaborate colli-

sion test considering pixel sets instead of single pixels, e.g. 

all robot pixels in an image form the robot pixel set. Addi-

tionally, it is based on the assumption that the robot is colli-

sion-free within its very own volume. In Table IV this as-

sumption is applied to all cases involving testing a future 

robot configuration for collisions with (possible) obstacles 

for two cameras with " = 1. Additionally, examples of such 
cases are provided in Table IV. For an arbitrary number of 

cameras C, the 16 possible cases that can occur can be sub-

divided into the following four classes: 

1. Class A: Covers all cases in which at least one camera 

signals no intersection with either pixel type. For all 

cases in this class, there can be no collision with an ob-

stacle at all, because if any volume intersection exists 

between a (possible) obstacle and the future robot con-

figuration, each camera contains a pixel set intersection 

of the respective projected volumes. (This is analogue 

to Section 3.4.) 

TABLE IV:  
CASES OF INTERSECTION BETWEEN FUTURE ROBOT PIXEL SETS AND 

OBSTACLE AND POSSIBLE OBSTACLE PIXEL SETS IN A TWO-CAMERA 

SYSTEM 

Robot pixel set inter-

sects in Camera 1 with 

Robot pixel set inter-

sects in Camera 2 with 

Obstacle 

pixel set 

Possible obst. 

pixel set 

Obstacle 

pixel set 

Possible obst. 

pixel set 

Class 

false false false false A 

false false false true A 

false false true false A 

false false true true A 

false true false false A 

false true false true B 

false true true false C 

false true true true C 

true false false false A 

true false false true C 

true false true false D 

true false true true D 

true true false false A 

true true false true C 

true true true false D 

true true true true D 
 



 

2. Class B: Comprises all cases that are not in Class A and 

for which the following condition holds true:  Less than 

C – " cameras signal collisions only with obstacles. 

Cases in this class are collision-free because if they col-

lide, at least C – " cameras would show a collision with 

an obstacle, as any obstacle is visible in at least C – " 

cameras. 

3. Class C: Comprises all cases that are not in class A or B 

and for which the following condition holds true: At 

least C – " but less than C cameras signal a collision 

with an obstacle. Cases in this class are not collision-
free, because we must assume that the robot intersects 

with a volume that contains an obstacle, as this volume 

is visible in at least C – " cameras as an object, which 

assumed to be true for any real dynamic obstacle. 

4. Class D: Comprises all other cases (C cameras indicate 

a collision with an object and an arbitrary number less 

than C indicates collision with a pseudo-object). These 

cases indicate a definite collision with the obstacle vol-

ume. It is nevertheless possible that in reality even these 

robot configurations do not actually collide because the 

visual hull of an object is a conservative approximation 
and exceeds the true object volume. 

 

With this insight, the collision test condition of a (future) 

robot configuration can now be stated more formally. Let in 

the obstacle image Si of camera i the set Oi be the fore-

ground pixels labeled as obstacle pixels and the set Pi be the 

foreground pixels labeled as possible obstacle pixels. Fur-

ther, let the set Ri be the robot pixels of an arbitrary robot 

configuration. We can then introduce the predicates CollRO 

and CollRP providing the Boolean information whether cam-

era i signals a collision with real obstacles and with possible 

obstacles, respectively:  

 !"#=
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 !"#=
iiiiRP
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In general, collisions can be detected for the current or 

any future robot configuration. Let the set Ti be pixels of the 

robot in a certain configuration. Additionally, let the shared 
workspace be observed by C cameras and allow any obsta-

cle to be occluded by the robot in at most " cameras. Then, a 

collision is detected if at least C – " cameras detect an ob-

stacle collision and no camera is completely free of either 

obstacle or possible obstacle collisions. Thus, a collision is 

detected if and only if the following condition holds true: 
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3.6. Collision detection for complete motions 

The vision-based collision test of single robot configura-

tions can be extended to test complete robot motions of arbi-

trary shape. To do so, it is sufficient to regard the volume 

swept by the robot during the motion and test it against the 

obstacle volumes. In the collision test algorithm described in 

Section 3.3, this is done by exchanging the future robot im-

age for each camera with the projection of the swept vol-

ume, the swept volume image. 

To calculate the swept volume image, the motion is inter-

polated by several intermediate robot configurations. For 

each configuration, the corresponding robot geometry is 

transformed and projected into the camera. To avoid possi-

ble gaps between the projections of two successive configu-

rations, we can either reduce the Cartesian distance xmax be-

tween the successive configurations or enlarge the robot 

geometry by radius r. There will be no gaps if the condition 

xmax < 2r holds true. (In our experiments, we set xmax to the 

smallest link cross-section of the robot.) Altogether, the un-

ion of the individual projected configurations yields the 

swept volume image. 

To determine the intermediate robot configurations for a 

serial robot with only rotatory joints, the given maximum 

Cartesian movement xmax can be transformed into a maxi-

mum joint movement [15]. Let li be the distance between the 

rotational axis of joint i and the farthest point the end effec-

tor can reach. Then, the maximum joint movement "qi, 

which does not exceed the Cartesian xmax in the worst case, 
is calculated as 
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The movement of joint i during the complete robot mo-
tion is then subdivided into portions of size "qi. If there are 

ni portions of joint i and d joints total, then there are n = n1 + 

… + nd single portions, each of which may result in a robot 

movement of xmax in the worst case scenario. Thus, we need 

to subdivide the complete robot motion into n intermediate 

configurations in order to guarantee a robot movement 

shorter than xmax between successive configurations. To re-

duce redundant computation each robot link is rendered only 

if necessary, that is if its actual movement exceeds the dis-

tance xmax. 

4. COLLISION TEST FOR PICK-AND-PLACE 

OPERATIONS 

The classical difference image method involves the un-

derlying assumption that a static environment is present, 

which is impractical for many applications [11] [13]. For 

example, typical tasks for industrial robots involve moving 

work pieces from one location to another (pick-and-place 

operations), which changes the robot’s environment. These 

changes usually result in additional foreground pixels in the 
difference image at the previous and present locations of the 

work piece. The more locations are involved, the more clut-

tered with virtual obstacles the difference image will be-

come, forcing the robot into immobility. Nevertheless, these 

environmental changes are part of the application process 

and need to be considered. Since the difference image 

method stores an environment representation in the refer-



 

ence image, an update of the reference image is necessary 

(Section 4.1). A survey of reference image update algo-

rithms is given in [26]. As with the difference image areas 

occluded by the robot, here, the reference image update ar-

eas occluded by obstacles require special attention. 

4.1. Reference image update algorithm 

The central data structure of the reference image update 

algorithm is the pixel set U of difference image pixels that 

define the area of changed pixel values. Consequently, a 

difference image pixel belonging to U defines the tile of the 

reference image that needs to be replaced with the corre-

sponding tile in the current scene image, resulting in an up-

dated reference image. 

The update process starts when the robot either picks or 

places a work piece. This start time t0 can be signaled by the 

robot application program by providing an additional identi-

fier for the picked or placed work piece. The corresponding 
geometric model of the work piece is used for two purposes: 

First, the model determines the position and shape of the 

initial update area U. Second, the work piece model extends 

the robot model for save transfer movements with the re-

spective work piece gripped (Section 3). 

Additionally, the update process must prevent a fore-

ground object (obstacle) from becoming integrated into the 

reference image. A problem is that no obstacle can be di-

rectly observed based on image differences in the update 

area, as image differences already occur in this area because 

of the pick/place process. Based on the epipolar line tech-
nique described in Section 3.4, we can detect the set of pos-

sible obstacle pixels O within the update area of one camera 

based on obstacle information from other cameras views 

(Fig. 8c). Treating these possible obstacles as real and re-

moving their pixels from the update area pixel set, we can 

safely update the remaining pixels of the update area, result-

ing in the refined update algorithm described above. 

With these preliminary considerations, the update algo-

rithm can be formulated in pseudo-code: 

U := computeWorkPiecePixels(ti) 

repeat 

 R : = computeRobotModelPixels(t0) 

 E := U \ R 

 O := computePossibleObstaclePixels(ti) 

 E := E \ O 

 updateReferenceImageTiles(E) 

 U := U \ E 

until U = " 

First, an image of the work piece at the robot position at 

time t0 is calculated, which determines the pixel set U. In 

each iteration step i at time ti of the system, the robot model 

provides the current pixel set R defining the robot's shape. 

This set determines the currently occluded update area, and 

thus by subtraction, the set of pixels to be updated E is pro-
duced. Pixels of the set O that might be an obstacle in front 

of the update area need to be subtracted too. 

The data flow for one update step during a pick operation 

is illustrated in Fig. 7. The sequence is from a trial run of 

our prototype system with the robot cyclically picking and 

placing a black box. Fig. 7a shows the image of the robot 

model including the object currently being picked. Fig. 7b 

indicates the update area derived from the object model im-

age at the pickup position. If the robot model image is sub-

tracted from the update area, the result is the update area in 

Fig. 7d. The update area indicates the pixel of the current 
scene image in Fig. 7c, which can be used to update the cur-

rent reference image in Fig. 7e. The update result is the new 

reference image in Fig. 7f that only shows a portion of the 

black box remaining to be updated. 

a)

b)

c)

d)

e)

f)

 
Fig. 7: Data flow of a step in the reference image update algo-

rithm with images of a sample scene where the robot performs a 
pick operation. 
 

c)  
Fig. 8: Illustration of the update procedure during a pick opera-
tion (a), a place operation (b) and an object occlusion (c). The 
remaining set E of pixels to be updated is hatched. Obstacles in 
front of the update area in the camera view are detected with the 
help of obstacle information along epipolar lines in the other 
cameras. 

 



 

5. EXPERIMENTAL RESULTS 

The algorithms were implemented and evaluated in the 

prototype system. (Previous versions have been presented in 

[6] [7].) As sensors, four grayscale DMK 73/C CCD cam-

eras were connected to two DFG/BW1 Frame grabbers. 

These frame grabbers were installed in one AMD-Athlon 
2200+ PC, with two cameras attached to each frame grab-

ber. The images from all four cameras were acquired simul-

taneously. The resolution of the cameras was 704*576 and 

that of the difference images was set to non-overlapping 

64*64 tile pixels. An industrial robot Stäubli RX130 was 

controlled by an Adept CS7 robot controller, which was 

connected via 10 Mbit Ethernet to the server PC. The soft-

ware was implemented in Visual C++ 6.0 on the Windows 

NT 4.0 SP 6 operating system. 

The workspace shared by human as an unknown object 

and robot had a size of ca. 1.5*2*2 m3. The maximum robot 

speed was limited to 70 cm/s to ensure that a human still 

feels comfortable in the vicinity of the moving robot. With 

an update rate of ca. 7 Hz, the robot configuration space was 

subdivided into 8192 robot positions. 
The vision-based collision test presented can be applied to 

collision-free path planning, for example. As a simple global 

planning method, we chose the wave-propagation algorithm 

in [18]. Each joint was individually discretized, limiting the 

maximum robot movement to a predefined Cartesian dis-

tance [15]. The resulting accuracy allows even close (30 to 

50 cm) approaches to a priori unknown obstacles.  

A prototypical realization of an application example is 

shown in Fig. 9. The system’s task is to transport the black 

work piece from one workplace to another. In automatic 

mode, the undisturbed robot path is indicated by the arrow 

(Fig. 9, top-left). The figure shows the reaction of the sys-

tem to the obstruction of the programmed robot path. First, a 

collision with the operator is avoided by raising the work 

piece (Fig. 9, bottom-left). Second, the system stops the mo-

tion since the goal position is occupied by a similar work 

piece placed there by the operator (Fig. 9, bottom-right). 

6. CONCLUSION 

We presented a vision-based collision test to enable robot 

applications in environments containing a priori unknown 

objects. The approach uses multiple stationary cameras to 

detect a priori unknown dynamic obstacles such as humans. 

The basic difference image method is enhanced by classify-

ing foreground and background pixels, by exploiting epipo-

lar line information, by considering pixel sets in the colli-

sion test and by automatically updating the reference image. 
It enables collision detection for transfer motions and pick-

and-place motions in a 3D environment. Since any future 

robot configuration can be tested, collision-free path plan-

ning is applicable. 

Future work may augment this approach in several ways: 

First, the images may be pre-processed by smart cameras to 

improve computing speed [8]. Second, instead of a collision 

test, the smallest distance between robot and dynamic obsta-

cles may be calculated to improve the velocity damping and 

path planning capabilities [16] [17]. Third, non-static envi-

ronments (background pixels) such as conveyer belts or il-

 
Fig. 9: Photo sequence of a collision-free pick-and-place motion avoiding dynamic obstacles as humans and work pieces. The undisturbed 
robot paths are indicated in the top-left photo. 
 



 

lumination changes may be considered to enlarge the appli-

cation area. Finally, the robot motions may be guided by the 

human to enable closer human/robot cooperation [14]. 
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