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Abstract   In current industrial applications without sensor surveillance, the robot 
workcell needs to be rather static. If the environment of the robot changes in an 
unplanned manner, e. g. a human enters the workcell and crosses the trajectory, a 
collision could result. Current research aims at relaxing the separation of robot and 
human workspaces. We present the first approach that uses multiple 3D depth im-
ages for fast collision detection of multiple unknown objects. The depth sensors 
are placed around the workcell to observe a common surveilled 3D space. The ac-
quired depth images are used to calculate a conservative approximation of all de-
tected obstacles within the surveilled space. Using a robot model and a segment of 
its future trajectory, these configurations can be checked for collisions with all de-
tected obstacles. If no collision is detected, the minimum distance to any obstacle 
may be used to limit the maximum velocity. The approach is applicable to a vari-
ety of other applications, such as surveillance of tool engines or museum displays.  

Introduction 

In current industrial applications, human and robot workspaces are completely 
separate and it is forbidden for them to share a common workspace. When a hu-
man enters the robot workcell, additional safety systems must ensure the safety of 
the human. There are many applications for coexistence of robot and human. Ro-
bots would require less space if no physical barriers are needed to isolate them and 
a technician could perform maintenance of other machines in the workcell. The 
first commercial product using image processing sensors is available [Pilz06]. 
This product checks for intrusion in virtual safety zones around robots and dan-
gerous equipment. 

As the main objective of such surveillance, collisions between the robot and 
any obstacle must be avoided, as these could lead to severe injuries if the robot 
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collides with a human. The second objective is velocity control based on the prox-
imity of the robot to any obstacle. By limiting its current maximum velocity, the 
robot can always be stopped before it encounters an obstacle. 

The approach introduced here is the first that aims to use multiple depth sensors 
for online collision detection. Since depth sensors already provide volumetric data, 
no correspondence problem has to be solved, as is the case with raw data from ste-
reo cameras. The sensors are placed around the workcell and observe a common 
space called the surveilled space. In each collision detection cycle, the sensors ac-
quire new, synchronised depth images. An approximate and conservative repre-
sentation of all objects within the surveilled space is computed using these images. 
With a geometric (CAD) model of the robot and the current robot configuration, it 
is possible to identify the robot as one of the objects, and the remaining objects are 
classified as obstacles for the robot. For a given segment of the future trajectory, 
the robot model may then be adjusted and checked for collisions with the obsta-
cles. One way to avoid the potential collision is to decelerate and stop the robot 
[Som05]. It may then proceed with its trajectory if no collision is detected in suc-
ceeding collision detection cycles. Another way to avoid the potential collision is 
to calculate a new trajectory for the robot [Gecks07]. As long as no collision is de-
tected, the proximity can be used to limit the maximum velocity [Kuhn06, 
Kuhn07]. 

In summary, the contribution of this paper is a fast reconstruction of the entire 
robot environment, including multiple unknown objects, of multiple depth images 
for use in an online surveillance system. 

State of the art 

This work is related to reconstruction in computer graphics, to human detection in 
computer vision, and to surveillance in safety systems.  

In computer graphics, the visual hull concept [Matusik01] uses object silhou-
ettes in various colour images. The silhouettes define cones containing the object 
and the object volume is defined by the intersection of these cones. In [Li02], a 
stereo algorithm is used to improve the volumetric approximation of the visual 
hull. The presented system calculates 4 frames per second fps for a scene that con-
tains a single object.  

A mesh-based CAD model of an object based on multiple depth images pro-
vided by laser scans from different perspectives is presented in [Reed99]. Merging 
these images results in a precise CAD mesh model. Constructing the mesh and 
merging each perspective at a resolution of 110x128 pixels requires about 6 min. 

These algorithms target reconstruction of single objects in empty space and are  
not suitable for fast fusion of multiple depth images containing multiple objects to 
obtain polyhedral representations. 
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In computer vision, several approaches for human detection are presented 
[Hu04]. Most of those approaches use models for object recognition, but object 
models limit the capability to detect arbitrary unknown objects. 

In safety systems, existing strategies provide 1½D, 2½D or 3D surveillance, 
depending on the type and number of sensors used. 

In [Som05] a single laser range finder acquires 1½D distance information 
within a plane just above the floor of the workcell. Any dynamic obstacles de-
tected are assumed to be standing humans and are approximated by a vertical cyl-
inder. The smallest distance between this cylinder and the robot limits the maxi-
mum robot velocity. However, other obstacles, humans in a stooping posture or 
humans behind the detected individual may not be correctly approximated. 

In [Thiemermann03, Thiemermann05] a tri-ocular camera system acquires col-
our images of the shared workspace from above. The human’s hands and neck are 
detected based on the characteristic colour and texture features of the skin. The 
minimum distance between human body parts and the robot is used to limit the 
maximum robot velocity. This system was extended with a tri-ocular stereo vision 
system acquiring 2½D information from above. It remains unclear whether this 
method can cope with larger work pieces or obstacles other than exposed human 
body parts. 

 [Pilz06] calculates 2½D data about the surveilled space from a single stereo 
image and checks for intrusions into predefined safety zones. Entry into such a 
safety zone leads to deceleration or stoppage of the robot. During active surveil-
lance, these zones are static and cannot be changed. 

[Winkler07] presents an approach for 2½D surveillance of a robot workspace 
with a single time-of-flight camera. A robot model is calculated and suppressed in 
the depth image and a safety zone for each robot link is defined and checked for 
intersection with the depth image. A collision detection cycle is about 200 ms, 
with additional time necessary for acquiring the depth images. 

All of the above systems use multiple colour cameras or a single depth sensor, 
but none of them involve full 3D surveillance by means of depth sensors. 

This work extends now the SIMERO system [Ebert03, Henrich08], which pro-
vides global surveillance of a robot workcell with multiple colour cameras and 
collision detection in 3D. By means of pixel classification [Gecks06], dynamic 
unknown objects are distinguished from the workspace background. Since no 
depth information can be obtained from colour images, only deviations from ref-
erence images can be used to detect dynamic unknown objects. 

Problem Description 

In this section, the theoretical background of the introduced surveillance approach 
is described. 
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The visible volume V of a sensor is defined as part of the space within the sen-
sor’s aperture angles. Here, multiple depth sensors observe a common volume of 
the three-dimensional workspace (Fig. 1a). The intersection of their Vs is called 
the surveilled space S. All collision detection results obtained are respective to S. 

Each image pixel (x,y) describes a straight line lx,y from the focal point f of the 
sensor into V. This lx,y is provided by the sensor calibration. In every time step t, 
the depth sensor measures the distance to the nearest obstacle along lx,y. The point 
px,y(t) is defined as the first intersection of lx,y with this obstacle’s surface. For each 
t, the depth image is a matrix of all distance values of the (x,y). Adjacent pixels in 
both image directions (lx,y, lx+1,y, lx,y+1, lx+1,y+1) define a sub-volume Vx,y of V. The 
mesh mx,y(t) is a triangulated surface with px,y(t) as vertices within Vx,y. Assuming 
that the angle between adjacent rays is small enough, none of the surface within 
Vx,y will differ significantly from the real object’s surface. mx,y(t) divides Vx,y into 
two parts. All points in Vx,y sharing a side with f are empty space Ex,y(t), all other 
points in Vx,y are occluded space Ox,y(t). The union m(t) of all mx,y(t) represents the 
measured surface within V and divides V into E(t) and O(t) (Fig. 1c). V is clipped 
to the volume of S (Fig. 1d). Adjacent portions of O(t) within S are classified as 
detected objects oj(t) with O(t) = o0(t) +…+ ol(t) (Fig. 1f). 

 

 

Fig. 1 Overview of the complete surveillance cycle viewed from above. Using the current depth 
images (c) and data about the robot (b), the minimum distance between the robot and any de-
tected unknown object can be calculated (l). 
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These definitions must be extended for a multi-sensor system. The index i of 
the current sensor is added to the parameters of a set as a superscript, e.g. Vi as V 
of the i th sensor. The space surveilled by multiple depth sensors is determined by 
intersecting the Vi: 
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This is a lossless representation of the complete content of S. While the union 
of all Ei(t) leads to a conservative approximation of empty space, the intersection 
of all Oi(t) produces a conservative approximation of present objects (Fig. 1h). 

Known objects should not be checked for collision with the safety zones 
Z(t) = z0(t) +…+ zl(t), but are also detected in the depth images. A model database 
provides geometric data for known objects, e. g. a robot, and safety zones, e. g. an 
expanded robot model, at any time (Fig. 1b). Virtual depth images of an empty 
space containing only known objects (Fig. 1e) produce virtual detected objects 
km(t) with K(t) = k0(t) +…+ kl(t) (Fig. 1g). Their intersection (Fig. 1i) is a subset of 
O(t) from real depth images and results in the detected unknown obstacles 
O(t)\K(t) within S (Fig. 1k). For each t, the Z(t) are defined (Fig. 1j) and the inter-
section of Z(t) with O(t)\K(t) results in the detected collisions (Fig. 1l): 

 ))(/)(()()( tKtOtZtC ∩=  (2) 

Fast Collision Detection Algorithm 

Initially, the algorithm contains the following assumptions: (a) The algorithm is 
initialised with a user-determined number of depth sensors. (b) All of these sen-
sors are calibrated. (c) The CAD model of the robot and its complete trajectory are 
known. (d) The number of configurations to be checked for collisions is user-
determined. (e) S may include multiple unknown objects and additional objects 
may enter or leave S at any time. (f) The position, geometry and orientation of 
these objects may change over time. 

The presented algorithm implements the collision detection defined in the pre-
vious section and consists of three computational steps: 
A. Calculate the oj(t) within S by the fusion of all current depth images. 
B. Calculate the km(t) within S to suppress them in the collision detection. 
C. Calculate the zn(t) and their minimum distance to any unknown obstacle. 

The first two steps must be done once per surveillance cycle. The last step must 
be done once for each future robot configuration to be checked for collision. 
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A. Fusion of Depth Image Data 

The first step is to calculate the objects in each depth image. The algorithm uses 
the bounding box of S within the workspace as the clipping volume for Vi. This is 
a conservative approximation of the portion of Vi within S. Adjacent portions of 
the mi(t) within this bounding box are segmented. The oi

j(t) are the result of a con-
vex hull computation [Barber96] for all segmented parts of mi(t). The convex hull 
is a conservative approximation of these detected objects. In computational ge-
ometry, efficient algorithms for convex hulls are presented. Since real sensor val-
ues include error pixels with incorrect distance values, one characteristic of the 
convex hull is very useful; if a single point is measured behind the real surface, it 
is “absorbed”, since it lies within the convex hull. If a single point is measured 
above the real surface, the convex hull is extended by this point. This is a conser-
vative approximation of the convex hull of the real surface. 

To get the space occupied by all oj(t), the oi
j(t) of all depth images have to be 

intersected. Since this is computationally expensive and most intersections of oi
j(t) 

from different real objects results in empty volumes, only the intersection of their 
bounding boxes is calculated initially and is then iterated for all cameras. The re-
sult of this computation is a list of bounding boxes for all possible objects. The de-
tected objects within the non-empty bounding boxes are then intersected, resulting 
in the oj(t). 

A non-empty intersection of oi
j(t) from different real objects can produce a vir-

tual object with no correspondence in reality (Fig. 2). This virtual object is de-
noted a pseudo-object. Since only depth information is used to calculate the occu-
pied space, this object is indistinguishable from a real object in S. No depth sensor 
has information about this portion of S. The pseudo-object may contain no or one 
or more real objects. For a conservative approximation in S, pseudo-objects 
[Meisel94] have to be treated as real objects. 

 

 

Fig. 2 Illustration of a pseudo-object calculation. S (white area) contains two real objects. Both 
depth sensors detect two objects oi

j(t) (a). The intersection of the oi
j(t) (b) results in real objects 

(blue) and a pseudo-object (blue hatched) that does not necessarily represent a real object. 
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B. Space Occupation of Known Objects 

Since the number of sensors is limited, they cannot measure the entire surface of 
all known objects. Given the limited number of perspectives, the known objects 
must be approximated and some areas of S adjacent to known objects cannot be 
seen by any sensor and therefore produce obstacles during collision detection. 
Thus, virtual depth images containing only the oi

j(t) of known objects are gener-
ated and their intersections km(t) are used instead of the real known object geome-
try. In the current implementation, this is done for the robot model and the current 
robot configuration. Additional known dynamic objects in S such as conveyor 
belts could be included in the same way, too. 

C. Safety Zone Calculation and Collision Detection 

The polyhedrons calculated in step A and B are used to calculate the minimum 
distance between the zn(t) and the detected unknown objects within S. A minimum 
distance of zero indicates a collision. 

For the robot configuration to be checked for collisions, the volume occupied 
by the robot model is calculated. If objects other than the robot itself have to be 
checked for collisions with detected unknown objects, additional zn(t) can be de-
fined. As with the robot model, these zn(t) may change their geometry in each new 
collision detection algorithm cycle, but in the current implementation, only the ro-
bot itself is used as a safety zone. 

The detected unknown objects are the subset of detected objects excluding 
known objects. However, the difference operator results in non-convex polyhe-
drons. An intersection volume of zn(t) and oj(t) outside the km(t) indicates a de-
tected collision C(t) ≠ Ø. 

The collision detection step must iterate over all zn(t) and oj(t). The loop can be 
stopped if a collision is detected or continued with the next iteration if the distance 
[Cameron97] is greater than zero. If the distance between zn(t) and oj(t) is zero, 
there is an intersection and its volume is calculated by intersecting convex polyhe-
drons. For all km(t), this intersection volume is checked for complete inclusion. 
Since the intersection volume and all km(t) are convex, it is sufficient to check all 
vertices of the intersection volume for inclusion in the km(t). There are three possi-
ble results: All vertices are included, none of them are included, or there are verti-
ces both inside and outside of km(t). If all vertices are included in km(t), the volume 
is within the known objects and is assumed not to be an unknown obstacle and no 
collision is detected. Otherwise, the intersection volume has to be a detected colli-
sion, the minimum distance is set to zero and the loop is stopped. The minimum 
distance and the indices of zn(t) and oj(t) are then reported to the control program. 
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Experimental Results 

The presented algorithm was tested in both a simulation system and an experimen-
tal setup. 

Simulation results 

The simulation system is used with a virtual robot workcell. Its geometry is user-
determined and was set during testing to the size of the robot workcell used for the 
prototype experimental setup. The simulated workcell includes a stationary robot 
model and additional defined objects such as humans or tables, which are all rep-
resented as polyhedrons. Up to six unknown objects were used during experimen-
tation. A pinhole model is used to simulate the depth sensors and their number, 
position, orientation, resolution and aperture angles are user-determined. Up to 8 
depth sensors were simulated in an experiment.  

There is no structural difference between simulated and real depth images. The 
only differences are due to noise in measurements made with real sensors. With 
these simulated depth images, the presented surveillance algorithm can be applied.  

The system was implemented in C++, compiled with gcc version 4.1.0 and op-
timised with the –O3 flag running on SUSE Linux 11 (i586). A standard CPU 
(AMD Sempron 3000+, ~ 2GHz, 512 KB Cache) and 512 MB RAM were used. 

The average computation time for a sequence of 1500 frames containing the 
simulated workcell and an increasing number of objects within S and an increasing 
number of implemented depth sensors was calculated (Fig. 3). 

 

 

Fig. 3 Diagrams showing the average computation time for calculating a sequence of 1500 colli-
sion detection cycles. The algorithm was tested for an increasing number of unknown objects in 
S (left) and for an increasing number of depth sensors (right). 

As shown in Fig. 3 left, the number of objects within S has little influence on 
the surveillance cycle time. The object detection step calculation time directly de-
pends on the number of objects detected by each depth sensor. However, most in-
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tersection-bounding boxes produced by oi
j(t) from different real objects in S are 

empty and are thus removed within the calculation. The intersection of bounding 
boxes itself is not expensive, leading to fast computation for an arbitrary number 
of objects. The collision detection computation time also directly depends on the 
number of detected objects. The performance for increasing numbers of objects is 
important, since robot workspaces generally contain multiple detected objects. 

The number of depth sensors implemented is significant for use in real applica-
tions. As the number of perspectives available increases, the frequency of occlu-
sions within S leading to pseudo-objects or small minimum distances between ro-
bot and detected objects will decrease. Since the fusion of depth images directly 
depends on the number of depth sensors, calculation time for object detection sig-
nificantly increases proportionally to the number of depth sensors (Fig. 3) but the 
number of depth sensors does not influence the other computational steps. 

Experimental results 

The prototype system is implemented as a master-slave architecture, with all data 
processing steps done on the master. Each depth sensor has an own slave, which 
only acquires the current depth images and transfers them to the master. This is 
done via a local area network. 

The prototype setup is built in a workcell containing a Stäubli RX130 robot 
(Fig. 4, left). The CAD model of the robot is known and a direct connection be-
tween the robot control and the master is established. At any time, the current ro-
bot configuration can be requested from the robot controller and a velocity for the 
current trajectory segment can be sent to the controller. 

 

  

Fig. 4 Left: Prototype setup in a workcell containing an industrial robot and PMD cameras 
placed in the upper corners of the workcell. Right: Visualisation of the minimum distance calcu-
lation between robot (orange) and detected unknown objects (blue). The small images display the 
results of the object detection in the depth images. The fused objects are shown as 3D representa-
tions. The minimum distance (red line) is used for velocity control (diagram). 
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Two PMD cameras [Kraft04] are used in the current configuration of the proto-
type setup. The model Vision 19k used has a resolution of 120x160 pixels and an 
aperture angle of 40°. Since PMD cameras are active sensors, each of them must 
use a different modulation frequency. Multiple PMD cameras using a single 
modulation frequency would cause interferences within the measured depth im-
ages. The shutter time is user-controlled and was set within an interval from 25 to 
50 ms. Sensor noise increases with decreasing shutter time. Up to 15 fps can be 
provided by the camera to its slave using Firewire. 

To obtain lateral calibration of the PMD cameras, a standard algorithm was 
used [Tsai86]. For depth calibration, constant offsets dependent on the modulation 
frequencies were calculated for the measured correspondences. A mean deviation 
of two pixels in lateral coordinates and 25 mm in depth values was the result. 

Due to the variation in the measured values, the quality of the depth images 
needed to be improved with filters. In the prototype system, averaging filters were 
applied to the raw depth images and morphological filters (erosion, dilation, open, 
close) were used on the segmentation images. By adjusting filter parameters, the 
quality of the depth measurement and object detection was increased significantly. 
The best results were achieved for an 3x3 averaging filter and an 3x3 Open filter. 

The detected objects were calculated for these depth images. The robot model 
(consisting of one cube per robot link) for the current robot configuration was 
generated and used in the known object calculation. In the 3D representation 
(Fig. 4, right), the model itself is displayed as an orange volume and the calculated 
known object as an orange mesh. The robot model generated was used as a safety 
zone for the collision detection step by calculating the minimum distance between 
the robot and the nearest detected unknown objects. The minimum distance meas-
ured was used to limit the maximum velocity of the robot (Fig. 4, right). A loga-
rithmic mapping determined the velocity limitation for the current distance. The 
maximum acceleration since the last algorithm cycle is limited, too. 

 

 

Fig. 5 Diagrams showing a sequence of logged surveillance cycle data from experiments in a 
static and dynamic robot environment with two depth cameras. The calculation times for each 
computational step and the complete cycle time are displayed (left). The minimum distance 
measured is used for simple velocity control (right). 
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The diagrams in Fig. 5 show logged sequences of surveillance cycle data from 
different experiments. The robot program loop was a circular movement between 
both ends of the conveyor belt. In the static environment, some boxes were placed 
on the table in front of the robot (Fig. 4, left). In the dynamic environment, a hu-
man entered S, left it and also placed boxes on the table or removed them. 

Of all computational steps in the surveillance cycle, object detection consumes 
the majority of the algorithm cycle time. All other steps are almost constant. The 
measured distances in the right-hand diagram show that the repeated accuracy of 
measurements is within an interval of centimetres. It also shows that because of 
measurement errors, single frames lead to minimum distances much smaller than 
the real distances due to appearance of a small pseudo-object near the robot base. 

Conclusions 

This paper introduced the first approach for online collision detection of industrial 
robots with multiple depth cameras. The main contribution is fast, 
3D reconstruction of robot environments containing multiple unknown objects. 
Previous surveillance and collision detection approaches use multiple colour cam-
eras or only one depth sensor. Using an integrated robot model, a collision detec-
tion algorithm is applied to the space occupied by detected unknown objects 
within the surveilled area. Minimum distances between the robot and any detected 
unknown object may be used for velocity reduction or trajectory adjustment. 

The main advantage over image-based surveillance systems like the current 
SIMERO system or SafetyEye is the high independence from external light 
sources. Dynamic lighting conditions or changes in object texture within the sur-
veilled space cause fewer problems. The latter system also does not provide dy-
namic safety zones and require complete separation of humans and robots. 

The algorithm introduced is usable with an arbitrary number of depth sensors. 
The current version should be used with a small number of sensors for applica-
tions with stringent time limitations, since the cycle time is directly dependent on 
the number of sensors used. The algorithm can be adapted to a variety of other 
surveillance and security applications, depending on a redefinition of the safety 
zones applied. For instance, in museum surveillance this can be a static safety 
zone around the displays, resulting in an intrusion or proximity alert. 

Positioning of the depth sensors is important for the quality of results, because 
with few sensors, an object located between sensor and robot can lead to com-
puted distances much smaller than actual distances. With optimised positioning, 
the robot and unknown objects can be separated in at least one depth image.  

Further research will address automatic positioning of the depth sensors around 
the surveilled space. The quality of approximation is strongly related to an optimal 
number and position for variable geometry of robot workspaces. 



12  

References 

[Barber96] C.B. Barber, D.P. Dobkin and H.T. Huhdanpaa: “The Quickhull algorithm for con-
vex hulls”, ACM Transactions on Mathematical Software, 22(4): 469-483, Dec 1996, 
http://www.qhull.org 

[Cameron97] S. Cameron: “Enhancing GJK: Computing Minimum and Penetration Distances 
between Convex Polyhedra”, IEEE International Conference on Robotics and Automation, 
April 1997 

[Ebert03] D. Ebert: “Bildbasierte Erzeugung kollisionsfreier Transferbewegungen für Industrie-
roboter”,  Schriftenreihe Informatik 2003, Band 12, ISBN 3-936890-23-4 

[Gecks06] T. Gecks and D. Henrich: “Multi-Camera Collision Detection allowing for Object 
Occlusions”, 37th International Symposium on Robotics (ISR 2006) / 4th German Conference 
on Robotics (ROBOTIK 2006) 

[Gecks07] T. Gecks and D. Henrich: “Path Planning and Execution in Fast-Changing Environ-
ments with Known and Unknown Objects”, IEEE International Conference on Intelligent 
Robots and Systems, 2007 

[Henrich08] D. Henrich and T. Gecks: “Multi-camera collision detection between known and 
unknown objects”, IEEE International Conference on Distributed Smart Cameras, 2008 

[Hu04] W. Hu, T. Tan, L. Wang and S. Maybank: “A survey on visual surveillance of object mo-
tion and behaviors”, IEEE Transactions on Systems, Man and Cybernetics, 34(3), 334-352, 
2004 

[Ingensand05] H. Ingensand and T. Kahlmann: „Systematic investigation of properties of PMD-
sensors“,  1st Range Imaging Research Day 2005 

[Kuhn06] S. Kuhn and D. Henrich: “Modelling intuitive Behaviour for Safe Human/Robot Coex-
istence and Cooperation”, IEEE International Conference on Robotics and Automation, 2006 

[Kuhn07] S. Kuhn and D. Henrich: “Fast Vision-Based Minimum Distance Determination Be-
tween Known and Unknown Objects”, IEEE International Conference on Intelligent Robots 
and Systems, 2007 

[Kraft04] H. Kraft et al.: „3D-Camera of High 3D-Frame Rate, Depth Resolution and Back-
ground Light Elimination Based on Improved PMD (Photonic Mixer Device)-Technologies”, 
OPTO 2004, AMA Fachverband,  http://www.pmdtec.com/ 

[Li02] M. Li, H. Schirmacher, M. Magnor and H.-P. Seidel: “Combining Stereo and Visual Hull 
Information for On-Line Reconstruction and Rendering of Dynamic Scenes”, IEEE Work-
shop on MMSP, pp9-12, 2002 

[Matusik01] W. Matusik, C. Buehler and L. McMillan: “Polyhedral Visual Hulls for Real-Time 
Rendering”, Proceedings of the 12th Eurographics Workshop on Rendering, pp116-126, 2001 

[Meisel94] A. Meisel: “3D-Bildverarbeitung für feste und bewegte Kameras”, Vieweg Verlag, 
Reihe Fortschritte der Robotik Nr. 21, 1994 

[Pilz06] Patent DE 10 2006 057 605 A1 “Verfahren und Vorrichtung zum Überwachen eines 
dreidimensionalen Raumbereichs”, Pilz GmbH & Co. KG, 2006, http://www.safetyeye.com/ 

[Reed99] M. K. Reed and P. K. Allen: “3-D Modeling from Range Imagery: An Incremental 
Method with a Planning Component”, Image and Vision Computing 17(2), pp99-111, 1999 

[Som05] F. Som: “Sichere Steuerungstechnik für den OTS-Einsatz von Robotern”, 4.Workshop 
für OTS-Systeme in der Robotik, IPA 2005 

[Thiemermann03] S. Thiemermann: “team@work - Mensch/Roboter-Kooperation in der Monta-
ge”, 2.Workshop für OTS-Systeme in der Robotik, IPA 2003 

[Thiemermann05] S. Thiemermann: “Direkte Mensch-Roboter-Kooperation in der Kleinteilmon-
tage mit einem SCARA-Roboter”, IPA-IAO-Bericht, 2005, ISBN 978-3-936947-50-2 

[Tsai86] R. Y. Tsai: “An Efficient and Accurate Camera Calibration Technique for 3D Machine 
Vision”, IEEE Conference on Computer Vision and Pattern Recognition, 1986 

[Winkler07] B. Winkler: “Safe Space Sharing Human-Robot Cooperation Using a 3D Time-of-
Flight Camera”, International Robots and Vision Show, 2007 


