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Abstract In current industrial applications without sensorveillance, the robot
workcell needs to be rather static. If the envirentnof the robot changes in an
unplanned manner, e. g. a human enters the workedlcrosses the trajectory, a
collision could result. Current research aims ktxieg the separation of robot and
human workspaces. We present the first approad¢hutiees multiple 3D depth im-
ages for fast collision detection of multiple unkmoobjects. The depth sensors
are placed around the workcell to observe a consooveilled 3D space. The ac-
quired depth images are used to calculate a costsesvapproximation of all de-
tected obstacles within the surveilled space. Uaingbot model and a segment of
its future trajectory, these configurations carcbecked for collisions with all de-
tected obstacles. If no collision is detected,fieimum distance to any obstacle
may be used to limit the maximum velocity. The agh is applicable to a vari-
ety of other applications, such as surveillanctof engines or museum displays.

Introduction

In current industrial applications, human and rolmirkspaces are completely
separate and it is forbidden for them to sharerangon workspace. When a hu-
man enters the robot workcell, additional safetstems must ensure the safety of
the human. There are many applications for coexéstef robot and human. Ro-
bots would require less space if no physical bes@ee needed to isolate them and
a technician could perform maintenance of otherhimas in the workcell. The
first commercial product using image processingssen is available [PilzO6].
This product checks for intrusion in virtual safetynes around robots and dan-
gerous equipment.

As the main objective of such surveillance, callis between the robot and
any obstacle must be avoided, as these could eadvere injuries if the robot



collides with a human. The second objective is igjocontrol based on the prox-
imity of the robot to any obstacle. By limiting isirrent maximum velocity, the
robot can always be stopped before it encountechatacle.

The approach introduced here is the first that aomsse multiple depth sensors
for online collision detection. Since depth sensdrsady provide volumetric data,
no correspondence problem has to be solved, be isase with raw data from ste-
reo cameras. The sensors are placed around theelloakd observe a common
space called thsurveilled spaceln each collision detection cycle, the sensors ac
quire new, synchronised depth images. An approxinaaid conservative repre-
sentation of all objects within the surveilled sp@&computed using these images.
With a geometric (CAD) model of the robot and tluerent robot configuration, it
is possible to identify the robot as one of theeoly, and the remaining objects are
classified as obstacles for the robot. For a gsegment of the future trajectory,
the robot model may then be adjusted and checkedaltisions with the obsta-
cles. One way to avoid the potential collisiondsdecelerate and stop the robot
[SomO05]. It may then proceed with its trajectorydf collision is detected in suc-
ceeding collision detection cycles. Another wayatwid the potential collision is
to calculate a new trajectory for the robot [Gedgs@s long as no collision is de-
tected, the proximity can be used to limit the maxin velocity [Kuhn06,
KuhnQ7].

In summary, the contribution of this paper is & fasonstruction of the entire
robot environment, including multiple unknown oliggmf multiple depth images
for use in an online surveillance system.

State of the art

This work is related to reconstruction in compuephics, to human detection in
computer vision, and to surveillance in safety siys.

In computer graphics, the visual hull concept [M#Q1] uses object silhou-
ettes in various colour images. The silhouettendefones containing the object
and the object volume is defined by the intersectb these cones. In [Li02], a
stereo algorithm is used to improve the volumeaippproximation of the visual
hull. The presented system calculates 4 framesgmndpsfor a scene that con-
tains a single object.

A mesh-based CAD model of an object based on nhelltdepth images pro-
vided by laser scans from different perspectivggésented in [Reed99]. Merging
these images results in a precise CAD mesh modwmist@icting the mesh and
merging each perspective at a resolution of 110xii@8srequires about fin.

These algorithms target reconstruction of singleatb in empty space and are
not suitable for fast fusion of multiple depth ineagcontaining multiple objects to
obtain polyhedral representations.



In computer vision, several approaches for humatectien are presented
[HuO4]. Most of those approaches use models foeathjecognition, but object
models limit the capability to detect arbitrary nokvn objects.

In safety systems, existing strategies provide 120D or 3D surveillance,
depending on the type and number of sensors used.

In [Som05] a single laser range finder acquires l#ifiance information
within a plane just above the floor of the workceélhy dynamic obstacles de-
tected are assumed to be standing humans and anexapated by a vertical cyl-
inder. The smallest distance between this cyliradet the robot limits the maxi-
mum robot velocity. However, other obstacles, husniaina stooping posture or
humans behind the detected individual may not loeectly approximated.

In [Thiemermann03, Thiemermann05] a tri-ocular cearsystem acquires col-
our images of the shared workspace from above hiingan’s hands and neck are
detected based on the characteristic colour andreeXeatures of the skin. The
minimum distance between human body parts anddbetris used to limit the
maximum robot velocity. This system was extendeith &itri-ocular stereo vision
system acquiring 2¥2D information from above. It a@ns unclear whether this
method can cope with larger work pieces or obssacteer than exposed human
body parts.

[Pilz06] calculates 2%:D data about the surveibpdce from a single stereo
image and checks for intrusions into predefineetyatones. Entry into such a
safety zone leads to deceleration or stoppageeofdhot. During active surveil-
lance, these zones are static and cannot be changed

[Winkler07] presents an approach for 2%:D survedtawof a robot workspace
with a single time-of-flight camera. A robot modeglcalculated and suppressed in
the depth image and a safety zone for each roblktidi defined and checked for
intersection with the depth image. A collision dien cycle is about 20@s
with additional time necessary for acquiring thptidmages.

All of the above systems use multiple colour cammenaa single depth sensor,
but none of them involve full 3D surveillance byans of depth sensors.

This work extends now the SIMERO system [EbertO8nitith08], which pro-
vides global surveillance of a robot workcell wittultiple colour cameras and
collision detection in 3D. By means of pixel cldigsition [Gecks06], dynamic
unknown objects are distinguished from the worksepbackground. Since no
depth information can be obtained from colour insagmly deviations from ref-
erence images can be used to detect dynamic unkabjents.

Problem Description

In this section, the theoretical background ofittteoduced surveillance approach
is described.



Thevisible volume \bf a sensor is defined as part of the space witlérsen-
sor's aperture angles. Here, multiple depth sensbsgerve a common volume of
the three-dimensional workspace (Fig. 1a). Thersetgtion of theiVs is called
thesurveilled space.All collision detection results obtained are e toS.

Eachimage pixel(x,y) describes a straight lig, from thefocal point fof the
sensor intdV. Thisly, is provided by the sensor calibration. In evénye step t
the depth sensor measures the distance to theshedstacle alont,,. Thepoint
Px,(t) is defined as the first intersectionlgf with this obstacle’s surface. For each
t, the depth image is a matrix of all distance vslokthe K,y). Adjacent pixels in
both image directionsyf, lxi1y, lxy+1, Ixe1y+1) define asub-volumevy, of V. The
meshm,(t) is a triangulated surface wifh,(t) as vertices withirVy,. Assuming
that the angle between adjacent rays is small dnaugne of the surface within
Vyy Will differ significantly from the real object’susface.m,(t) dividesV,, into
two parts. All points invy, sharing a side withare empty spack,,(t), all other
points inV,, are occluded spacs(t). The unionm(t) of all m,(t) represents the
measured surface withv and dividesV into E(t) andO(t) (Fig. 1c).V is clipped
to the volume ofS (Fig. 1d). Adjacent portions d@d(t) within S are classified as
detected objectg(t) with O(t) = oo(t) +...+ o(t) (Fig. 1f).

Fig. 1 Overview of the complete surveillance cycle vievienn above. Using the current depth
images (c) and data about the robot (b), the mimndistance between the robot and any de-
tected unknown object can be calculated (I).



These definitions must be extended for a multi-seisystem. The indek of
the current sensor is added to the parameterssef as a superscript, e\d.asV
of thei™ sensor. The space surveilled by multiple deptis@enis determined by
intersecting thé/:

S=NV' =(U,E'®1n[NV']) OIN; O (1)] @

This is a lossless representation of the completeent ofS. While the union
of all E(t) leads to a conservative approximation of empgcepthe intersection
of all O'(t) produces a conservative approximation of presbjects (Fig. 1h).

Known objectsshould not be checked for collision with tisafety zones
Z(t) = zy(t) +...+ z(t), but are also detected in the depth images. Aetndatabase
provides geometric data for known objects, e. gbet, and safety zones, e. g. an
expanded robot model, at any time (Fig. 1b). Virtdepth images of an empty
space containing only known objects (Fig. 1e) poeduirtual detected objects
k(1) with K(t) = ko(t) +...+ ki(t) (Fig. 1g). Their intersection (Fig. 1i) is a sabsf
O(t) from real depth images and results in thetected unknown obstacles
O()\K(t) within S (Fig. 1k). For eacl, theZ(t) are defined (Fig. 1j) and the inter-
section ofZ(t) with O(t)\K(t) results in theletected collisionéFig. 11):

C(1) =2(t) n (O(t)/ K (1)) @

Fast Collision Detection Algorithm

Initially, the algorithm contains the following asaptions: (a) The algorithm is
initialised with a user-determined number of degthsors. (b) All of these sen-
sors are calibrated. (c) The CAD model of the rarat its complete trajectory are
known. (d) The number of configurations to be cleetkor collisions is user-
determined. (e may include multiple unknown objects and additlooljects
may enter or leav& at any time. (f) The position, geometry and owion of
these objects may change over time.
The presented algorithm implements the collisioteckon defined in the pre-
vious section and consists of three computaticieglss
A.  Calculate they(t) within Sby the fusion of all current depth images.
B. Calculate the(t) within Sto suppress them in the collision detection.
C. Calculate the,(t) and their minimum distance to any unknown obstacl
The first two steps must be done once per surnedlaycle. The last step must
be done once for each future robot configurationega@hecked for collision.



A. Fusion of Depth Image Data

The first step is to calculate the objects in edepth image. The algorithm uses
the bounding box o8 within the workspace as the clipping volume ¥arThis is

a conservative approximation of the portion\ofwithin S Adjacent portions of
them'(t) within this bounding box are segmented. D) are the result of a con-
vex hull computation [Barber96] for all segmentexdtp ofm(t). The convex hull

is a conservative approximation of these detectgdcts. In computational ge-
ometry, efficient algorithms for convex hulls anegented. Since real sensor val-
ues include error pixels with incorrect distancéuga, one characteristic of the
convex hull is very useful; if a single point is asaired behind the real surface, it
is “absorbed”, since it lies within the convex hufl a single point is measured
above the real surface, the convex hull is exterethis point. This is a conser-
vative approximation of the convex hull of the reaiface.

To get the space occupied by @|t), the o'(t) of all depth images have to be
intersected. Since this is computationally expemsind most intersections of{t)
from different real objects results in empty volnenly the intersection of their
bounding boxes is calculated initially and is tlitemated for all cameras. The re-
sult of this computation is a list of bounding bsxer all possible objects. The de-
tected objects within the non-empty bounding baaesthen intersected, resulting
in thegy(t). _

A non-empty intersection afj(t) from different real objects can produce a vir-
tual object with no correspondence in reality (2p. This virtual object is de-
noted apseudo-objectSince only depth information is used to calcutht occu-
pied space, this object is indistinguishable froma object irS. No depth sensor
has information about this portion 8f The pseudo-object may contain no or one
or more real objects. For a conservative approxgnain S pseudo-objects
[Meisel94] have to be treated as real objects.

a)

Fig. 2 lllustration of a pseudo-object calculatidh(white area) contains two real objects. Both
depth sensors detect two objed}ft) (a). The intersection of th&(t) (b) results in real objects
(blue) and a pseudo-object (blue hatched) that doesecessarily represent a real object.



B. Space Occupation of Known Objects

Since the number of sensors is limited, they canmedsure the entire surface of
all known objects. Given the limited number of pastives, the known objects
must be approximated and some areaS afljacent to known objects cannot be
seen by any sensor and therefore produce obstdual@sy collision detection.
Thus, virtual depth images containing only té) of known objects are gener-
ated and their intersectiokg(t) are used instead of the real known object geome-
try. In the current implementation, this is donetfee robot model and the current
robot configuration. Additional known dynamic objedn S such as conveyor
belts could be included in the same way, too.

C. Safety Zone Calculation and Collision Detection

The polyhedrons calculated in step A and B are tsethlculate the minimum
distance between tt&(t) and the detected unknown objects witBirA minimum
distance of zero indicates a collision.

For the robot configuration to be checked for swins, the volume occupied
by the robot model is calculated. If objects ottien the robot itself have to be
checked for collisions with detected unknown olgeeidditionalz,(t) can be de-
fined. As with the robot model, theggt) may change their geometry in each new
collision detection algorithm cycle, but in the @t implementation, only the ro-
bot itself is used as a safety zone.

The detected unknown objects are the subset otteeteobjects excluding
known objects. However, the difference operatoultesn non-convex polyhe-
drons. An intersection volume af(t) ando;(t) outside thek.(t) indicates a de-
tected collisiorC(t) # @.

The collision detection step must iterate overzgt) andoj(t). The loop can be
stopped if a collision is detected or continuedhwtfite next iteration if the distance
[Cameron97] is greater than zero. If the distanesvbenz,(t) andg(t) is zero,
there is an intersection and its volume is caleddty intersecting convex polyhe-
drons. For allk.(t), this intersection volume is checked for compligiglusion.
Since the intersection volume and lal(t) are convex, it is sufficient to check all
vertices of the intersection volume for inclusiorthek.(t). There are three possi-
ble results: All vertices are included, none ofnthare included, or there are verti-
ces both inside and outsidela{t). If all vertices are included ik(t), the volume
is within the known objects and is assumed note@m unknown obstacle and no
collision is detected. Otherwise, the intersectiolume has to be a detected colli-
sion, the minimum distance is set to zero and dlo@ lis stopped. The minimum
distance and the indices nt) andoj(t) are then reported to the control program.



Experimental Results

The presented algorithm was tested in both a stionlaystem and an experimen-
tal setup.

Simulation results

The simulation system is used with a virtual rolvotkcell. Its geometry is user-
determined and was set during testing to the ditieeorobot workcell used for the
prototype experimental setup. The simulated wotkoeludes a stationary robot
model and additional defined objects such as huroatables, which are all rep-
resented as polyhedrons. Up to six unknown objeete used during experimen-
tation. A pinhole model is used to simulate thetdegensors and their number,
position, orientation, resolution and aperture asgire user-determined. Up to 8
depth sensors were simulated in an experiment.

There is no structural difference between simulated real depth images. The
only differences are due to noise in measuremeatermvith real sensors. With
these simulated depth images, the presented danaslalgorithm can be applied.

The system was implemented in C++, compiled witt ¢grsion 4.1.0 and op-
timised with the —O3 flag running on SUSE Linux (i386). A standard CPU
(AMD Sempron 3000+, ~ 2GHz, 512 KB Cache) and 5B RAM were used.

The average computation time for a sequence of If&0fes containing the
simulated workcell and an increasing number of disj@vithinS and an increasing
number of implemented depth sensors was calcu(&igd3).
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Fig. 3 Diagrams showing the average computation time#tculating a sequence of 1500 colli-
sion detection cycles. The algorithm was testecafomcreasing number of unknown objects in
S (left) and for an increasing number of depth sengught).

As shown in Fig. 3 left, the number of objects witls has little influence on
the surveillance cycle time. The object detectimp £alculation time directly de-
pends on the number of objects detected by eadh depsor. However, most in-



tersection-bounding boxes produced djyt) from different real objects i are
empty and are thus removed within the calculatidme intersection of bounding
boxes itself is not expensive, leading to fast cotajon for an arbitrary number
of objects. The collision detection computationdimdso directly depends on the
number of detected objects. The performance faeaging numbers of objects is
important, since robot workspaces generally contaittiple detected objects.

The number of depth sensors implemented is sigmififor use in real applica-
tions. As the number of perspectives availablegases, the frequency of occlu-
sions withinS leading to pseudo-objects or small minimum diségnsetween ro-
bot and detected objects will decrease. Sinceub®ri of depth images directly
depends on the number of depth sensors, calculétienfor object detection sig-
nificantly increases proportionally to the numbédepth sensors (Fig. 3) but the
number of depth sensors does not influence the otimaputational steps.

Experimental results

The prototype system is implemented as a mastee-slechitecture, with all data
processing steps done on the master. Each depgbrsess an own slave, which
only acquires the current depth images and tramd¢f@am to the master. This is
done via a local area network.

The prototype setup is built in a workcell contamia Staubli RX130 robot
(Fig. 4, left). The CAD model of the robot is knowand a direct connection be-
tween the robot control and the master is estaddisAt any time, the current ro-
bot configuration can be requested from the rolbotroller and a velocity for the
current trajectory segment can be sent to the clbetr

\ st
'\

Fig. 4 Left: Prototype setup in a workcell containing iadustrial robot and PMD cameras
placed in the upper corners of the workcell. Righisualisation of the minimum distance calcu-
lation between robot (orange) and detected unkrabjects (blue). The small images display the
results of the object detection in the depth imagbe fused objects are shown as 3D representa-
tions. The minimum distance (red line) is usedviepcity control (diagram).
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Two PMD cameras [Kraft04] are used in the curremtfiguration of the proto-
type setup. The model Vision 19k used has a rdsaluf 120x160pixelsand an
aperture angle of 40°. Since PMD cameras are astwsors, each of them must
use a different modulation frequency. Multiple PMiameras using a single
modulation frequency would cause interferencesiwithe measured depth im-
ages. The shutter time is user-controlled and wasvighin an interval from 25 to
50 ms Sensor noise increases with decreasing shutter. fJp to 15fps can be
provided by the camera to its slave using Firewire.

To obtain lateral calibration of the PMD camerasstandard algorithm was
used [Tsai86]. For depth calibration, constantaiffsiependent on the modulation
frequencies were calculated for the measured quoreences. A mean deviation
of two pixels in lateral coordinates and 25 mm épth values was the result.

Due to the variation in the measured values, traityuof the depth images
needed to be improved with filters. In the prot&\gystem, averaging filters were
applied to the raw depth images and morphologittat$ (erosion, dilation, open,
close) were used on the segmentation images. Bistialj filter parameters, the
quality of the depth measurement and object deteetias increased significantly.
The best results were achieved for an 3x3 averdgiagand an 3x3 Open filter.

The detected objects were calculated for thesehdemiges. The robot model
(consisting of one cube per robot link) for thereat robot configuration was
generated and used in the known object calculatiorthe 3D representation
(Fig. 4, right), the model itself is displayed asaange volume and the calculated
known object as an orange mesh. The robot modargted was used as a safety
zone for the collision detection step by calculgtine minimum distance between
the robot and the nearest detected unknown objEsesminimum distance meas-
ured was used to limit the maximum velocity of théot (Fig. 4, right). A loga-
rithmic mapping determined the velocity limitatior the current distance. The
maximum acceleration since the last algorithm ciglamited, too.
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Fig. 5 Diagrams showing a sequence of logged surveillmycée data from experiments in a

static and dynamic robot environment with two depimeras. The calculation times for each
computational step and the complete cycle timedisplayed (left). The minimum distance

measured is used for simple velocity control (fight
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The diagrams in Fig. 5 show logged sequences oEBlance cycle data from
different experiments. The robot program loop wassreular movement between
both ends of the conveyor belt. In the static emvinent, some boxes were placed
on the table in front of the robot (Fig. 4, lett).the dynamic environment, a hu-
man entered, left it and also placed boxes on the table oronad them.

Of all computational steps in the surveillance eydbject detection consumes
the majority of the algorithm cycle time. All othsteps are almost constant. The
measured distances in the right-hand diagram shawthe repeated accuracy of
measurements is within an interval of centimettealso shows that because of
measurement errors, single frames lead to minimistartces much smaller than
the real distances due to appearance of a smaltipsebject near the robot base.

Conclusions

This paper introduced the first approach for onto#ision detection of industrial
robots with multiple depth cameras. The main cootion is fast,
3D reconstruction of robot environments containmgltiple unknown objects.
Previous surveillance and collision detection apphes use multiple colour cam-
eras or only one depth sensor. Using an integratieot model, a collision detec-
tion algorithm is applied to the space occupieddeyected unknown objects
within the surveilled area. Minimum distances betwéhe robot and any detected
unknown object may be used for velocity reductiotrajectory adjustment.

The main advantage over image-based surveillanstersg like the current
SIMERO system or SafetyEye is the high independeinom external light
sources. Dynamic lighting conditions or changesbyect texture within the sur-
veilled space cause fewer problems. The latteiesystlso does not provide dy-
namic safety zones and require complete separatibnmans and robots.

The algorithm introduced is usable with an arbytraumber of depth sensors.
The current version should be used with a small bbemof sensors for applica-
tions with stringent time limitations, since thecteytime is directly dependent on
the number of sensors used. The algorithm can bpted to a variety of other
surveillance and security applications, dependingaaredefinition of the safety
zones applied. For instance, in museum surveillahie can be a static safety
zone around the displays, resulting in an intrusioproximity alert.

Positioning of the depth sensors is important lier quality of results, because
with few sensors, an object located between seasdrrobot can lead to com-
puted distances much smaller than actual distaWéb. optimised positioning,
the robot and unknown objects can be separatedeast one depth image.

Further research will address automatic positiomifithe depth sensors around
the surveilled space. The quality of approximatoatrongly related to an optimal
number and position for variable geometry of rootkspaces.
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