In: IEEE Conference on Multisensor Fusion and Integration for Intel-

ligent Systems, Baden-Baden, Germany, August 20 - 22, 2001

Safe Human-Robot-Cooperation:
Problem Analysis, System Concept and Fast Sensor Fusion

Dirk EBERT and Dominik HENRICH

Embedded Systems and Robotics Lab. (RESY)
Faculty of Informatics, Building 48
University of Kaiserslautern, D-67653 Kaiserslautern, Germany
E-Mail: [debert | henrich]@informatik.uni-kl.de, http: //resy.informatik.uni-kl.de/

Abstract

We present a system concept allowing hUmans
to work safely in the same environment as a robot
manipulator. Several cameras survey the common
workspace. A look-up-table-based fusion algorithm
is used to back-project directly from the image
spaces of the cameras to the manipulator’s con-
figuration space. In the look-up-tables both, the
camera calibration and the robot geometry are
implicitly encoded. For experiments, a conven-
tional 6 axis induStrial manipulator is used. The
work space is surveyed by four grayscale cameras.
Due to the limits of present robot controllers, the
computationally expensive parts of the system are
executed on a server PC that communicates with
the robot controller via Ethernet.

1. Introduction

At present, the workspaces of robots are clearly
separated from human workspaces. This is a result
of the safety requirements prescribed by guidelines
such as [ISO10218]. For future applications, it is
necessary that humans and robots can cooperate
safely in the same work space.

Safe human-robot-cooperation can be arbitrarily
complicated. Among the different types of robot
motions as defined in [Latombe96], the gross mo-
tions appear to be most dangerous for a human in
the work cell. They affect a large area of the work
cell and are executed at a high speed. Therefore,
the first goal is to provide a safe gross motion. In
this paper, we present a system concept to achieve
this goal, since there is only little previous work
available.

[Meisel94] shows an approach for observation
of the work space of a portal robot with three cam-
eras. A back-projection from image to Cartesian
space is used. Also, the problem of phantom obsta-
cles appearing in the Cartesian space is analyzed.
However, the concept is used only for detecting
obstacles in the work space and does not cope with
the problem that the robot is seen in the images.

[Noborio92] presents an approach for coping
with the phantom obstacles using color informa-
tion. The approach assumes that the different ob-
stacles have different colors, but that each obstacle
is uniform in color. This approach might work for

the extraction of uniformly colored robots from
images, but other obstacles - especially humans -
are not likely to be colored uniformly.

The possible errors occurring during the back-
projection of one complex obstacle from image to
Cartesian space is analyzed by [Niem97]. How-
ever, only the obstacle enlargement is regarded.

[Adolphs90] shows an approach to transform
multiple obstacles from Cartesian space to configu-
ration space using look up tables (OCMEM). In
addition, a compression technique for the look-up-
tables is presented. However, this approach as-
sumes that the Cartesian coordinates of all obsta-
cles are known.

The rest of the paper is organized as follows: In
Section 2, we present the investigated problem. In
Section 3, we present the system concept. As an
essentia part of this system we present in Section 4
a fast approach based upon look-up-tables for fus-
ing images and joint angles. This approach also
includes the extraction of the robot image from the
observed scene. The implementation and experi-
ments are presented in Section 5.

2. Problem analysis

In this section we present an answer to the fol-
lowing question: If a robot manipulator and a hu-
man work in the same work space, how fast can the
robot move without being a safety threat for the
human?

To answer this question, we assume that the
environment of the robot is represented in its con-
figuration space by a grid and that the discretiza-
tion is computed by the max-move approach pre-
sented in [Henrich98]. According to this method
the discretization resolution Aq = (qy, ..., AQp) of a
D-dimensional configuration space is set with
respect to the maximum movement of the robot
endeffect at each step the robot moves along this
coordinate. The discrétization for each joint can be
computed by

. m
Ag; = 2 arcsin (ﬁ)
]
where |; is the distance between the center of

joint i to the farthest point the endeffect can reach,
and Mg is a pre-set distance the robot may move

Feature
Image
Creation

Grayscale
Image
Acquisition

Cameras ’l

Joint Angle
Client

Vision & Joint Path
usion Planning

Process

Control

Difference
Image
Creation

Reference
Feature
Image

Trajectory
Client

Robot
Controller

Joint Angle
Server

v

Process Trajectory "
Control Server

Figure 1: System structure. The system is divided into one part running on the robot controller and one

running on the PC server.

in one step in Cartesian space.

Additionally, the robot is assumed to be
equipped with sensors that periodically acquire
data. By processing the sensor data, each configu-
ration space cell is marked either blocked or free. It
is further assumed that the human does not actively
bump into the robot. This means that if the robot is
not moving, no collision will occur. The distance to
obstacles is measured in the number of configura-
tion space grids.

The number of cells in the motion direction of a
joint that are checked for obstacles is called the
look-ahead, and can be different for each joint. As
each access to a configuration grid consumes time,
it is useful to restrict the number of cells that have
to be checked for obstacles to the minimum. How-
ever, as the robot can not stop immediately, the
look-ahead must be large enough for the given
robot speed.

So, the initial question can be formulated as:
What is the relation between the minimum look-
ahead, configuration-space discretization, sensor
update rate, robot speed and obstacle speed?

To find the searched relation, we used a time-
based approach. For a continuous system, the de-
celeration time ty of the robot has to be smaller
than the time t; remaining before a collision takes
place. A time discrete system has to ensure that if
the robot is not stopped in the current step, there is
still enough time to do so in the next one. With ts
being the time between two time steps and t, being
the time it takes to process the sensor data of one

time step the following holds true:
L+t tc—1g

The deceleration time for the robot is, in the
worst case, the time that the link with the largest
speed/deceleration proportion needs to stop from
maximum speed.

The time to collision t; can be approximated in
word-case by dividing the distance of the robot to
the closest obstacle by the sum of the maximum
robot and obstacle speeds. The distance can be
approximated by the look-ahead.

If there is a large difference in the deceleration
times and the speeds of the different robot joints, it
is useful to calculate t; and t4 for each joint. The
joint with the smallest difference is the critical
joint.

In a system running on a single processor it is
not efficient if the data processing takes longer
than one time step. In these cases, an upper bound
of ts for the processing time t, can be assumed.

The presented relation can be used both during
system development and at run-time. During the
system development phase, it can be used to spec-
ify the sensor data processing unit requiréments.
During run time it can be used to compute the
maximum safe robot speed under specific condi-
tions.

This approach is quasistatic and does not take
the relative direction of the movements of human
and robot into account.

Current

Cameras Feature

Images
Binary
Difference
Images
Reference Binary SUSDICIOUS
Feature Obstacle spicioL
Configurations
Images Images
Binary I "
- O Look-up- | Critical
Joint Angles ‘ "F:;Z?S table 2 Threshold Configurations

Figure 2: Vision and Joint Angle Fusion

3. System concept

The software provides functions to generate safe
gross motions and is divided into two parts, one
running on the robot controller and the other run-
ning on a server PC. This is done because multi-
camera vision and path planning are resource in-
tensive problems and standard robot controllers are
not equipped with enough computational power
and memory to solve these tasks. Additionally, it is
difficult to equip the controller with the necessary
hardware to acquire and process the sensor infor-
mation. PC server and controller communicate
over a network or via direct connection. Other
robot programs can use the safe gross motion func-
tions as a service. The software structure is pre-
sented in Figure 1 and explained in the following.

The images of all cameras are acquired simulta-
neously. After application of filters for noise reduc-
tion the feature images are created. The discretiza-
tion of the feature images is coarse compared to the
original images. This permits the use of several
grayscale pixels to produce one feature image
pixel. Features can be arbitrarily defined. The only
requirement is that a distance metric is defined,
which returns a scalar value representing the dif-
ference between two feature image pixels. If the
difference between the current feature image and
the reference image is larger than a set threshold,
the corresponding pixel in the difference image is
marked as blocked. Otherwise the pixel is marked
free.

If the robot can not be removed from the cell,
the reference images can be created artificially by
combining several images with the robot in differ-
ent positions.

The process of fusing several difference images

Forbidden
Configurations

Static Obstacle
Configurations

and the joint angles into one world representation
is described in detail in Section 4.

A path planner operating on the grid in configu-
ration space is used. Both local and global planners
can be integrated into the system, provided they are
fast enough.

To meet the high security requirements needed
to allow humans to be in the same work space as
the robot, several security precautions have to be
integrated. For example, if a hardware or software
failure is detected, the robot has to be stopped
immediately.

4. Vision and Joint Encoder Fusion

The core of the presented approach is a look-up-
table-based sensor fusion algorithm (see Figure 2).
This algorithm uses a back-projection from image
space to configuration space. First, the robot is
removed from the difference images using the
information stored in look-up-table 1 (LUT-1). The
resulting binary obstacle images are fused into a
configuration space map of the suspicious configu-
rations using look-up-table 2 (LUT-2). If more
than a certain number of cameras consider a con-
figuration to be suspicious, the configuration is
called a critical configuration. In the third step, the
configuration space map including all static obsta-
cles, is added, since the static obstacles do not
appear in the difference images. The result is the
configuration space map of all forbidden configu-
rations In the following, the algorithm is described
in more detail.

4.1. Implicit calibration and table generation

The implicit calibration and generation of look-
ip-tables is done offline. One set of look-up-tables
is required for each different robot geometry. For

example, if the robot has to carry a large beam, the
robot with and without the beam in the gripper are
considered as two different geometries.

In the brute force approach, the robot is succes-
sively positioned in all configurations. When the
position is reached, difference images are created
for all cameras. In a smarter and less time consum-
ing approach, only key configurations are actually
established with the robot, while the other images
are created by interpolating either from the key
images or from a robot model that is computed
from the key images.

For each configuration g, the blocked difference
image pixels p of one camera are stored in a table.
The layout of LUT-1 for one camera is presented
in Figure 3. There is one such look-up-table for
each camera.

Configuration Blocked Pixels
1 P11 ... Pin
qQ pQ,l’ [RRIY pQ,M

Figure 3: LUT-1 layout. For each configuration, all
blocked pixels in the difference image are stored.

After all configurations have been processed,
the contents of LUT-1 is used to create a new table
named LUT-2. For each pixel p in the difference
image of a specific camera, all configurations g, in
which the pixel is blocked, are stored. These con-
figurations are called sSuspicious configurations.
The layout of LUT-2 is presented in Figure 4.
There is one such look-up-table for each camera

Pixel Configuration
P1 duts - QiR
pr dra, ---, Ops

Figure 4: LUT-2 layout. For each pixel all suspi-
cious configurations are stored.

In the look-up-tables LUT-1 and LUT-2 for
each camera, the geometry of the robot and the
calibration data of the cameras are stored implic-
itly.

4.2. Balancing resource usage

The look-up process is very fast — however, this
speed is achieved by an intense memory uSage.
Although it is possible today to equip computers
with large amounts of memory, for some systems a
less memory-intensive approach might be prefer-
able. By storing the look-up-tables in compressed
formats, it is possible to reduce the memory re-
quirement, but his results in higher CPU usage to
access the information stored in the tables.

As the data encoded in both look-up-tables rep-
resents regions, algorithms for region merging can
be applied. If one difference image pixel in LUT-1
is blocked, adjacent pixels are likely to be blocked,

blocked, too. So many pixels p(u,v) can be repre-
sented by one region r that is encoded in the table
by (Upeg, Vbegs Uends Vend). As this encoding is done
off-line, processing intensive algorithms that pro-
vide a high compression can be used. To compress
LUT-2, the same method can be used. If one con-
figuration is forbidden, neighboring configurations
are likely to also be forbidden — so they can be
represented by a 6-dimensional box. This method
has the advantage that the time critical access to
the information does not require much more proc-
essing time than the uncompressed tables.

4.3. Image data fusion

To fuse image data, a data structure representing
an empty configUration space is created, e.g. all
cells contain zeros. Then for all cameras and all
blocked pixels of the current difference image, the
value of all configuration cells are increased by 1
if the configuration g is found in the according line
of LUT-2 of the current camera.

After the binary obstacle images of all cameras
are processed, the contents of all configuration
space cells are compared with a threshold. If the
value is larger than the threshold, the configuration
is called critical. All critical configurations are
stored for further processing.

4.4. Threshold and phantom obstacles

The threshold can have a range from 1 to the to-
tal number of cameras in the system. The threshold
determines how many cameras must deliver a
blocked difference image pixel before a specific
configuration is considered to be critical.

enlargement. The real obstacles are represented
by solid rectangles. If this scene is observed by
two cameras, the hatched areas are the enlarged
obstacles reconstructed from the camera images
and the light cross-hatched area is a phantom
obstacle. If the third camera (hatched) is used
additionally, the phantom obstacle disappears and
the obstacle enlargement is represented by the
dark cross-hatched areas. (Image is adapted from
[Meisel94])

Because the back-projection does not resolve
the correspondence between the blocked pixels of
images from different cameras, phantom obstacles
can appear. For the back-projection to Cartesian
space, this is shown in Figure 5. The phantom
obstacles might prevent successful path planning
by blocking all possible paths. However, if the
threshold is set too high, real obstacles might not
be detected. Phantom obstacles can appear if the
number of convex objects is equal to or larger than
the number of cameras. Additionally, the more
cameras are used, the more accurate the obstacle
reconstruction will be.

45. Sensor data synchronization

The data delivered by the cameras and the joint
angle encoders is not necessarily sampled at the
same time. Due to the different clocks in robot
controller and server PC and to the communication
latency, a synchronization is very difficult. How-
ever, to remove the robot from the image, the joint
angles at the time the camera images were acquired
must be is known.

This synchronization is performed in two steps.
First, on the server side, a logical sensor is created.
This logical sensor communicates with a task on
the controller that delivers the joint angles. When
the results arrive at the logical sensor, the data gets
a timestamp that takes the average communication
latency into account. The data is then stored in a
smart buffer.

The smart buffer generates artificial joint values
by inter- or extrapolating from the data available in
the buffer, if joint data is requested with a time
stamp not present in the buffer.

5. Experimental results

The main components of our prototype system
are a Stdubli RX130 robot manipulator, an Adept
CS7 robot controller, a standard PC as server and
sensors. As sensors, we use four stationary gray-
scale CCD cameras positioned in the four top cor-
ners of the work cell. The robot controller and the
server PC are connected via Ethernet. The frame
grabbers for the CCD cameras reside in the server
PC.

The images of all four cameras are acquired si-
multaneously. The noise is reduced by cutting of
the least-significant bits of all pixels. The number
of bits, that are cut off, depends on the average
noise for a pixel value. For this process, the inter-
nal look-up-table of the frame grabber is used.

After applying the noise filter, the feature im-
ages are created. The discretization of the feature
images is 64x64 pixel. One feature image pixel is
computed using the data of 9x11 grayscale image
pixels. The features used are average, variance,
span, contrast and an edge count.

The span is the difference between the brightest
and the darkest pixel, while the contrast is the span

Figure 6: Feature Image Creation. The smaller
images visualize the different features of the fea-
ture image computed from the larger grayscale
image. For visualization, the histogram of each
feature image has been normalized to a median of
128. This causes the feature images to appear
more similar than they are in reality. From left to
right and from top to bottom, the features are aver-
age, variance, span, contrast and edge count.

divided by the sum of the brightest and the darkest
pixel. The edge count is the sum of all grayscale
pixels after an Laplaceian of Gaussian (LoG) filter
has been applied. All features are normalized to
return integer values ranging from 0 to 255. In
Figure 6 the different features are visualized as
grayscale images.

As the robot can not be removed from the cell,

Figure 7: Reference Image Creation. The four
smaller images are acquired by the camera. To-
gether with five other pictures showing the robot in
different configurations, the reference grayscale
image is created. The result using the median of al
nine images is shown in the larger image.

the reference images are created by combining
several images with the robot in different configu-
rations. The reference grayscale images are created
by taking the median of the corresponding pixels of
all images. These are then used to computed refer-
ence feature images. In our system we use 9 differ-
ent robot configurations. The configurations are
selected such, that in each camera image and for all
configurations the robot covers as few common
pixels as possible. In Figure 7, four camera images
and the computed reference grayscale image of one
camera is shown.

For our robot, a maximum robot movement
Mmax = 18cm results in a configuration space with
181,400 cells, assuming that the robot covers an
average of 64 pixels in the difference image and
that one pixel can be identified by two bytes. LUT-
1 is about 22MB for each camera if the configura-
tion space contains 181,400 cells. For LUT-2 the
required memory is about the same, resulting in a
total memory need of about S0MB per installed
camera. This memory usage can be reduced by

using compression techniques.

6. Conclusions

We presented an analysis and a syStem concept
designed to allow a human to work safely in the
same workspace as a 6 axis industrial manipulator.
The system is equipped with several grayscale
cameras and uses a look-up-table-based approach
to back-project the difference images directly into
configuration space. As the correspondence be-
tween pixels is not resolved, the reconstruction of
objects from silhouettes has two major difficulties:
Obstacle enlargement and phantom obstacles. The
effect on work-spaces with many complex obsta-
cles remains to be investigated.

The approach will be tested in various scenarios
to determine its robustness and limits. Efficient
algorithms for reducing the time to create the look-
up-tables as well as for compressing them have to
be investigated. If the approach is successful for
gross motions, an extension to other motion types
can be investigated.

References

[Adolphs90] Adolphs P; Nafziger D: ,,A Method
for Fast Computation of ColliSon-Free Robot
Movements in Configuration-Space®, IEEE
Int. Workshop on Intelligent Robots and Sys-
tems, July 1990

[Henrich98] Henrich D; Wurll Ch; Wérn H; “On-
line path planning with optimal C-space dis-
cretisation”, In: IEEE/RSJ Int. Conf. on Intel-
ligent Robots and Systems (IROS’98), Victo-
ria, Canada, Oct. 12-16, 1998

[1SO10218] 1SO 10218, EN 775:”Manipulating
industrial robots — Safety”, ISO 10218 modi-
fied),1992

[Latombe96] Latombe J-C :”Robot motion plan-
ning”; 4. print.; Boston : Kluwer Acad. Publ.,
1996.

[Meisd94] Meisel A: “3D-Bildverarbeitung fiir
feste und bewegte Kameras”, Vieweg Verlag,
Reihe Forschritte der Robotik Nr. 21, 1994

[Niem97] Niem W: "Error Analysis for Silhou-
ette-Based 3D Shape Estimation from Multi-
ple Views", Proc. on Int. Workshop on Syn-
thetic - Natural Hybrid Coding and Three
Dimensional Imaging, Rhodos, September
1997

