
Path Planning and Execution in Fast-Changing
Environments with Known and Unknown Obstacles

Thorsten Gecks and Dominik Henrich

Lehrstuhl für Angewandte Informatik III (Robotik und Eingebettete Systeme)
Universität Bayreuth, D-95445 Bayreuth, Germany

E-Mail: {thorsten.gecks, dominik.henrich}@uni-bayreuth.de 
http://ai3.inf.uni-bayreuth.de/

Abstract – We present a path planner capable of effi-
cient and real-time handling of known and unknown obstacles 
in highly dynamic workspaces. Known obstacles are acquired 
offline and stored in a world model, unknown obstacles are ac-
quired online by one or multiple sensors. This is a typical situ-
ation for many applications.  The method presented here ex-
ploits this distinction by building a static roadmap based on 
known obstacle information. This enables efficient path plan-
ning and real-time performance using bounded lazy evaluation 
thus reducing the number of costly collision test. The dynamics 
of the workspace are addressed by invalidation/revalidation of 
roadmap edges based on sensoric input.  Several revalidation 
strategies are evaluated. The proposed path planner is probab-
ilistically complete and utilizes global environment information 
to assure goal arrival, if the goal is reachable. Our approach is 
realized using standard PC hardware with computational re-
quirements allowing real-time performance. Experimental res-
ults show the validity of our approach.

Index Terms – motion  planning, multisensor systems, 

robots

I. INTRODUCTION

To motivate the problems addressed by this path plan-
ner concept, we will start by giving a typical real-world ex-
ample. Based on the example, we will categorize path plan-
ning problems into four categories and show how the cur-
rent study fits into these categories.

One  typical  task  would  be  the  navigation  of  a  car 
through an urban scenario based on a street map. This map 
provides enough information to generate an optimal path in 
time  or  space.  During  execution  of  this  path  unforeseen 
hindrances  may  appear (traffic  jams,  accidents,  etc.)  be-
cause the environment may change faster than the planning 
and execution of the desired path can be carried out. Thus, 
the  problem is  characterized  by two properties:  The  first 
property describes whether the complete obstacle informa-
tion needed for the collision test is available before runtime. 
The second property relates to the combination of the com-
putational costs in terms of the runtime of all tasks involved 
in collision-free movements, when performed in a sequen-
tial  manner.  The  costs  include:  the  time  tsens needed  for 
sensor acquisition and processing, the time  tplan needed for 
planning and the time  texec needed for the execution of the 
planned path. The sum of these runtimes can be compared 
to the time period tenv, during which the environment can be 

considered static with respect to the given planning prob-
lem. Table I gives an overview of the mentioned categories 
and sample applications for each field.

TABLE I
CATEGORIZATION OF PATH PLANNING PROBLEMS AND EXAMPLE APPLICATIONS

Time relationships

tsens + tplan + texec  < tenv tsens + tplan + texec  > tenv

Oknown
NC milling, sweeping Kinodynamic motion 

planning

Ounknown
Path planning with local 
sensors, medical robotics

Human-robot coopera-
tion, service robotics

The first category of planning problems comprises en-
vironments  Oknown that  are  completely  known  in  advance 
with  no  time constraints  for  planning  and execution.  Ex-
amples of applications include the well-known field of nu-
merical control (NC) tool path generation for milling [4] or 
sweeping algorithms covering a given static area [16], for 
example used by lawn mower robots.

The  second  category  encompasses  all  planning  pro-
blems where known environmental dynamics are a conside-
rable  factor  and  have  to  be  considered  explicitly  in  the 
planning  process.  Kinodynamic  motion  planning  [3]  can 
provide  a  solution to such problems.  Typical  applications 
for  this  type  of  motion  planner  are  aerospace  tasks,  e.g. 
spacecraft rendezvous.

In  the third  category,  the  environment  Ounknown is  un-
known and sensor input is necessary to allow for collision 
tests  with  obstacles  in  the environment.  Additionally,  the 
time required for planning is not critical, as the environment 
is static for long periods of time. In medical robotics for ex-
ample, the information about the operative site is often ac-
quired in a preoperative phase, e.g. with tomography. With 
this information, complete, optimized planning and executi-
on of the milling of a cochlear implant is possible without 
further  acquisition  of  environmental  information,  as  de-
scribed in [15]. Planning with local sensors is similar. The 
planning only comprises the next immediate action due to 
the limited range of  short-range distance sensors,  such as 
the capacitance sensors used in [8] and [14]. Potential field 
planning methods, as described for example in [13], are a 
very common solution  for  this  type  of  sensor.  Typically, 
they assume the environment to be static for the next incre-
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mental planning step.
The fourth category consists of fast-changing environ-

ments containing unknown obstacles to be avoided, making 
continuous  sensor  updates  necessary to  ensure  safe  path 
planning. The path planning algorithm must adapt to envir-
onmental changes and guarantee sufficiently short runtimes 
to enable a decent sensor update rate. Performing a com-
plete planning and execution is not feasible, because the en-
vironment may change before the goal is reached. Examples 
of this category include human robot cooperation in indus-
trial  environments  or  the  navigation  of  a  mobile  robot 
through a building with dynamic obstacles, such as crowds 
of people. The path planning algorithm described in this pa-
per provides a solution for planning problems of category 
four. Additionally we require the planner to solve high-di-
mensional planning problems for robots with many degrees 
of freedom.

The following Section II describes the state of the art in 
efficient path planning for dynamic environments, followed 
by Sections  III and IV describing our approach to the path 
planning problem. Section V gives a short overview of the 
robotic system realized with this algorithm and presents ex-
perimental  results  demonstrating  the real-time capabilities 
of this approach.  Section  VI contains  concluding remarks 
about the work done.

II. RELATED WORK

In  this  section,  we give  an  overview of  existing  ap-
proaches to reduce planning costs. The basic assumption is 
an expensive collision test compared to the other compon-
ents of path planning (like roadmap construction, etc.).

As a consequence of the global collision detection de-
scribed above, global path planning is a natural solution ex-
ploiting all available information and is  complete even in 
cluttered situations that would lead local path planners into 
traps (local minima). With regard to the dimensionality of 
the configuration space, randomized roadmap planners scale 
with dimension without major drawbacks in computational 
efficiency. Several optimizations have been proposed in the 
past that lower the computational costs, specifically by re-
ducing the number of collision tests or the required enviro-
ment  detail.  In  the  following,  we  focus  on  reducing  the 
number of collision tests to address systems with costly col-
lision tests (i.e., in our system around 1 ms for a single ro-
bot position).

A significant reduction in the number of collision tests 
can be achieved by performing them only when they are ab-
solutely necessary;  this  is  called lazy evaluation.  In [2] a 
roadmap  is  initially  constructed  and  a  path  is  planned 
without  any  collision  tests.  When  a  path  is  found,  it  is 
checked for collision in steps from the start and goal node in 
an alternating fashion. The algorithm stops at the first col-
liding  edge,  invalidates  it  and  then  starts  searching  for  a 
new path.  However,  this  algorithm requires  a  completely 
known  environment.  In  a  fast-changing  environment, 
checking from the goal node towards the start node is ineffi-
cient, as the time needed to reach the goal would invalidate 
the collision test information used for these tests. Another 
drawback is that the algorithm is not bounded with respect 

to execution time.
In [9], a similar algorithm is described that determines 

the shortest path through a given roadmap. Afterwards, this 
path is tested completely. The collision test information is 
then used to alter the roadmap at colliding edges and nodes. 
While it is questionable to test the complete path within a 
dynamic environment, it also remains unclear why the in-
validated edges must be modified, as changes in the envir-
onment may revalidate them in the near future. No estimate 
of the computational  cost  of a single collision test or the 
number  of  collision  tests  needed  for  this  method  is 
provided. 

Another  planner  using  lazy  edge  evaluation  is  de-
scribed in [12]. Based on a static roadmap, the key issue de-
scribed there is the mapping of real-world changes to inval-
idated nodes of the roadmap via a table lookup. The table 
maps occupied voxels  to roadmap nodes.  These  occupied 
voxels are calculated from a model of the known objects in 
the workspace and the table is constructed from a given ro-
bot model  in an offline step. Besides the missing obstacle 
feedback  from sensors,  the size  (1.60×2.44×1.36  m³) and 
granularity  (4  cm resolution)  of  the  rasterized  workspace 
are rather  limited due to computational  restrictions.  For a 
network of 5000 nodes, the planning time achieved was 74 
ms on average on a 2.8 GHz Pentium IV PC. With 10.000 
nodes this increased to 385 ms.

In  [1],  a  combination  of  methods  is  presented  to 
provide real-time path planning capabilities for a mobile ro-
bot in a partially known environment consisting of a land-
scape  with   buildings  in  known  positions  and  unknown, 
autonomous agents detected by the robot's laser scanner. An 
initial, static roadmap is built based on the known environ-
ment  information.  The  shortest  path  is  generated  through 
this  roadmap and updated  during  execution  based  on  the 
obstacles encountered on the way. The path is updated with 
the  newly  developed  graph  planning  algorithm,  Anytime 
Dynamic A* [11]. In addition to the limited local sensor in-
formation,  the  results  achieved  on  a  PC  with  up-to-date 
hardware would not allow the algorithm to be applicable to 
fast-changing environments, as the maximum planning time 
peaks at 0.2 seconds. Also, the collision test implemented in 
this  algorithm was inexpensive,  testing  more than 50,000 
edges in 0.1 seconds, which is far less than the collision test 
costs assumed here.

In summary, we can state that lazy evaluation is a key 
to  the  solution  but  the  concept  itself  is  too  general  to 
provide real-time capabilities. It  must be modified to spe-
cifically meet these requirements. Furthermore, the distinc-
tion into the two types  of  collision tests  (known and un-
known obstacles) typical for many applications needs to be 
addressed and exploited appropriately.

III. ALGORITHM DESCRIPTION

In this section, we present our path planning algorithm 
in detail. All functions left unspecified in pseudo code are 
explained in text. For simplicity, the revalidation of invalid-
ated roadmap edges is postponed to the subsequent section.

The  proposed  path  planning  algorithm  presented  is 
based on a static randomized roadmap containing a set of N 



vertices  V representing robot configurations in joint space 
and a set of edges E representing direct connections of ver-
tices (either linear connections or solved by a local planner). 
This  roadmap  is  constructed  in  an  offline  step  using  the 
function init().

init  
for i=1 to N
addVertex V 

forall v∈V
connect v , k 

The function addVertex(V) extends V with a vertex that 
is  assured  to  be  collision-free  with  regard  to  the  known 
obstacles. Several methods exist for the generation of ver-
tices  [6]:  Uniform  generation  places  vertices  within  the 
workspace using random or pseudorandom methods,  non-
uniform generation takes into account the current obstacle 
situation and, for example, places vertices close to the bor-
der between obstacles and free space, which is expected to 
solve planning problems by increasing vertex density in this 
problematic  area.  After  the initial  number  of  vertices  has 
been generated,  init() interconnects these vertices using the 
function connect(v,k):

connect  v , k 
S=getKNearestNeighbours v , k
forall s∈S

if not collisionOknown ,v , s 
E=E∪{v , s }

The function connect(v, k) connects a given vertex v to 
a  set  S of  k nearest  neighbors  delivered  by 
getKNearestNeighbours(v, k). This ensures that the costs of 
vertex expansion are limited when searching for the shortest 
path through the roadmap. For each of the k nearest-neigh-
bor-vertices, the direct connection to the given vertex  v is 
checked for collisions with known obstacles using the func-
tion collision(O,x), returning True if a collision occurs and 
False  otherwise.  O represents  obstacle  information  with 
which collisions can be detected and x is either an edge or a 
node.  Two  types  of  obstacle  information  can  be  distin-
guished, Oknown and Ounknown. The set Oknown contains obstacles 
known before runtime of the path planner. In our prototype 
these are represented by a B-rep of the machinery and lay-
out of the robot workspace and collisions are detected using 
standard GJK-Algorithm [7]. The set  Ounknown contains  un-
known obstacle information acquired by sensors at runtime. 
Vertices and edges contained in the static roadmap are thus 
already tested against known obstacles, which reduces colli-
sion test costs online.

planPathv curr , vg:
connect vcurr , k 
connect vg , k 
whilevcurr≠vg
P=searchShortestPath v curr , vg 
if P≠∅
executePathP

else if notcollision Ounknown , vg 
addVertexV 

Online path planning is performed by planPath(vcurr,vg) 
and executePath(P) in an interleaved manner. After a valid 
path  is  found,  planPath(vcurr,vg) invokes  executePath(P), 
which executes and evaluates the path concurrently.

Initially, planPath(vcurr,vg) connects the start configura-
tion vcurr (the current robot configuration) and the given goal 
configuration vg to the static roadmap. In many applications, 
a small set of start and end points for robot motions occurs 
repeatedly, thus adding these points to the roadmap is feas-
ible.

The function searchShortestPath(vcurr,vg) returns a path 
P computed  using  a  shortest  path  search  in  the  static 
roadmap with standard algorithms such as A* or Dynamic 
Anytime A*[11]. Then, if a path exists, it is executed, other-
wise the roadmap needs to be extended with vertices, but 
only if  the goal node is collision-free with respect to un-
known obstacles,  because adding vertices  would  not  help 
find a valid path otherwise.

Based on the path found, the system immediately be-
gins  driving  the  robot  accordingly  and  testing  collisions 
with unknown obstacles  for  the edge currently being fol-
lowed.  For  clarity,  this  look-ahead  is  simplified  to  a 
collision(Ounknown,(v1,v2)) call  in the  executePath(P).  In  our 
prototype system, the look-ahead is realized as follows: The 
edges of the path found are subdivided into discrete steps. A 
constant number of steps is checked in advance. The num-
ber of steps tested is limited by the runtime available for the 
collision test.

executePath P
forall ei=v1, v2i∈P

while vcurr≠v2
if collision Ounknown , v curr , v2
setInvalid e i
V={vcurr}∪V
connect  vcurr , k 
return

else
v curr=driveRobot vcurr , v2 , t 

If the collision test indicates a collision-free path, the 
robot is driven along the path for a certain amount of time. 
In case the collision test indicates a collision along the cur-
rent edge,  the edge needs to be invalidated.  The function 
setInvalid(e) flags the edge  e, so that the edge will not be 
considered  in  searchShortestPath() the next  time it  is  in-
voked.  This  way,  the  dynamics  of  the  workcell  are  effi-
ciently mapped to the static roadmap, producing a dynamic 
roadmap. All invalid edges are repeatedly tested for revalid-
ation, as described in the following section. The current ver-
tex vcurr is then inserted into the roadmap and connected to 
its  neighbors.  This includes  the assumption,  that  dynamic 
obstacles frequently reappear at the same places. After that, 
executePath(P) returns and a new cycle begins, comprising 
a planning step on the static roadmap excluding invalidated 
edges.

IV. EDGE REVALIDATION

In  this section,  we examine how invalidated roadmap 



edges  could  be  revalidated  efficiently  and adapted  to  the 
changes in the environmental situation.

Edges invalidated due to unknown obstacles should not 
remain invalidated forever. In fast-changing environments, 
this  would  lead  to  the  invalidation  of  large  parts  of  the 
roadmap and thus would produce inefficient paths and un-
necessary addition of roadmap vertices. In Table II, a num-
ber  of  possible  edge  revalidation  strategies  are  compared 
and explained in the following paragraphs. The table is sor-
ted in ascending order with respect to computational costs.

TABLE II
COMPARISON OF EDGE REVALIDATION STRATEGIES (ERS)

RS (nr.) Advantages Disadvantages

Never (1) No computational 
costs

Inefficient road-
maps

When goal is
reached (2)

Very low computatio-
nal costs

Inefficient road-
maps

Timeout (3) Low computat. costs Local traps possible

Sensor-
indicated (4)

Adaptation to envi-
ronmental changes

Suboptimal adapti-
on

Sensor-
determined (5)

Optimal adaptation to 
environment changes

High computational 
costs

The “Never” strategy keeps edges invalidated forever. 
This  is  equivalent  to  deleting  edges  from  the  roadmap. 
Searching  for  shortest  paths  would  always  consider 
obstacles that, in a fast-changing environment, are typically 
no longer present. The path planner would thus generate in-
efficient paths avoiding non-existent obstacles, if it is able 
to find a path at all. If not, it would have to add edges to the 
roadmap, which is a rather expensive operation due to the 
collision tests required. The collision test information with 
known  obstacles  present  in  the  invalidated  edges  is  dis-
carded and never used again.

The “When goal is reached” strategy is another simple 
technique. It revalidates all invalidated edges upon termina-
tion of the current planning and execution process, that is, 
when  the  goal  is  reached.  Nevertheless,  in  environments 
with fast-moving obstacles, this may also lead to long-last-
ing widespread edge invalidation, inducing the same prob-
lems as in the “Never” strategy. In environments with static 
obstacles, this strategy produces unnecessary collision tests.

A strategy with comparatively low computational costs 
is the “Timeout” strategy.  After invalidation, each edge is 
assigned a timeout after which it is again revalidated. In en-
vironments  where  a  certain  minimum obstacle  speed  vmin 

can be assumed, this is a feasible solution as it revalidates 
the edges that could be revalidated anyway because the re-
lated  obstacle  volume  has  moved.  Nevertheless,  this 
strategy can lead to cyclical behavior (which was verified in 
our experiments) in the presence of static obstacles. With a 
timeout-based strategy, edges are revalidated although they 
are  still  invalid  due  to  the  static  obstacles.  If 
searchShortestPath(.) then finds a path through these edges, 
the robot  will  return to a position  it  has been before  and 
start invalidating edges again, resulting in cyclical behavior. 

Increasing the timeout may be a solution but this biases the 
strategy  to the aforementioned strategies. Selecting an op-
timal timeout for any kind of environment is not possible.

The “Sensor-determined” strategy relates to an optimal 
revalidation  of  edges,  where  mapping  from  the  obstacle 
volume to roadmap edges or vertices exists, as proposed in 
[12]. Invalidated edges could then be revalidated immedi-
ately  after  the  associated  obstacle  volume  becomes  free 
space.  However,  as  already  mentioned  in  Section  II,  this 
would  make large amounts of memory necessary for a reas-
onable robot workspace.

We propose a “Sensor-indicated” strategy based on an 
abstract sensor model. The sensor can distinguish three ba-
sic types of changes in obstacle volumes: increase, decrease 
and no change in volumes.  It  is  unimportant  where these 
changes occur, as the sensor only indicates one of the three 
types. Edges are then revalidated as soon as a decrease in 
volumes is  detected.  A certain fraction  of  the invalidated 
edges is revalidated; thereby several strategies are available: 
random  selection,  first-in-first-out,  etc..  Although  this  is 
suboptimal compared to the “Sensor-determined” strategy, 
the computational costs are reasonable and for practical pur-
poses, this strategy yields good results. Especially the “stat-
ic-obstacle-problem” described above is addressed and cyc-
lical  behavior  is  suppressed.  On the other  hand,  continu-
ously moving obstacles such as humans induce a concurrent 
increase  and  decrease  of  obstacle  volumes,  allowing  for 
short-term revalidation of edges.  This in effect  leads to a 
low number of invalidated edges in the roadmap, improving 
robot mobility in fast-changing environments.

In summary, the “Sensor-indicated” strategy provides a 
solution for static and dynamic obstacle situations at afford-
able costs.  Our experimental results support this argument 
(Section  V). Mixed scenarios are typical for industrial en-
vironments, where for example a maintenance worker car-
ries tools or toolboxes he places at certain points for exten-
ded periods. A revalidation strategy should address both the 
static and dynamic scenarios simultaneously and efficiently.

V. EXPERIMENTS

The following provides a short overview of the proto-
type system with which the algorithm was tested. The sys-
tem deals with human-robot coexistence or cooperation.

A. Environment

The collision test  is  subdivided  into two parts:  colli-
sions  with  known obstacles  and collisions  with  unknown 
obstacles. The first type of collision is detected by a world 
model describing the various parts of the industrial process, 
e.g.  based on a CAD model of the workspace. The second 
type is detected  using sensory feedback from the environ-
ment.

To do so, we developed a camera sensor network ob-
serving  a  common  space  comprising  the  complete  robot 
workspace  (Fig.  1).  Based  on  difference  classification  al-
gorithms,  these  cameras  deliver  the  current  dynamic 
obstacles in the workspace marked as  foreground pixels in 
each camera. All other pixels are marked as background.

By the means of a robot model, the system can avoid 



collisions by projecting future robot configurations into the 
calibrated  camera  images.  Each  of  these  robot  images  is 
then checked for proximity to the given foreground pixel set 
in each respective camera.

Figure 1: View of the workspace with illumination and cameras attached to 
an aluminium cage. The collision-avoiding robot path is indicated by the 
blue arrow. The undisturbed motion would be the direct connection bet-
ween the left and right endpoints.

The distances from all cameras are fused (with respect 
to object occlusions) to form an overall collision statement 
as described in [5] and [10]. This image-based collision test 
provides collision information in 3D and can be calculated 
online in real-time. A collision test for a single robot config-
uration in an eight-camera network takes one millisecond, 
including sensor fusion. While this is quite fast, the number 
of collision tests required for a linear path in the configura-
tion space can be quite large, as this path has to be interpol-
ated by a number of configurations. The number of collision 
tests  is  therefore  limited  by  the  imminent  real-time  de-
mands. With the distance dobst determined as the current dis-
tance to the closest obstacle and given a certain robot speed 
vrobot > 0 and a maximally achieved obstacle speed vobst, the 
time-to-collision tcoll is given by

t coll≥
d obst

v robotvobstacle
(1)

This is equivalent to the time tenv, during which the en-
vironment can be assumed to be static, as mentioned in Sec-
tion I. For our human-robot coexistence system, the time tenv 

is fixed to 100ms and the robot speed vrobot is controlled with 
respect to the current obstacle distance (equation  1 solved 
for vrobot). Below a threshold minimum distance to obstacles 
that would result in a negative vrobot, the robot is halted and 
thus the planner must not be activated. Edge revalidation is 
realized using the “sensor-indicated” strategy based on fore-
ground pixel information (Section IV).

B. Experimental Setup

In the experiments we concentrated on dynamic aspects 
of the enviroment, as static path planning benchmarks such 
as SIMPLE, TRAP, DETOUR, etc. have been investigated 
largely for PRM-planners in the past. Thus we concentrate 
on dynamic aspects and choose typical real-world scenarios 
for simulation.

The  following  experiments  consist  of  a  simulated 

obstacle scenario to assure reproducibility and fairness  of 
comparative  measurements  and to  test  the validity of  the 
speedup assumption in the static obstacle case. The collision 
test was performed in 3D on the simulated objects. The ex-
periment  ran  on  a  standard  PC  workstation  (AMD  X2-
3800+, 2GB RAM).

Figure 2: Simulated “Moving obstacle” scenario. The green cuboid obstacle 
in  the  front  moves  cyclically  from left  to  right  with  increasing  speed. 
Without interruption the robot would take a path that intersects the path of 
the obstacle.

Real world experiments were also conducted for eva-
luation.  They included a robot  controller  (Stäubli  CS7-B) 
and  an  ethernet  network  providing  the  communication 
required to control the robot. In the real world example with 
sensory feedback, we achieved an update rate of 10-15 Hz 
(Fig. 1) at a robot speed of 0-80 cm per second and covered 
a workspace of  approximately 4x4x3 m with a resolution 
less than 6 cm.

We  simulated  several  scenarios  and  evaluated  each 
with the different revalidation strategies mentioned in Secti-
on IV. The static roadmap initially contained 4192 vertices 
with each vertex connected to 26 neighboring vertices. Ta-
ble III lists the runtimes of the two most calculation-intensi-
ve algorithm sections common to all scenarios. The runtime 
for the collision test mentioned in Table  III constitutes the 
sensor-based  collision  test.  Additionally  the  image  pro-
cessing speed is given to explain the update rate achieved.

TABLE III
AVERAGE RUNTIME OF CENTRAL ALGORITHM PARTS (WITH STANDARD DEVIATION IN 

PARANTHESES)

Edge collision test with unknown obstacles 
[collision(Ounknown, e)], 3289 samples

16.6 (2.4) ms

searchShortestPath(vcurr,vg), 50 samples 0.85 (0.21) ms

Sensor data acquisition (4 camera-system) 70 ms

The robot movement simulated in all scenarios consis-
ted  of  repeated  movement  back  and  forth  between  two 
targets combined with path planning to avoid any obstacles. 
This cycle was repeated several times to duplicate the cycli-
cal behavior of robots in industrial environments.

The first scenario is given for reference, consisting of 
the  robot  moving  through  the  empty  space  with  no 
obstacles. The variable eavg describes the average number of 
invalidated  edges  when  searchShortestPath(.)  is  called. 
This is an indicator for the mobility of the robot. The total 
number of edges ever invalidated  Einv indicates how often 
the path planner tried a path obstructed by an obstacle. The 
path length  for  each path from one target to the other  in 
configuration space lavg is calculated as the sum of all joint 



angle  differences  arising  along  the  path  and  is  averaged 
over all cycles.

TABLE IV
SIMULATED RESULTS. THE FIRST COLUMN LISTS SCENARIO (S), THE FIRST ROW LISTS 

THE REVALIDATION ALGORITHM (RA) IN COLUMNS 3-6

S Measurements RA 1 RA 2 RA 3 RA 4

1 eavg 0 0 0 0
Einv 0 0 0 0
lavg 123.5° 122.6° 122.6° 122.6°

2 eavg 770.8 468.3 361.4 770.9

Einv 838 9988 9916 1006

lavg 209.5° 215.3° 214.0° 209.3°

3 eavg 794.48 107.3 87.6 131.2
Einv 838 2480 2510 1007
lavg 210.5° 147.2° 147.0° 151.4°

4 eavg 1271.8 446.9 410.3 15.3395

Einv 1540 13038 26317 27309

lavg 261.9° 279.5° 286.0° 202.02

The  second  scenario  comprises  a  single  static  object 
within the robot's path.  Interesting are the large values of 
Einv for revalidation Strategies 2 and 3. These extreme va-
lues   were  caused  by  the  frequent  revalidation  of  edges, 
which is not necessary in this scenario.

Scenario 3 consists of the same static object found in 
Scenario 2, but in this case the object vanishes after a short 
time period. Here we can see the benefit of Strategy 4, in 
that it provides a low lavg, while maintaining a low Einv. The 
eavg of Strategies 2 and 3 is better, but at the cost of unne-
cessary testing of edges that are obstructed.

Scenario  4  is  depicted  in  Fig.  2.  The  robot  moves  a 
longer distance, so that lavg  is not directly comparable to the 
other scenarios.  Here we can see that Strategy 4 provides 
short robot paths resulting in rather high Einv.

A combination of scenarios 3 and 4 is very common in 
the real world, indicating that strategy 4 is the best solution, 
as it yields good or the best performance in both scenarios.

VI. CONCLUSION

We presented a new path planning approach for a cate-
gory of path planning problems with real-time demands and 
an expensive  collision test.  The collision test is  separated 
into tests with known and unknown obstacles, which is fea-
sible  for  many  real-world  applications.  The  algorithm 
exploits  this  separation  by  using  a  static  roadmap  and 
addresses the real-time demand with bounded lazy evaluati-
on. Planned edges of the roadmap are tested and invalidated 
if necessary, thus dynamically adapting the roadmap to the 
current environmental situation. Additionally, we presented 
a framework for efficient adaptation of the static roadmap to 
quickly changing environments. Therefore, we investigated 
and tested  several  edge revalidation  strategies.  Our  expe-
rimental results show that real-time performance is possible 

together  with responsive  adaptation  to workcell  dynamics 
using appropriate revalidation strategies.

In the future, point placement strategies as described in 
[6] must be investigated and the comparison of shortest path 
algorithms  with  regard  to  their  effects  on  computational 
costs should be evaluated.
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