
Path Planning and Execution in Fast-Changing
Environments with Known and Unknown Obstacles

Thorsten Gecks and Dominik Henrich

Lehrstuhl für Angewandte Informatik III (Robotik und Eingebettete Systeme)
Universität Bayreuth, D-95445 Bayreuth, Germany

E-Mail: {thorsten.gecks, dominik.henrich}@uni-bayreuth.de
http://ai3.inf.uni-bayreuth.de/

Abstract – We present a path planner capable of effi-
cient and real-time handling of known and unknown obstacles
in highly dynamic workspaces. Known obstacles are acquired
offline and stored in a world model, unknown obstacles are ac-
quired online by one or multiple sensors. This is a typical situ-
ation for many applications. The method presented here ex-
ploits this distinction by building a static roadmap based on
known obstacle information. This enables efficient path plan-
ning and real-time performance using bounded lazy evaluation
thus reducing the number of costly collision test. The dynamics
of the workspace are addressed by invalidation/revalidation of
roadmap edges based on sensoric input. Several revalidation
strategies are evaluated. The proposed path planner is probab-
ilistically complete and utilizes global environment information
to assure goal arrival, if the goal is reachable. Our approach is
realized using standard PC hardware with computational re-
quirements allowing real-time performance. Experimental res-
ults show the validity of our approach.

Index Terms – motion planning, multisensor systems,

robots

I. INTRODUCTION

To motivate the problems addressed by this path plan-
ner concept, we will start by giving a typical real-world ex-
ample. Based on the example, we will categorize path plan-
ning problems into four categories and show how the cur-
rent study fits into these categories.

One typical task would be the navigation of a car
through an urban scenario based on a street map. This map
provides enough information to generate an optimal path in
time or space. During execution of this path unforeseen
hindrances may appear (traffic jams, accidents, etc.) be-
cause the environment may change faster than the planning
and execution of the desired path can be carried out. Thus,
the problem is characterized by two properties: The first
property describes whether the complete obstacle informa-
tion needed for the collision test is available before runtime.
The second property relates to the combination of the com-
putational costs in terms of the runtime of all tasks involved
in collision-free movements, when performed in a sequen-
tial manner. The costs include: the time tsens needed for
sensor acquisition and processing, the time tplan needed for
planning and the time texec needed for the execution of the
planned path. The sum of these runtimes can be compared
to the time period tenv, during which the environment can be

considered static with respect to the given planning prob-
lem. Table I gives an overview of the mentioned categories
and sample applications for each field.

TABLE I
CATEGORIZATION OF PATH PLANNING PROBLEMS AND EXAMPLE APPLICATIONS

Time relationships

tsens + tplan + texec < tenv tsens + tplan + texec > tenv

Oknown
NC milling, sweeping Kinodynamic motion

planning

Ounknown
Path planning with local
sensors, medical robotics

Human-robot coopera-
tion, service robotics

The first category of planning problems comprises en-
vironments Oknown that are completely known in advance
with no time constraints for planning and execution. Ex-
amples of applications include the well-known field of nu-
merical control (NC) tool path generation for milling [4] or
sweeping algorithms covering a given static area [16], for
example used by lawn mower robots.

The second category encompasses all planning pro-
blems where known environmental dynamics are a conside-
rable factor and have to be considered explicitly in the
planning process. Kinodynamic motion planning [3] can
provide a solution to such problems. Typical applications
for this type of motion planner are aerospace tasks, e.g.
spacecraft rendezvous.

In the third category, the environment Ounknown is un-
known and sensor input is necessary to allow for collision
tests with obstacles in the environment. Additionally, the
time required for planning is not critical, as the environment
is static for long periods of time. In medical robotics for ex-
ample, the information about the operative site is often ac-
quired in a preoperative phase, e.g. with tomography. With
this information, complete, optimized planning and executi-
on of the milling of a cochlear implant is possible without
further acquisition of environmental information, as de-
scribed in [15]. Planning with local sensors is similar. The
planning only comprises the next immediate action due to
the limited range of short-range distance sensors, such as
the capacitance sensors used in [8] and [14]. Potential field
planning methods, as described for example in [13], are a
very common solution for this type of sensor. Typically,
they assume the environment to be static for the next incre-

International Conference on Intelligent Robots and Systems in San Diego, USA, 29 October – 2 November 2007

mental planning step.
The fourth category consists of fast-changing environ-

ments containing unknown obstacles to be avoided, making
continuous sensor updates necessary to ensure safe path
planning. The path planning algorithm must adapt to envir-
onmental changes and guarantee sufficiently short runtimes
to enable a decent sensor update rate. Performing a com-
plete planning and execution is not feasible, because the en-
vironment may change before the goal is reached. Examples
of this category include human robot cooperation in indus-
trial environments or the navigation of a mobile robot
through a building with dynamic obstacles, such as crowds
of people. The path planning algorithm described in this pa-
per provides a solution for planning problems of category
four. Additionally we require the planner to solve high-di-
mensional planning problems for robots with many degrees
of freedom.

The following Section II describes the state of the art in
efficient path planning for dynamic environments, followed
by Sections III and IV describing our approach to the path
planning problem. Section V gives a short overview of the
robotic system realized with this algorithm and presents ex-
perimental results demonstrating the real-time capabilities
of this approach. Section VI contains concluding remarks
about the work done.

II. RELATED WORK

In this section, we give an overview of existing ap-
proaches to reduce planning costs. The basic assumption is
an expensive collision test compared to the other compon-
ents of path planning (like roadmap construction, etc.).

As a consequence of the global collision detection de-
scribed above, global path planning is a natural solution ex-
ploiting all available information and is complete even in
cluttered situations that would lead local path planners into
traps (local minima). With regard to the dimensionality of
the configuration space, randomized roadmap planners scale
with dimension without major drawbacks in computational
efficiency. Several optimizations have been proposed in the
past that lower the computational costs, specifically by re-
ducing the number of collision tests or the required enviro-
ment detail. In the following, we focus on reducing the
number of collision tests to address systems with costly col-
lision tests (i.e., in our system around 1 ms for a single ro-
bot position).

A significant reduction in the number of collision tests
can be achieved by performing them only when they are ab-
solutely necessary; this is called lazy evaluation. In [2] a
roadmap is initially constructed and a path is planned
without any collision tests. When a path is found, it is
checked for collision in steps from the start and goal node in
an alternating fashion. The algorithm stops at the first col-
liding edge, invalidates it and then starts searching for a
new path. However, this algorithm requires a completely
known environment. In a fast-changing environment,
checking from the goal node towards the start node is ineffi-
cient, as the time needed to reach the goal would invalidate
the collision test information used for these tests. Another
drawback is that the algorithm is not bounded with respect

to execution time.
In [9], a similar algorithm is described that determines

the shortest path through a given roadmap. Afterwards, this
path is tested completely. The collision test information is
then used to alter the roadmap at colliding edges and nodes.
While it is questionable to test the complete path within a
dynamic environment, it also remains unclear why the in-
validated edges must be modified, as changes in the envir-
onment may revalidate them in the near future. No estimate
of the computational cost of a single collision test or the
number of collision tests needed for this method is
provided.

Another planner using lazy edge evaluation is de-
scribed in [12]. Based on a static roadmap, the key issue de-
scribed there is the mapping of real-world changes to inval-
idated nodes of the roadmap via a table lookup. The table
maps occupied voxels to roadmap nodes. These occupied
voxels are calculated from a model of the known objects in
the workspace and the table is constructed from a given ro-
bot model in an offline step. Besides the missing obstacle
feedback from sensors, the size (1.60×2.44×1.36 m³) and
granularity (4 cm resolution) of the rasterized workspace
are rather limited due to computational restrictions. For a
network of 5000 nodes, the planning time achieved was 74
ms on average on a 2.8 GHz Pentium IV PC. With 10.000
nodes this increased to 385 ms.

In [1], a combination of methods is presented to
provide real-time path planning capabilities for a mobile ro-
bot in a partially known environment consisting of a land-
scape with buildings in known positions and unknown,
autonomous agents detected by the robot's laser scanner. An
initial, static roadmap is built based on the known environ-
ment information. The shortest path is generated through
this roadmap and updated during execution based on the
obstacles encountered on the way. The path is updated with
the newly developed graph planning algorithm, Anytime
Dynamic A* [11]. In addition to the limited local sensor in-
formation, the results achieved on a PC with up-to-date
hardware would not allow the algorithm to be applicable to
fast-changing environments, as the maximum planning time
peaks at 0.2 seconds. Also, the collision test implemented in
this algorithm was inexpensive, testing more than 50,000
edges in 0.1 seconds, which is far less than the collision test
costs assumed here.

In summary, we can state that lazy evaluation is a key
to the solution but the concept itself is too general to
provide real-time capabilities. It must be modified to spe-
cifically meet these requirements. Furthermore, the distinc-
tion into the two types of collision tests (known and un-
known obstacles) typical for many applications needs to be
addressed and exploited appropriately.

III. ALGORITHM DESCRIPTION

In this section, we present our path planning algorithm
in detail. All functions left unspecified in pseudo code are
explained in text. For simplicity, the revalidation of invalid-
ated roadmap edges is postponed to the subsequent section.

The proposed path planning algorithm presented is
based on a static randomized roadmap containing a set of N

vertices V representing robot configurations in joint space
and a set of edges E representing direct connections of ver-
tices (either linear connections or solved by a local planner).
This roadmap is constructed in an offline step using the
function init().

init  
for i=1 to N
addVertex V 

forall v∈V
connect v , k 

The function addVertex(V) extends V with a vertex that
is assured to be collision-free with regard to the known
obstacles. Several methods exist for the generation of ver-
tices [6]: Uniform generation places vertices within the
workspace using random or pseudorandom methods, non-
uniform generation takes into account the current obstacle
situation and, for example, places vertices close to the bor-
der between obstacles and free space, which is expected to
solve planning problems by increasing vertex density in this
problematic area. After the initial number of vertices has
been generated, init() interconnects these vertices using the
function connect(v,k):

connect  v , k 
S=getKNearestNeighbours v , k
forall s∈S

if not collisionOknown ,v , s 
E=E∪{v , s }

The function connect(v, k) connects a given vertex v to
a set S of k nearest neighbors delivered by
getKNearestNeighbours(v, k). This ensures that the costs of
vertex expansion are limited when searching for the shortest
path through the roadmap. For each of the k nearest-neigh-
bor-vertices, the direct connection to the given vertex v is
checked for collisions with known obstacles using the func-
tion collision(O,x), returning True if a collision occurs and
False otherwise. O represents obstacle information with
which collisions can be detected and x is either an edge or a
node. Two types of obstacle information can be distin-
guished, Oknown and Ounknown. The set Oknown contains obstacles
known before runtime of the path planner. In our prototype
these are represented by a B-rep of the machinery and lay-
out of the robot workspace and collisions are detected using
standard GJK-Algorithm [7]. The set Ounknown contains un-
known obstacle information acquired by sensors at runtime.
Vertices and edges contained in the static roadmap are thus
already tested against known obstacles, which reduces colli-
sion test costs online.

planPathv curr , vg:
connect vcurr , k 
connect vg , k 
whilevcurr≠vg
P=searchShortestPath v curr , vg 
if P≠∅
executePathP

else if notcollision Ounknown , vg 
addVertexV 

Online path planning is performed by planPath(vcurr,vg)
and executePath(P) in an interleaved manner. After a valid
path is found, planPath(vcurr,vg) invokes executePath(P),
which executes and evaluates the path concurrently.

Initially, planPath(vcurr,vg) connects the start configura-
tion vcurr (the current robot configuration) and the given goal
configuration vg to the static roadmap. In many applications,
a small set of start and end points for robot motions occurs
repeatedly, thus adding these points to the roadmap is feas-
ible.

The function searchShortestPath(vcurr,vg) returns a path
P computed using a shortest path search in the static
roadmap with standard algorithms such as A* or Dynamic
Anytime A*[11]. Then, if a path exists, it is executed, other-
wise the roadmap needs to be extended with vertices, but
only if the goal node is collision-free with respect to un-
known obstacles, because adding vertices would not help
find a valid path otherwise.

Based on the path found, the system immediately be-
gins driving the robot accordingly and testing collisions
with unknown obstacles for the edge currently being fol-
lowed. For clarity, this look-ahead is simplified to a
collision(Ounknown,(v1,v2)) call in the executePath(P). In our
prototype system, the look-ahead is realized as follows: The
edges of the path found are subdivided into discrete steps. A
constant number of steps is checked in advance. The num-
ber of steps tested is limited by the runtime available for the
collision test.

executePath P
forall ei=v1, v2i∈P

while vcurr≠v2
if collision Ounknown , v curr , v2
setInvalid e i
V={vcurr}∪V
connect  vcurr , k 
return

else
v curr=driveRobot vcurr , v2 , t 

If the collision test indicates a collision-free path, the
robot is driven along the path for a certain amount of time.
In case the collision test indicates a collision along the cur-
rent edge, the edge needs to be invalidated. The function
setInvalid(e) flags the edge e, so that the edge will not be
considered in searchShortestPath() the next time it is in-
voked. This way, the dynamics of the workcell are effi-
ciently mapped to the static roadmap, producing a dynamic
roadmap. All invalid edges are repeatedly tested for revalid-
ation, as described in the following section. The current ver-
tex vcurr is then inserted into the roadmap and connected to
its neighbors. This includes the assumption, that dynamic
obstacles frequently reappear at the same places. After that,
executePath(P) returns and a new cycle begins, comprising
a planning step on the static roadmap excluding invalidated
edges.

IV. EDGE REVALIDATION

In this section, we examine how invalidated roadmap

edges could be revalidated efficiently and adapted to the
changes in the environmental situation.

Edges invalidated due to unknown obstacles should not
remain invalidated forever. In fast-changing environments,
this would lead to the invalidation of large parts of the
roadmap and thus would produce inefficient paths and un-
necessary addition of roadmap vertices. In Table II, a num-
ber of possible edge revalidation strategies are compared
and explained in the following paragraphs. The table is sor-
ted in ascending order with respect to computational costs.

TABLE II
COMPARISON OF EDGE REVALIDATION STRATEGIES (ERS)

RS (nr.) Advantages Disadvantages

Never (1) No computational
costs

Inefficient road-
maps

When goal is
reached (2)

Very low computatio-
nal costs

Inefficient road-
maps

Timeout (3) Low computat. costs Local traps possible

Sensor-
indicated (4)

Adaptation to envi-
ronmental changes

Suboptimal adapti-
on

Sensor-
determined (5)

Optimal adaptation to
environment changes

High computational
costs

The “Never” strategy keeps edges invalidated forever.
This is equivalent to deleting edges from the roadmap.
Searching for shortest paths would always consider
obstacles that, in a fast-changing environment, are typically
no longer present. The path planner would thus generate in-
efficient paths avoiding non-existent obstacles, if it is able
to find a path at all. If not, it would have to add edges to the
roadmap, which is a rather expensive operation due to the
collision tests required. The collision test information with
known obstacles present in the invalidated edges is dis-
carded and never used again.

The “When goal is reached” strategy is another simple
technique. It revalidates all invalidated edges upon termina-
tion of the current planning and execution process, that is,
when the goal is reached. Nevertheless, in environments
with fast-moving obstacles, this may also lead to long-last-
ing widespread edge invalidation, inducing the same prob-
lems as in the “Never” strategy. In environments with static
obstacles, this strategy produces unnecessary collision tests.

A strategy with comparatively low computational costs
is the “Timeout” strategy. After invalidation, each edge is
assigned a timeout after which it is again revalidated. In en-
vironments where a certain minimum obstacle speed vmin

can be assumed, this is a feasible solution as it revalidates
the edges that could be revalidated anyway because the re-
lated obstacle volume has moved. Nevertheless, this
strategy can lead to cyclical behavior (which was verified in
our experiments) in the presence of static obstacles. With a
timeout-based strategy, edges are revalidated although they
are still invalid due to the static obstacles. If
searchShortestPath(.) then finds a path through these edges,
the robot will return to a position it has been before and
start invalidating edges again, resulting in cyclical behavior.

Increasing the timeout may be a solution but this biases the
strategy to the aforementioned strategies. Selecting an op-
timal timeout for any kind of environment is not possible.

The “Sensor-determined” strategy relates to an optimal
revalidation of edges, where mapping from the obstacle
volume to roadmap edges or vertices exists, as proposed in
[12]. Invalidated edges could then be revalidated immedi-
ately after the associated obstacle volume becomes free
space. However, as already mentioned in Section II, this
would make large amounts of memory necessary for a reas-
onable robot workspace.

We propose a “Sensor-indicated” strategy based on an
abstract sensor model. The sensor can distinguish three ba-
sic types of changes in obstacle volumes: increase, decrease
and no change in volumes. It is unimportant where these
changes occur, as the sensor only indicates one of the three
types. Edges are then revalidated as soon as a decrease in
volumes is detected. A certain fraction of the invalidated
edges is revalidated; thereby several strategies are available:
random selection, first-in-first-out, etc.. Although this is
suboptimal compared to the “Sensor-determined” strategy,
the computational costs are reasonable and for practical pur-
poses, this strategy yields good results. Especially the “stat-
ic-obstacle-problem” described above is addressed and cyc-
lical behavior is suppressed. On the other hand, continu-
ously moving obstacles such as humans induce a concurrent
increase and decrease of obstacle volumes, allowing for
short-term revalidation of edges. This in effect leads to a
low number of invalidated edges in the roadmap, improving
robot mobility in fast-changing environments.

In summary, the “Sensor-indicated” strategy provides a
solution for static and dynamic obstacle situations at afford-
able costs. Our experimental results support this argument
(Section V). Mixed scenarios are typical for industrial en-
vironments, where for example a maintenance worker car-
ries tools or toolboxes he places at certain points for exten-
ded periods. A revalidation strategy should address both the
static and dynamic scenarios simultaneously and efficiently.

V. EXPERIMENTS

The following provides a short overview of the proto-
type system with which the algorithm was tested. The sys-
tem deals with human-robot coexistence or cooperation.

A. Environment

The collision test is subdivided into two parts: colli-
sions with known obstacles and collisions with unknown
obstacles. The first type of collision is detected by a world
model describing the various parts of the industrial process,
e.g. based on a CAD model of the workspace. The second
type is detected using sensory feedback from the environ-
ment.

To do so, we developed a camera sensor network ob-
serving a common space comprising the complete robot
workspace (Fig. 1). Based on difference classification al-
gorithms, these cameras deliver the current dynamic
obstacles in the workspace marked as foreground pixels in
each camera. All other pixels are marked as background.

By the means of a robot model, the system can avoid

collisions by projecting future robot configurations into the
calibrated camera images. Each of these robot images is
then checked for proximity to the given foreground pixel set
in each respective camera.

Figure 1: View of the workspace with illumination and cameras attached to
an aluminium cage. The collision-avoiding robot path is indicated by the
blue arrow. The undisturbed motion would be the direct connection bet-
ween the left and right endpoints.

The distances from all cameras are fused (with respect
to object occlusions) to form an overall collision statement
as described in [5] and [10]. This image-based collision test
provides collision information in 3D and can be calculated
online in real-time. A collision test for a single robot config-
uration in an eight-camera network takes one millisecond,
including sensor fusion. While this is quite fast, the number
of collision tests required for a linear path in the configura-
tion space can be quite large, as this path has to be interpol-
ated by a number of configurations. The number of collision
tests is therefore limited by the imminent real-time de-
mands. With the distance dobst determined as the current dis-
tance to the closest obstacle and given a certain robot speed
vrobot > 0 and a maximally achieved obstacle speed vobst, the
time-to-collision tcoll is given by

t coll≥
d obst

v robotvobstacle
(1)

This is equivalent to the time tenv, during which the en-
vironment can be assumed to be static, as mentioned in Sec-
tion I. For our human-robot coexistence system, the time tenv

is fixed to 100ms and the robot speed vrobot is controlled with
respect to the current obstacle distance (equation 1 solved
for vrobot). Below a threshold minimum distance to obstacles
that would result in a negative vrobot, the robot is halted and
thus the planner must not be activated. Edge revalidation is
realized using the “sensor-indicated” strategy based on fore-
ground pixel information (Section IV).

B. Experimental Setup

In the experiments we concentrated on dynamic aspects
of the enviroment, as static path planning benchmarks such
as SIMPLE, TRAP, DETOUR, etc. have been investigated
largely for PRM-planners in the past. Thus we concentrate
on dynamic aspects and choose typical real-world scenarios
for simulation.

The following experiments consist of a simulated

obstacle scenario to assure reproducibility and fairness of
comparative measurements and to test the validity of the
speedup assumption in the static obstacle case. The collision
test was performed in 3D on the simulated objects. The ex-
periment ran on a standard PC workstation (AMD X2-
3800+, 2GB RAM).

Figure 2: Simulated “Moving obstacle” scenario. The green cuboid obstacle
in the front moves cyclically from left to right with increasing speed.
Without interruption the robot would take a path that intersects the path of
the obstacle.

Real world experiments were also conducted for eva-
luation. They included a robot controller (Stäubli CS7-B)
and an ethernet network providing the communication
required to control the robot. In the real world example with
sensory feedback, we achieved an update rate of 10-15 Hz
(Fig. 1) at a robot speed of 0-80 cm per second and covered
a workspace of approximately 4x4x3 m with a resolution
less than 6 cm.

We simulated several scenarios and evaluated each
with the different revalidation strategies mentioned in Secti-
on IV. The static roadmap initially contained 4192 vertices
with each vertex connected to 26 neighboring vertices. Ta-
ble III lists the runtimes of the two most calculation-intensi-
ve algorithm sections common to all scenarios. The runtime
for the collision test mentioned in Table III constitutes the
sensor-based collision test. Additionally the image pro-
cessing speed is given to explain the update rate achieved.

TABLE III
AVERAGE RUNTIME OF CENTRAL ALGORITHM PARTS (WITH STANDARD DEVIATION IN

PARANTHESES)

Edge collision test with unknown obstacles
[collision(Ounknown, e)], 3289 samples

16.6 (2.4) ms

searchShortestPath(vcurr,vg), 50 samples 0.85 (0.21) ms

Sensor data acquisition (4 camera-system) 70 ms

The robot movement simulated in all scenarios consis-
ted of repeated movement back and forth between two
targets combined with path planning to avoid any obstacles.
This cycle was repeated several times to duplicate the cycli-
cal behavior of robots in industrial environments.

The first scenario is given for reference, consisting of
the robot moving through the empty space with no
obstacles. The variable eavg describes the average number of
invalidated edges when searchShortestPath(.) is called.
This is an indicator for the mobility of the robot. The total
number of edges ever invalidated Einv indicates how often
the path planner tried a path obstructed by an obstacle. The
path length for each path from one target to the other in
configuration space lavg is calculated as the sum of all joint

angle differences arising along the path and is averaged
over all cycles.

TABLE IV
SIMULATED RESULTS. THE FIRST COLUMN LISTS SCENARIO (S), THE FIRST ROW LISTS

THE REVALIDATION ALGORITHM (RA) IN COLUMNS 3-6

S Measurements RA 1 RA 2 RA 3 RA 4

1 eavg 0 0 0 0
Einv 0 0 0 0
lavg 123.5° 122.6° 122.6° 122.6°

2 eavg 770.8 468.3 361.4 770.9

Einv 838 9988 9916 1006

lavg 209.5° 215.3° 214.0° 209.3°

3 eavg 794.48 107.3 87.6 131.2
Einv 838 2480 2510 1007
lavg 210.5° 147.2° 147.0° 151.4°

4 eavg 1271.8 446.9 410.3 15.3395

Einv 1540 13038 26317 27309

lavg 261.9° 279.5° 286.0° 202.02

The second scenario comprises a single static object
within the robot's path. Interesting are the large values of
Einv for revalidation Strategies 2 and 3. These extreme va-
lues were caused by the frequent revalidation of edges,
which is not necessary in this scenario.

Scenario 3 consists of the same static object found in
Scenario 2, but in this case the object vanishes after a short
time period. Here we can see the benefit of Strategy 4, in
that it provides a low lavg, while maintaining a low Einv. The
eavg of Strategies 2 and 3 is better, but at the cost of unne-
cessary testing of edges that are obstructed.

Scenario 4 is depicted in Fig. 2. The robot moves a
longer distance, so that lavg is not directly comparable to the
other scenarios. Here we can see that Strategy 4 provides
short robot paths resulting in rather high Einv.

A combination of scenarios 3 and 4 is very common in
the real world, indicating that strategy 4 is the best solution,
as it yields good or the best performance in both scenarios.

VI. CONCLUSION

We presented a new path planning approach for a cate-
gory of path planning problems with real-time demands and
an expensive collision test. The collision test is separated
into tests with known and unknown obstacles, which is fea-
sible for many real-world applications. The algorithm
exploits this separation by using a static roadmap and
addresses the real-time demand with bounded lazy evaluati-
on. Planned edges of the roadmap are tested and invalidated
if necessary, thus dynamically adapting the roadmap to the
current environmental situation. Additionally, we presented
a framework for efficient adaptation of the static roadmap to
quickly changing environments. Therefore, we investigated
and tested several edge revalidation strategies. Our expe-
rimental results show that real-time performance is possible

together with responsive adaptation to workcell dynamics
using appropriate revalidation strategies.

In the future, point placement strategies as described in
[6] must be investigated and the comparison of shortest path
algorithms with regard to their effects on computational
costs should be evaluated.

References
[1] J. van den Berg, D. Ferguson, J. Kuffner: “Anytime Path Planning

and Replanning in Dynamic Environments”, Proceedings of the 2006
IEEE International Conference Robotics and Automation, May 15-
19, 2006, pp. 2366- 2371, Orlando, USA, 2006

[2] R. Bohlin, L.E.Kavraki: “Path Planning Using Lazy PRM”, Procee-
dings of the 2004 IEEE International Conference on Robotics and
Automation, 521-528 vol.1, April 24-28, 2000, San Francisco, USA

[3] B. Donald, P. Xavier, J. Canny, J. Reif: “Kinodynamic motion
planning”, Journal of the ACM, vol. 40 no. 5, pp. 1048-1066, 1993

[4] D. Dragomatz, S. Mann: “A classified bibliography of literature on
NC milling path generation”, Computer-Aided Design, Vol. 29 No.
3, pp.239-247, 1997 Elsevier Science Ltd

[5] T. Gecks, D. Henrich: “Multi-Camera Collision Detection allowing
for Object Occlusions”, In: 37th International Symposium on Robo-
tics (ISR 2006) / 4th German Conference on Robotics (Robotik
2006), München, Germany, May 15-17, 2006.

[6] R.Geraerts, M. Overmars: “Sampling Techniques for Probabilistic
Roadmap Planners”, Technical report UU-CS-2003-041, Institute of
information and computing sciences, Utrecht University

[7] E. G. Gilbert, D. W. Johnson and S. S. Keerthi: “A Fast Procedure
for Computing the Distance between Complex Objects in Three-
Dimensional Space”, IEEE Transactions on Robotics and Automati-
on 4(2): pp. 193-203, April 1988

[8] J.T. Feddema, J.L. Novak: “Whole Arm Obstacle Avoidance for
Teleoperated Robots”, Proceedings of the 1994 IEEE International
Conference on Robotics and Automation, pp. 3303-3309 vol.4, San
Diego, CA, USA, 8-13 May 1994

[9] L. Jaillet, T. Simeon, “A PRM-based Motion Planner for Dynamical-
ly Chaning Environments”, Proceedings of the 2004 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, Sendai In-
ternational Center, Sendai, Japan September 28 - October 2, 2004

[10] S. Kuhn, T. Gecks, D. Henrich: “Velocity control for safe robot gui-
dance based on fused vision and force/torque data". In: IEEE Interna-
tional Conference on Multisensor Fusion and Integration for Intel-
ligent Systems, pp. 485-492, Heidelberg, Germany, Sep 3-6, 2006.

[11] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun:
“Anytime Dynamic A*: An Anytime, Replanning Algorithm”, Pro-
ceedings of the International Conference on Automated Planning and
Scheduling (ICAPS), Monterey, USA, June 2005

[12] H. Liu, X. Deng, H. Zha, D. Ding, “A Path Planner in Changing En-
vironments by Using W-C Nodes Mapping Couples with Lazy Edges
Evaluation”, Proceedings of the 2006 IEEE/RSJ International Confe-
rence on Intelligent Robots and Systems, October 9-15, Beijing, Chi-
na

[13] V. Lumelsky, E. Cheung: “Real-Time Collision Avoidance in Tele-
operated Whole-Sensitive Robot Arm Manipulators". In: IEEE Tran-
sactions on Systems, Man and Cybernetics, Vol.23 No.1, pp.194-
203,1993.

[14] J.L. Novak, J.T. Feddema: “A Capacitance-Based Proximity Sensor
for Whole Arm Obstacle Avoidance". In: IEEE Proceedings of the
International Conference on Robotics and Automation, pp. 1307-
1314, 1992, Nice, France

[15] M. Waringo, D. Henrich: “3-dimensionale schichtweise Bahnpla-
nung für Any-Time-Fräsanwendungen”, Robotik 2004, 17.-18. June
2004, VDI-Berichte 1841, pp. 781-788, Munich, Germany

[16] A. Zelinsky, R.A. Jarvis, J.C. Byrne, and S. Yuta: “Planning Paths of
Complete Coverage of an Unstructured Environment by a Mobile
Robot. In Proceedings of the International Conference on Advanced
Robotics, pages pp533--pp538, Tokyo, Japan, November 1993

	I.Introduction
	II.Related work
	III.Algorithm Description
	IV.Edge Revalidation
	V.Experiments
	A.Environment
	B.Experimental Setup

	VI.Conclusion

