
Simplified Integration of External Sensors in Industrial
Robot Programs

Der Universität Bayreuth
zur Erlangung des Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)
vorgelegte Abhandlung

D i s s e r t a t i o n

vorgelegt von

Dipl.-Inf. Jan Deiterding

aus Aachen

1. Gutachter:
2. Gutachter:

Tag der Einreichung:
Tag des Kolloquiums:

Table of Contents

1 Introduction 2
1.1 Motivation . 2
1.2 Goals . 7
1.3 Problem . 8
1.4 Delimitation . 10
1.5 Overview . 10

2 State of the Art 12
2.1 Overview . 12
2.2 Static Robot Programming . 13
2.3 Flexible Robot Programming . 15
2.4 Adaptive Robot Programming . 19
2.5 Conclusions . 21

3 Retrieving Information from Sensor Signals 23
3.1 Motivation . 23
3.2 Related Work . 27
3.3 Classification of Information Contained in Sensor Signals 28
3.4 Conditional Properties . 33
3.5 Geometric Properties . 36
3.6 Experimental Evaluation . 44
3.7 Conclusions . 53

4 Simplified Sensor Integration 55
4.1 Motivation . 55
4.2 Workspace Changes Across Multiple Executions 57
4.3 Optimizing Robot Programs . 60
4.4 Intuitive Sensor Integration . 68
4.5 Applicability of the Proposed Concept . 76
4.6 Conclusions . 79

i

5 Variations 80
5.1 Characteristics of Variations . 80
5.2 Related Work . 84
5.3 Blind Searches . 86
5.4 Informed Search . 100
5.5 Using Searches for Online Computation of Change Functions 105
5.6 Conclusions . 107

6 Drifts 108
6.1 Properties of Drifts . 108
6.2 Related Work . 110
6.3 Integration into the Programming Framework 110
6.4 Drift Prediction . 113
6.5 Experiments . 115
6.6 Conclusions . 121

7 Implementation 122
7.1 Hardware . 122
7.2 Robot Software . 124
7.3 Position Database . 125
7.4 A Graphical User Interface to Manage the Database 130
7.5 Experimental Evaluation . 132
7.6 Conclusions . 143

8 Conclusion 145
8.1 Summary . 145
8.2 Discussion . 147
8.3 Outlook . 150

ii

List of Figures

1.1 Industrial robots . 3
1.2 Sensors used in industrial manipulation tasks 5
1.3 Adaptivity concept of the A-Bot system 6
1.4 Interleaving phases in robot programming 8
1.5 Examples for handling tasks . 9

2.1 Icon based programming . 15
2.2 Robot studio by ABB . 16
2.3 Programming by demonstration . 17
2.4 Example task in the task frame formalism 19
2.5 Virtual robot programming . 19

3.1 Example task described in Section 3.1.1 . 24
3.2 Operations defined in VDI norm 2860 . 29
3.3 Integrating sensor calibration into the development process 40
3.4 Experimental setup for Section 3.5.2 . 42
3.5 Use of the secant method to calculate corrections 43
3.6 Experimental setup for Section 3.6.1 . 46
3.7 Approximated change functions for rotational changes 47
3.8 Experimental setup for Section 3.6.2 . 47
3.9 Householder approximations of change functions 48
3.10 Neural network approximations of change functions 49
3.11 Change function estimates for translation compensation 52
3.12 Accuracy of estimates for translation compensation 53

4.1 Classification of changes that can occur between two executions 58
4.2 Layers of optimization for a given robot program. 62
4.3 Experimental setup for an optimization on Level 3 65
4.4 Proposed concept of sensor data evaluation. 70
4.5 Interaction of classes in the proposed framework. 70
4.6 Sequence diagram to request a position from the position database. 72
4.7 Sequence diagram to apply sensor information to a position 73
4.8 Examples of different types of environment 78

iii

5.1 Variations that can be resolved using preparatory sensors 81
5.2 Variations that must be resolved using concurrent sensors 83
5.3 Addition to the sequence diagram 4.7 . 85
5.4 De-facto standard paths for searches in a two-dimensional plane 88
5.5 Examples to create a higher dimensional path using a standard paths . . . 89
5.6 Examples for different probability densities in a two-dimensional plane . . 91
5.7 Impact of the distance when sorting cells 93
5.8 Different search paths created for a Gaussian probability density 95
5.9 Different search paths created for an off-centered probability density 96
5.10 Different search paths created for a multi-modal probability density 97
5.11 Comparison of probability based search paths to a spiral search path . . . 98
5.12 Expected length of path and total length of path in relation to spiral path 99
5.13 Example tasks for a informed search using linear correction 102
5.14 Example to partition an informed search into a series of simpler searches . 103
5.15 Example for the use of insertion maps . 104

6.1 Experimental setup of the task described in Section 6.5.1 116
6.2 Coordinate systems of the robot and the conveyor belt in relation to the

world coordinate system for the task described in Section 6.5.1 117
6.3 Recorded drift during 20 executions of the task 118
6.4 Actual and predicted drift with estimation error for Kalman and ARIMA

models . 119
6.5 Current and absolute drift for 100 executions of the task 121

7.1 Design of the implemented system . 123
7.2 Class diagram of the position database. 126
7.3 Class diagram with inheritances for all modules involved 128
7.4 Inheritance graph of all types of extensions 131
7.5 Main screen of the graphical user interface 132
7.6 Dialog wizard to create new extensions . 133
7.7 Setup for experiments E1, E2 and E3 . 135
7.8 Setup for experiments E4 and E5 . 137
7.9 Setup for experiments E6 and E7 . 138
7.10 Graphical plot of the results of the experiments 141

iv

List of Tables

2.1 Approaches to robot programming . 13

3.1 Use of external sensors in handling tasks 33
3.2 Classification of approximation methods for compensation functions 44
3.3 Accuracy of approximations compared to theoretical values 47
3.4 Comparison of interpolated functions with neural network 49

4.1 Required time for a motion of a given length and a fixed maximum acceleration 64
4.2 Required time and total sum of degrees covered during a PTP motion . . . 64
4.3 Required time and total sum of degrees covered during pick-and-place motion 65
4.4 Required time and total sum of degrees covered for PID controlled move . 66
4.5 Required time and overshoot of the tool-tip compared to the original motion 66
4.6 Required time and total sum of degrees covered for fixed route 67
4.7 Possible gain on each level of optimization 67

6.1 Mean and standard deviation of occurring and predicted drift 120

7.1 Mean time and standard deviation required to solve the experiments 140
7.2 Mean and standard deviation in lines of code required to solve the experiments140
7.3 Mean and standard deviation of the probands self assessment 143
7.4 Mean and standard deviation of the probands rating of the A-Bot system . 144

1

Chapter 1

Introduction

The employment of robots in industrial manufacturing has risen constantly in recent years.
The robot industry was capable of tripling its revenues in the last ten years to nearly 1.9
billion Euro. About a quarter of all robots installed in German factories is used for wel-
ding tasks and nearly 50 percent are operated in car-related industries [52]. Apart from
this modern robots are used for packaging, palletizing, handling and assembly tasks. This
has made the robot a universal machine that is employed in nearly all areas of modern
industrial production such as the chemicals industry, the metal processing industry, me-
chanical engineering and electronics. However, recent studies predict a saturation of the
robot market in the next years, since most large companies are highly automated already
[123].

1.1 Motivation

In large companies there is no need for more robots unless there is a significant rise in
production. Only if robots are able to solve more complex tasks new areas of application
can be attained. The one area where the use of robots may be enforced and is likely to
increase over the years is in small and medium enterprises (SME). Unlike large companies,
SMEs usually produce goods in much lower quantities and have a higher turnover rate in
production. However, robots are only rarely employed here. This is caused by two factors:
Firstly, robots are expensive. So there must be a significant advantage in using a robot
instead of a human worker in terms of production time and cost. This is closely related to
the second factor. Robot programming is a difficult task demanding skilled experts. While
big companies can afford these experts due to a high number of robots, SME usually
cannot, because they own only one or two. In order to make robots more attractive for
SME, they must be able to act flexibly and be programmable by non-experts. Then the
ability to compete will rise. The aim of this work is to look into this in more detail.

2

Figure 1.1: Industrial robots. Left: Staeubli RX130. Right: Kuka LBR.

1.1.1 Use of Industrial Robots

The advantages of a robot in comparison to a human worker are its high precision, hig-
her speed of execution and the fact that robots can execute tasks without any signs of
exhaustion. For a robot program to execute a given task mainly consists of a series of com-
mands for movements and grasping / releasing an object or controlling some kind of tool
mounted to the robots wrist1. Control structures such as if- or while-commands are rarely
employed. This allows for a very simple way of programming. One approach is to guide the
robot through the task and record all motions, so-called programming by demonstration
(PbD). In production, this collection of motions is then repeated over and over, usually
at significantly higher speed. This and other ways of robot programming are more closely
analyzed in Chapter 2.2.
To give an example, two industrial robots are shown in Figure 1.1. The RX130 from
Staeubli (left) is used in industrial contexts for several years by now. The LBR from Kuka
(right) is a new design by the German Aerospace Center, geared towards small and medium
enterprises.

1.1.2 Sensor Integration

Industrial robots lack some characteristics that are relevant for more sophisticated tasks.
They have no means to interact with the environment they are working in. In order to
execute a task, one must ensure that all parts are always arranged in precisely the same
position and orientation. In addition, part variations, e.g. in terms of size, present enormous
problems to robots. Movements must be adapted to compensate the variation.
There are two ways to deal with these imperfections: Firstly, mechanical compliances as well
as damping and feeding devices are created to ensure correct grasping and handling with
a fixed set of motions. This approach yields the advantage that no perception capabilities

1There are a lot more commands in modern robot programming languages. These include commands
for input/output and error handling. But all of these provide additional features, but are not mandatory.

3

are required of the robot. But the construction of fixtures and mechanisms is elaborate
both in time and cost. Additionally this construction requires expertise in that field of
work. Another disadvantage is that these fixtures can only rarely be re-used when the task
changes in any aspect or is abandoned. So this approach is only advisable if the task will
be executed repeatedly for such a long time that the time required to setup the workspace
is neglectible. If the task is executed for only a short period of time in relation to the time
required for setup, there is no sense in employing a robot at all, because the overall costs
will be too high to justify its use.
The second approach is to equip the robot with sensor capabilities. External sensors are
installed in the robot and in its workspace to measure changes in the environment. In
this case a robot motion is not fixed but altered online during task execution to reflect
the information gained by the sensors. With this approach a robot is truely flexible in
the sense that it can react to possible changes in its workspace provided the sensor is
capable of detecting it. Additionally, sensors can be re-used for different tasks. But there
is a significant downside: The information inherent in the sensor signal must be extracted
and analyzed in order to alter the movements of the robot correctly. This yields to a series
of problems:

• Sensor data processing is a very complex task. It is relatively straightforward to
interpret the data of by a distance sensor. This gives us one-dimensional information
about the distance between itself and the next obstacle in its range. But it is a much
more difficult task to analyze an image provided by a camera to detect an object.
So the developer2 must possess substantial knowledge in sensor data processing to
evaluate the sensor signal and extract the relevant information.

• A robot is a real-time system moving in and altering its environment at high speed.
Because of this the sensor signal must be processed fast enough to allow the robot
to react in time to a change. Otherwise motions based on external sensor data must
be slowed prolonging execution time.

• Sensor data processing must be integrated into the robot program. Now there are not
only robot commands but sensor commands as well. Because the robot is moving and
may occlude objects from the sensors, these two tasks must be adjusted accordingly
to ensure correct and safe execution.

These three factors are the main reason why external sensors in industrial manufacturing
are only used where absolutely necessary. Skilled experts are required with knowledge in
both areas, robot programming and sensor data processing. Typical examples of sensors
used in industrial contexts are shown in Figure 1.2.
In large companies a robot shall execute a task up to a hundred thousand times or even
more. In this case, a mechanical solution is preferable in terms of production time and cost.
But there is a limit to the range of applications such robots can deal with. For example

2The use of the male pronoun ’he’ in context with the developer is purely practical and does not
represent reality.

4

Figure 1.2: Different types of sensors typically used in industrial manipulation tasks. From left
to right: Imaging sensor, force/torque sensor, optical distance sensor, vibration sensor.

if flexible or organic materials are to be handled, external sensors are mandatory, because
these materials differ in size and shape in every execution.
So one key problem is to find ways to allow for a programming of flexible robots by non-
experts. The target group are SME because of they usually fewer experts and have a high
turnover rate requiring re-programming at regular intervals. It is more important to create
the program quickly than to optimize it with regard to its execution time. This is contrary
to the needs of large companies like car manufacturers. Here, execution time is critical
because even small increases will add up significantly. In order to minimize execution time
a lot of consideration goes into laying out the workspace and designing the robot program
in large companies. This can take up to several weeks. Unlike large companies in SME the
task of creating a new program for a new task must be achieved as quickly as possible.
Nonetheless large companies are interested in flexible robots that are easy to program as
well. One example for this is the American car manufacturer General Motors. The head of
the R&D department, Robert Tilove, has emphasized General Motor’s interest in this area
of research [119]. Focussing on SMEs, special projects have been founded to develop new
solutions for easy robot integration [9] and this topic is discussed intensively at various
scientific conferences [54], [5], [98], [35].
For the same reasons the employment of fixtures and feeding devices is not an option for
SMEs. The time and cost required to create and install such devices is not justified by the
lot size. External sensors must be used instead.
There are many approaches to create static robot programs easily. These are described
in detail in Chapter 2. However, it is a much more difficult task to extend a static robot
program to react flexibly due to the three problems described above.
So, a key issue is how external sensors can be integrated easily into a robot program by
persons with only basic knowledge in robot programming and sensor data processing.

1.1.3 Adaptivity

For SME, execution time is not that crucial, but it is still an important factor. The more
often a task is repeated, the more important execution time becomes. While a task must
always be executed correctly, the more often the program is executed, the more important
the actual time required to complete the task gets. If the task is executed only a couple of

5

detailed
world-model

unknown
world-model

slow
execution

fast
execution

learning

adaptation

adaptation

nu
m
b
e
r
o
f

execu
tio
ns

Figure 1.3: Adaptive
robots re-use know-
ledge gained in pre-
vious executions to
optimize the executi-
on with respect to the
execution time.

times, it does not matter so much, as long as the execution time is still acceptable. But,
since every increase in execution time must be multiplied by the number of repetitions,
this will amount to a significant delay for higher numbers of repetition.
Even if the robot can be easily programmed to accomplish a task, a human worker is
more suited, if he can accomplish the task more quickly than the robot. As outlined in
the previous section, optimizing a robot program is a time-consuming task and if external
sensors are employed, this becomes very complicated. So another characteristic a robot
should possess is adaptivity.
Adaptivity in an industrial robot context is the capability to re-use knowledge gained in
previous executions of the same or a similar task to optimize the current task in terms of
execution time or robustness. This definition is made in analogy to a human worker. A
human will be slow and make a lot of mistakes when he is shown a new task and executes it
for the very first time. But the more often he repeats that task, the more experience he will
gain and optimize its movements as well as recognize critical situations that may surmount
to an error. If the robot possesses adaptive characteristics, it will also learn to optimize
the execution of a given task based on knowledge it has gained in previous executions (see
Figure 1.3).
The difference between flexibility and adaptivity is that flexibility concerns the robot’s
capabilities to compensate a change in the workspace in the current execution of the task.
Any knowledge gained in this execution is forgotten when the task is repeated. Adaptivity
describes the capability to store and re-use this knowledge in another execution for a more
precise or faster execution.
The other key issue is if and how a robot can learn to optimize its movements to ensure
an acceptable execution along the criteria of correctness and execution time. If this is
possible, parts of the difficulty of sensor data processing can be passed from the programmer
to the robot. This further reduces the complexity of programming and the development
time because now only the basic parameters and instructions have to be outlined by the
programmer [18], [73], [74].

6

1.2 Goals

The A-Bot project was formed in 2006 to find solutions for the issues of easy sensor
integration and adaptivity concepts to decrease execution time. A-Bot is short for adaptive
robot programming. The focus of A-Bot is not to find new ways of creating robot programs
but enabling persons with only basic expertise in robot programming and sensor data
processing to extend a given static robot programs with external sensors.
The resulting program shall be flexible in terms of dealing with object variations such as
search motions, insertion procedures and object drifts as well as being adaptive in terms
of self-optimization of program parts to reduce execution time.
A static robot program shall be given. This creates no limitation because today there
are various ways to create such programs with minimal knowledge in robot programming.
Some of these approaches will be discussed in detail in Section 2.2. As stressed before
the problem lies in the task to integrate external sensors. While there are approaches to
a unified development process yielding flexible or adaptive robot programs straight away,
these are either geared towards specific applications or aimed at experts. We will discuss
these approaches in Sections 2.3 and 2.4.
When creating the basic program and integrating sensors are regarded as separate tasks,
different approaches can be taken to execute each phase. For example, designing the static
program can be achieved using textual programming or programming by demonstration
techniques. The approach taken does not influence the second phase when external sensors
are incorporated. Because of this, we propose a modification of the classical approach to
robot programming, that employs three distinct steps, namely:

1. A programming step in which the program is designed offline

2. A testing and modification step that is performed online

3. The execution of the program in production mode

In our approach some additions are introduced, that interweave with each other (see Figure
1.4):

1. In the first phase, the general program flow and the basic positions of objects, trajec-
tories, etc. are laid out. This step is identical to the first step of the classical approach
and can be achieved using the concepts mentioned in the Sections 2.3 and 2.4. Note
that no external sensors are used up to now.

2. In the second phase, the developer can add flexibility to the program flow. External
sensors are integrated into the program and mechanisms are created to deal with
changes requiring flexibility of the robot. This task is performed both offline and
online.

3. Shortly after the introduction of external sensors, the testing and validation of the
program begins.

7

Figure 1.4: Comparison of the classic approach to robot programming (top) and the interleaving
approach presented here (bottom).

4. As soon as the program is run for the very first time, automatic adaptivity methods
are employed to re-use knowledge in order to optimize the program. As long as the
program is tested by the developer, this is done in a supervised way.

5. After testing, the program is executed in production mode. Adaptation may continue
in an unsupervised way.

We assume that the developer possesses basic knowledge of robot programming. This
means that he knows the most frequently used commands such as movement-, speed-
and grasp/release-commands. Knowledge of sensor data processing algorithms shall not
be required but a basic understanding of the information contained in the sensor signal is
necessary.
A-Bot focusses on industrial handling tasks. These tasks deal with grasping and releasing
objects as well as manipulating them (e.g. insertion, stacking, palletizing, etc.). Some ex-
amples for these kinds of tasks are shown in Figure 1.5. These tasks are position-centered
in the sense that the robot must know where the objects are placed, what their orientation
is and in which way they can be manipulated. It is of minor importance in which way
these objects are moved along the trajectories. A typical task is illustrated and described
in Section 3.1.1. A more detailed description of these kind of tasks is given in Section 3.3.
Explicitly not included are processing tasks, such as welding and painting of objects. These
tasks are trajectory-centered in the sense that the robot must follow a trajectory or the
contour of an object as exactly as possible, e.g. for spot-welding purposes. These tasks
require a different approach and already are covered by various research groups, e.g. [28],
[36], [86].

1.3 Problem

This work is meant to outline a first approach to solve (parts of) the goals outlined in the
previous section. Based on the universal requirements, the purpose of this work is to find
solutions to the following problems:

8

Figure 1.5: Examples for robot handling tasks. Left: Stacking objects into containers. Middle:
Palettizing objects into boxes. Right: Inserting objects into corresponding slots.

• Analyzing the general use of external sensors in robot manipulation tasks

• Analyzing flexibility and adaptivity measures for robot manipulation and developing
concepts enabling a robot to react to changes in the workspace

• Developing a first implementation of a universal programming concept to integrate
external sensors into a static robot programm

The resulting concepts shall adhere to the following criteria:

• The complexity to integrate a given sensor into a robot program.

• The expertise a developer needs to create a flexible and adaptive robot program.

• The universality of the approach taken.

The implementation does not need to be exhaustive. On the contrary, there shall be room
for further expansions, e.g. solutions tailored to specific task domains. In this work, a first
development cycle shall be laid out. With this cycle, the developer shall be able to analyze
the problem of workspace variations, choose suitable sensors for compensation and integrate
the sensor in a pre-determined way into a given static robot program. We are looking for a
first solution to each of the aspects outlined above. There may be other possible solutions
as well, so future enhancements of the implementation must be taken into account as well.

9

1.4 Delimitation

The purpose of this work is to develop a programming concept to integrate external sensors
into a given static robot program for position-centered tasks, such as handling. No part
of this work treats trajectory-centered tasks. In these tasks, the robot shall not form any
decisions, but follow a given trajectory at a set speed and allowed deviation. There is no
contact between the robot and its environment. Handling tasks differ in the sense that
here objects are brought into contact with each other. Additionally, these objects may
differ in size, position and orientation. Because of the different foundation of these tasks
(trajectories instead of positions) other concepts have to be applied here. Projects dealing
with trajectories have already been mentioned in section 1.2.
Neither will we present detailed solutions for specific kinds of manipulation tasks, e.g.
peg-in-hole tasks. We will try to formulate a general approach that can be used for all
position-centered robot tasks. All solutions developed in this work shall be applicable to
all kinds of tasks. However we will try to allow for an integration of additional, more
application-focused extensions.
With respect to the type of robot used, the concepts and solutions realized in this work
will be kept as general as possible and shall not be aimed towards a specific type of robot
or robot manufacturer. It should be possible to realize the concept developed in this work
on every robot system capable of grasping objects. This includes the avoidance of domain
specific languages (DSL). Such an approach would severely limit the field of application to
specific tasks and complicate a transfer to another domain. Because of this, we will outline
the concepts in general robot commands. It a next step, the transfer of these concepts to
a DSL can be attempted. But this is not part of this work.
The above also applies to the type of sensors employed. We will not deal with the problem of
physically integrating a sensor into a robot system, that is, installing the sensor somewhere
in the workspace and ensuring that the sensor signal is accessible to the robot system.
Given modern connecting systems and interfaces such as USB, this problem lies more in
the domain of electrical engineering than computer science.

1.5 Overview

This work is organized as follows: In Chapter 2 we give an overview of other approaches to
sensor based robot programming and outline the general difficulties of this kind of program-
ming and shortcomings of other approaches thus legitimating our approach. In Chapter 3
we describe how sensors can be used to monitor workspace changes. We will classify these
changes and describe ways to transform sensor data into an abstract description of the
change at hand. Additionally, we will describe a method to compute this transformation
function during task execution. In Chapter 4 we analyze the use of external sensors for
robot manipulation tasks and develop a general programming concept to integrate such
sensors into a robot program easily. In Chapter 5 we focus on workspace changes that re-
quire search motions. We show how adaptivity methods can be employed to automatically

10

optimize these searches. In Chapter 6 we deal with the drift of objects that are an undesi-
red factor occurring in manipulation tasks. We explain how objects can be monitored for
a drift and describe ways of adapting to and correcting a drift automatically. In Chapter 7
we describe a prototype implementation of the concepts developed in Chapters 3 to 6 and
show how this prototype enables developers to create flexible robot programs with adaptive
capabilities. Chapter 8 summarizes our work and gives an outlook on future research.

11

Chapter 2

State of the Art

In this chapter we give an overview of existing approaches to flexible robot programming.
We describe various approaches to robot programming and evaluate them with respect
to their usability and the suitable range of applications. Based on this we conclude why
there is a need for a general programming concept for industrial handling tasks requiring
external sensors.
The rest of this chapter is organized as follows: In section 2.1 we describe a way to classify
robot programming. We rate programming concepts according to their usability for non-
experts. In section 2.2, 2.3 and 2.4 we discuss various styles of robot programming. In
section 2.5 we conclude why there is a need for an easy-to-program adaptive robot system.
We will discuss other works that are related to the design of certain aspects of the whole
system in the immediate chapter concerned.

2.1 Overview

A good overview of the current state of industrial robot programming is given in [110].
It acknowledges that “the use of robots in small and medium-sized manufacturing is still
tiny”. One of the reasons given is the problem of human-friendly task specification.
A review of different robot programming systems was conducted by Lozano-Perez in 1983
[82]. Systems were classified into three classes: Guiding systems, robot-level programming
and task-level programming. In guiding systems (or direct programming), the developer
moves the robot physically through every position of the task and records all operations.
In execution, this recording is then simply played back at higher speed. Robot-level pro-
gramming systems (or explicit programming) provide the developer with a special robot
programming language to describe the task (usually in a textual way in an editor). In
task-level programming (or implicit programming), the developer only describes the tasks
or goals to be achieved. The actual program is then created automatically from this des-
cription. Guiding systems are a way of direct programming occupying the workspace so no
other tasks can be executed while designing the new robot program. Robot- and task-level
programming are performed offline using either explicit (robot) or implicit (task) comman-

12

Direct Explicit Implicit

Static Teaching Manufacturer
languages

Montage plans

Flexible Programming by
demonstration

Action-primitives Contact based
execution

Adaptive Programming by
demonstration

Learning skills Learning skills

Table 2.1: Examples for different types of programming for industrial robots classified by type of
programming and desired capabilities of the robot.

ds.
The work of Lozano-Perez was extended by Biggs in [20]. Biggs introduces a second sche-
me: Automatic programming, manual programming and software architectures. Guiding
systems and robot-level programming are classified as manual programming, while task-
level programming is classified as automatic programming. Software architectures “are
important to all programming systems, as they provide the underlying support, such as
communication, as well as access to the robots themselves.” [20].
In our work we will use the classification given by Lozano-Perez and extend it by an ad-
ditional classification: Is the robot program static, flexible or adaptive? A static robot
program does not react to its environment and repeats the same task with no deviations
over and over. Flexible robot programs are able to react to their environment and alter
their movements should the need arise. But this information is “forgotten” in the next
execution. Adaptive robot programs re-use information gained in previous executions to
further optimize their correctness and speed of execution. Thus adaptive programs form
a subclass of all flexible programs. External sensors are required for flexible and adaptive
programs, whereas a static robot program does not need them.
Table 2.1 gives an overview of different robot programming concepts with one example
each. These concepts and others are explained in detail in the following sections.

2.2 Static Robot Programming

Static robot programming without external sensors is de-facto standard in industrial app-
lications. The avoidance of external sensors allows for very fast robot programs and fixed
task cycles. In large companies robots are mainly programmed either directly or explicitly.

2.2.1 Direct Approaches

Direct approaches are moving the robot by using a handheld-device and manually adjusting
every joint until the desired position is reached. There are also more intuitive methods using
a 6D mouse or moving the real robot by the use of force sensors and zero-force control

13

[126]. The main advantage of direct programming is that task specific knowledge does not
have to be encoded in a textual form.
This walk-through or playback approach seems to be convenient when robots are to be used
in SMEs [108]. A current utilization of this approach is the braiding of carbon fibres [121].
Here the robot moves a form through a radial braiding machine. The robot can be adjusted
to a new form by the workers without any knowledge of robot programming. In order to do
this, the worker moves the form by pushing and pulling it through the machine to achieve
an optimal result.
Hollmann [59] and Pires [98] have developed systems that add speech recognition to this
approach. The worker not only moves the robot but also uses verbal commands to instruct
the robot to use different types of motion. In a second step a graphical system is used to
post process the task before it is run in execution mode.
Soller [68] uses multiple demonstrations of the same task to recognize counting-loops and
to generate a correct trajectory from digressive examples.

2.2.2 Explicit Approaches

Explicit programming is mainly done the use of system specific languages provided by the
manufacturer. Most manufacturers use their own type of language that may differ signifi-
cantly from the other, making the porting of an existing task to a robot from a different
manufacturer hardly possible. Exemplarily for this concept is the VAL3 language developed
by Staeubli [10]. A major problem is that the commands of these languages are focused
on moving the robot, which makes them hard to understand for non-experts because they
are not task specific. Microsoft has taken the effort to create a framework for a universal
robot programming language for industrial as well as mobile robots [7] but in industrial
settings this language is practically never used.
Graphical (or icon based) programming systems provide an alternative to text based me-
thods for manual programming. They require manual input to specify actions and program
flow. Graphical systems typically use a graph, flow-chart or diagram view of the robot sy-
stem. One advantage of graphical systems is their easy usability, which is achieved at the
cost of text based programmings flexibility. One example is the icon-based system Lego
Mindstorms NXT [11] that aims at the home consumer using Lego bricks to create robots
(see Figure 2.1). Bischoff et al. [21] have produced a prototype style guide for defining the
icons in a flow chart system based on an emerging ISO standard.

2.2.3 Implicit Approaches

Implicit programming approaches for static robot programming are very difficult, due to
the fact that imprecisions arise when an implicit command is translated into a series of
robot motions. These can only be resolved by using external sensors. Montage plans can
be used to extract a series of assembly motions from a (graphical) construction manual or
CAD data describing the assembly [115]. This can be done if the dimensions of all parts
are constant and there are sufficient tolerances.

14

Figure 2.1: Icon based programming using the Lego Mindstorms programming language. Image
courtesy of http://www.tau.ac.il/stoledo/lego/ClapCounter/

A graphic representation of the workspace is created in virtual programming. The developer
moves a simulated robot in a virtual workspace whereby all actions are recorded. This
recording is later translated into a textual robot program in the manufacturers language
and executed [66]. The advantage of this approach is that the robot remains free to perform
other tasks, but as with montage plans, the tolerances must be sufficient. Additionally,
modelling the workspace and creating an exact robot model is time consuming. There
is a commercial solution called Robot Studio by the manufacturer ABB [1] (see Figure
2.2). CAD models can be loaded into the simulation to ensure an exact modelling of the
workspace. Already integrated into the software are CAD models of all robots manufactured
by ABB.
In summary, there are existing approaches to ease static robot programming. But for SME,
the robot must also be able to act flexibly. In order to speed up the set-up of the task,
adaptive capabilities are required as well, so none of the approaches above can be taken.

2.3 Flexible Robot Programming

Flexible robots possess the advantage that they can cope with material part imprecisions
and deviations with regard to their dimension, position and orientation. This is a key
factor for SMEs, but is also of interest for large companies. Unlike static robot programs,
the developer must not only specify the correct movements of the robot but also integrate
sensor data processing. This further complicates the development.

2.3.1 Direct Approaches

Programming by demonstration is a method where a human gives a demonstration how
the task shall be executed. The robot does not have to be used during demonstration (see
Figure 2.3). Instead the demonstration is recorded using (multiple) cameras as well as
other sensors such as data gloves, microphones, etc. A robot program is generated from
this recording. Usually the task is composed using skill libraries, encapsulating a fixed se-

15

Figure 2.2: Screenshot of the robot studio software by ABB. Image courtesy of
http://www.irbcam.com/rev.asp

ries of robot motions into an atomic operation. A skill library is usually developed for a
specific domain encompassing the most common operations of this domain. This approach
yields the following disadvantages for the creation of flexible robot programs: Firstly, the
task usually must be demonstrated more than once. This is because the program generator
must be able to distinguish between task-relevant and insignificant characteristics. Second-
ly, skill libraries are limited to certain domains and are constructed by experts. This is
a contradiction to the requirement of a universal applicability. An implementation of this
approach is described in [116]. In the works of [13], [103] and [30] statistical methods are
used to extract the relevant information of multiple demonstrations of a task. The resulting
program is generalized to a certain extent. These works distinguish between relative and
absolute robot motions. A detailed survey about programming by demonstration is given
in chapter 59 of [110].
All direct approaches presented so far have in common that they only allow for the pro-
gramming of sequential programs. XProbe [113] is a programming environment that uses a
hybrid approach between direct and explicit programming. The user is guided through the
programming process by dialogs. In the dialogs, task frames and subroutines are defined.
Robot motions are defined by moving the robot and functions can be called using a set
of buttons. This allows for more complex behaviour of the robot than a strictly direct ap-
proach. In addition sensor based decisions can be integrated as well. The user must activate
the sensor with a special command and then execute the motion. As soon as the sensor
triggers a set condition, the robot stops and the motion is saved. Afterwards the developer
must specify which subroutine should be called if this condition is not met throughout
the whole motion. Complex sensor based operations such as insertion strategies cannot be
realized with this approach.

16

Figure 2.3: Programming by demonstration. Image courtesy of [100]

2.3.2 Explicit Approaches

Robot manufacturers are beginning to recognize the significance of easy sensor integration.
Kuka [6] is offering a new robot system with a robot language called RSI with integrated
sensor data processing capabilities. But so far only one-dimensional sensor data may be
processed and the developer must specify exact functions and connections to work with
this data. Most sensor manufacturers offer libraries for easy access to the sensor data in the
robot programming language, e.g. Adept [2] for the language V+ by Staeubli. But again,
the developer must have a very precise understanding of the information contained in the
sensor signal.
Scientific approaches to ease flexible robot programming are functional robot programming
languages [96], [62]. These approaches have not yet been picked up by commercial manu-
facturers. One reason for this is that the developer must think in functions rather than
declarations, which requires a whole new way of programming.
There are a variety of conceptional works to solve specific tasks using sensors. A compre-
hensive coverage would exceed the scope of this work, so we will only give a short survey
of one ’classic’ problem of robot assembly: In a peg-in-hole task the robot is faced with the
problem of inserting an object in a similarly shaped hole. The tolerances are low and the
inserting procedure is not trivial. Various solutions exist using different kinds of sensors as
well as robots [33], [112], [78], [17], [31], [65], [129]. But all of these works only investigate if
there is a solution for a given instance of the problem. There is in no way any concern if the-
se solutions can be re-implemented by non-expert developers. One approach to overcome
this, is to encapsulate the solution into a skill, that can be re-used as an atomic operation
in a robot program, transforming the solution to an implicit programming approach. Even
then the solution is limited to specific instances unless it can be parametrized on a very
broad scale (which raises the difficulty of easy application). One example of this kind of
skills is given in the next section.

17

2.3.3 Implicit Approaches

Right on the border between explicit and implicit programming are action primitives. The-
se are a form of skills created to be highly independent from the type of robot and sensor
used (although there are some limitations). An action primitive is a universal concept to
modify a robot motion directly by sensor signals. Sensor data processing is integrated di-
rectly into a primitive. For example, a motion can be altered or stopped based on the
current sensor signal. Primitives originally were developed to describe complex operations
as a sequence of these primitives without having to use exact robot commands. Implicit
programming can use primitives to describe some aspect of the task as a skill. But there are
some disadvantages to this approach: Firstly, it is not possible to use case distinctions or
repetitions in an automated way. This must be done by the developer. Secondly, program-
ming in primitives is by no means intuitive or easy for non-experts. This is because the
sensor conditions within a primitive work on the raw sensor data. So the developer must
have a very precise understanding how the sensor signal will change during execution. In
addition there is a large number of parameters for each primitive that must be specified by
the developer. This approach realizes a universal concept but is too complex for non-expert
developers. Works using action primitives are [49], [75], [88], [89], [116].
The foundation of action primitives is the task frame formalism (TFF) introduced by
Mason [86] in 1981. The main idea is to describe robot motions not only in Cartesian
coordinates but also in terms of desired force/torque measurements for specific coordinates
and orientations. The robot then alters the trajectory accordingly to the measurements.
This concept, and variations of it, is widely used in modern robot programming [38], [49],
[76], but Bruyninckx and De Schutter note in [28], that “it cannot cope with all possi-
ble constrained motion tasks”. There are other drawbacks as well: Firstly, this concept is
geared towards trajectories only. Localization and classification tasks are virtually impossi-
ble. Secondly, while [86] claims, that the concept “serves as a simple interface between the
manipulator and the programmer”, this is only true for developers with reasonable expe-
rience in robot programming. It takes some serious practise to define correct and sensible
task frames for tasks outside the demonstrational domain. Kroeger mentions, that “for
non-advanced program developers it is highly demanding to utilize all available functions
in an optimal way.” [76].
Using a contact state based approach, a force/torque sensor is used to connect parts. No
explicit movement commands are given, but only the contact states of the parts invol-
ved. The robot program is then described as a contact state transition graph. Recognizing
the different states and computing the next movement is performed by the robot during
execution. This approach is mainly used when assembling elastic materials such as wires.
The advantage is that the developer does not need to think about the trajectory of the
robot but only has to specify the contact state changes. But for complex assemblies these
states can only be computed using automated approaches, which again requires a detai-
led simulated model of the workspace and the physical properties of all parts involved.
Virtual programming systems have been used to extract these states [69] (see Figure 2.5).
The main problem with this approach is the difficult sensory supervision of contact state

18

Figure 2.4: Specification of a force controlled trajectory using the task frame formalism. Image
courtesy of [28]

Figure 2.5: Virtual programming. Image courtesy of [69]

changes [57], [127], [128]. It is also possible to use other sensors such as cameras [14].
To alleviate programming a variety of approaches were developed focussing on SMEs. But
these solutions are once more geared towards specific tasks and are often based on physical
modifications of tools and workspaces [9], [25], [81], [98], [122]. These approaches can not
be transferred to a universal approach to robot programming.

2.4 Adaptive Robot Programming

Adaptive robots differ from flexible robots in that they can also store information for re-use
in subsequent executions. While in theory external sensors are not necessary for this task1,
their use is common. All adaptive robot programs are flexible as well, so the distinction to
flexible robot programming is made solely by the fact if knowledge is re-used or not.

1One could simply measure the execution time of the task and use genetic algorithms to optimize the
trajectories.

19

2.4.1 Direct Approaches

Usually a developer must demonstrate the same task repeatedly if programming by de-
monstration approaches are used. One could argue that this is some kind of adaption.
Nevertheless we have chosen to classify this approach as flexible but not adaptive pro-
gramming. The reason for this is that the robot does not infer information on its own but
the resulting program is generated using an existing set of demonstrations.
There are approaches to teach a robot skill libraries [44], [94], but these are aimed at crea-
ting a library of skills for a later use by a developer.
Another approach is made by Dixon [45]. A decrease in programming time is accom-
plished by predicting waypoints in future robot programs and automatically moving the
end-effector to the predicted position. Positions from executions of other tasks are stored
in a database to achieve this. When the developer teaches the robot a new task, a compa-
rison is made to extract similar positions from the database. It is then inferred if the robot
can perform a predictive motion to reduce teaching time. But again, no adaptation can be
carried out during the actual task execution.

2.4.2 Explicit Approaches

As was the case with flexible robot programming, in principle all manufacturers’ languages
allow for the manual programming of adaptive traits. But this requires expert knowledge
not only in robot programming and sensor data processing but usually also reasonable
experience in machine learning.
The works of Dauster [36] and Bicker [19] deal with adaptive controlled movements along
surfaces. Dauster uses a classical proportional/integrated/derivative (PID) controller, whe-
reas Bicker uses a fuzzy-rule control scheme. In both works controlled movements are eva-
luated in terms of speed and average error and the parameters are optimized with regard to
the next execution. While these solutions can be encapsulated into single commands, they
are of no use for manipulation task where the focus is on positions instead of trajectories.
Simon [111] has proposed a strategy where the robot program incorporates control primi-
tives with adjustable parameters and an associated cost function. A search algorithm uses
experimentally measured performance data to adjust the parameters to seek optimal per-
formance and track system variation. Unfortunately, this research has not been continued.
In principle, there are works to find an optimal solution for a parametrized task. For a
long time this was done offline [85], [90], but with increasing computational performance
nowadays this can be performed online as well [107], [120]. While this allows to adapt a
given task to its surroundings, it is not universally applicable. Once more, there is the pro-
blem that a complex series of motions and calculations is encapsulated into a single skill.
Another disadvantage is that the optimization algorithms themselves are not universal but
tuned to a specific task.
Thrun has developed a programming language extension of C++, called CES [118], speci-
fically targeted towards mobile robot control, with the goal of facilitating the development
of such probabilistic software in future robot applications. CES extends C++ by imple-

20

menting two ideas: Firstly, computing with probability distributions, and secondly, has
built-in mechanisms for learning from examples as a new means of programming. The aut-
hor claims that CES “may reduce the code development by two orders of magnitude”. For
our work this is not usable as the focus of his work is on mobile robots. Furthermore his
extension is not aimed at non-experts.

2.4.3 Implicit Approaches

The development of adaptive implicit robot programming systems is linked very tightly
to programming by demonstration approaches. A skill is developed not only to present a
flexible solution to a given general task description, but also to be able to optimize itself
across multiple executions [94]. Whereas the skill shall be as general as possible, e.g. “insert
a peg into a hole”, the subsequent adaptation step is geared towards narrowing this general
solution to the very specific instance given in the task description. Reinforcement learning
strategies and artificial neural networks have been successfully used to achieve this [55],
[83]. But again, these solutions just show general feasibility but cannot be transferred to
other systems or tasks by non-experts.

2.5 Conclusions

Following the argumentation of Chapter 1.2, we can see that static robot programming is
not an option in order to introduce industrial robots to SMEs. For this customer group
robots must at least be able to react flexibly to their surroundings. Adaptive traits are
even more preferable in order to automatically reduce execution time.
In the domain of flexible programming a large part of the existing work is dedicated to
proofs of feasibility for concrete tasks with explicit solutions and specific sensors. There
are only a couple of universal approaches abstracting from a given type of sensor. But even
those are geared towards experienced programmers, who have gained a precise understan-
ding of the problems of a given task.
Even though there are projects for a more intuitive kind of programming, these are either
limited to certain task areas (skills) or impose high requirements on the developer’s experi-
ence. Both factors are hindering to a general concept for robot programming for non-expert
developers.
Summarizing the works discussed in the previous sections, we can say that there are various
approaches to allow non-experts to develop robot programs, but most of them focus on
static robot programs. If the robot shall be capable of integrating sensor signals during task
execution, there are only a couple of projects that have a broader focus than mere feasibility
studies. These concepts focus on either intuitive or fast robot programming, but not both.
Furthermore, none of these concepts can be transferred to the other criteria respectively.
Either the intuitively generated programs are very difficult to optimize or programming
is very complex (e.g. caused by a large amount of parameters), so that execution time is
satisfactory but the development is practically impossible for non-experts.

21

Based on this analysis we come to the following conclusion: The only way to get to a
system, that can be used universally to program manipulation tasks, is to use an explicit
programming language. While this may look like a step backwards compared to implicit
programming, we argue that the basic commands to move a robot and grasp/release objects
are fundamental knowledge to everybody who is given the task of programming a robot.
So we require a basic knowledge of robot movement commands from the target group of
this work. In the scope of this work we will investigate how much knowledge in sensor data
processing will be necessary.

22

Chapter 3

Retrieving Information from Sensor
Signals

External sensors are indispensable for robots to react flexibly and adaptively. In order to
find an approach to sensor integration that is neither fitted to a specific task nor a sensor,
we must analyze what kind of information may be provided by the sensor at all. This must
be performed on an abstract level to maintain universality.
In this chapter we analyze types of information that may be contained in a sensor signal
and describe a systematic approach to recognize changes in the workspace using external
sensors, regardless of the type of sensor. We motivate the need for a universal classification
of information provided by external sensors in Section 3.1 using an example task and
analyze handling tasks on an abstract level. In Section 3.2, we give an overview of existing
approaches and delimitations to our approach. In Section 3.3, we show that all sensor
information can be classified into two groups: conditions and Cartesian values. In Sections
3.4 and 3.5 we analyze approaches to create functions to extract relevant information from
the sensor signal easily. In both sections, we show that these functions possess universal
characteristics. These can be used to generalize their practicability for later utilization into
the programming concept that will be derived in Chapter 4. In subsections, we describe
how these functions may be learned and optimized iteratively during execution of the task.
We will evaluate the proposed concept in Section 3.6 and summarize this chapter in Section
3.7. The results of Sections 3.5 and 3.6 are published in [40] and [42].

3.1 Motivation

To motivate the problem of sensor based robot programming, we look at an example task
taken from the industrial domain and illustrate the problems that require external sensors.

23

Figure 3.1: Left: Overview of the example task described in Section 3.1.1. Middle: The robot
shall grasp the objects from the conveyor belt. Right: The object shall be inserted into the
corresponding slot.

3.1.1 Example Task

Consider the following task: A robot shall insert four differently shaped discs into corre-
sponding slots of an object as illustrated in Figure 3.1. The disks are delivered to the robot
on a conveyor belt that stops when the disk passes a light barrier so that it can be picked
up by the robot. The robot shall insert the disk into the corresponding slot. The world
coordinate system is chosen so that the conveyor belt and the insertion area are lying in
the x-/y-plane with the z-axis facing up.
Assuming that the discs are delivered to the robot in a predetermined order and that all
positions are fixed and precise, a robot program to insert a specific type of disk is relatively
simple and will look like this:

Pseudocode 1 (Example task)
1 PROGRAM insert_specific_disk()

2 {

3 MOVE p_belt;

4 GRASP;

5 MOVE TRANS(0,0,100):p_insert;

6 MOVE p_insert;

7 RELEASE;

8 }

There are two positions in this program: The position p_belt describes the position of the
disk on the conveyor belt once it has stopped. The p_insert describes the position of the
corresponding slot in the object. Firstly the robot moves to the conveyor belt and grasps
the disk (lines 3 and 4). Then the robot moves 100 mm over the object (line 5) and inserts
the disk (lines 6 and 7). The programs to insert the other shapes are similar with the same
position p_belt and different positions p_insert for each shape.

24

As outlined in Chapter 1.4, the focus of this work is not to determine new ways to intui-
tively create the program but to enable the robot to act more flexibly. Because of this, here
we assume that this program has already been created by the developer. As this program
is very simple and neither contains conditional jumps nor repetitions, it can be regarded
as a simple sequence of commands, which is relatively easy to program. For more complex
programs intuitive ways of creating these must be found as well. This is not the focus of
this work. For more information on creating static robot programs see Chapter 2.
The position p_insert is different for each disk. A developer could create four different
programs for each type of disk. In theory, the complete program could be strung together
by these four programs assuming the order of the discs’ arrival on the belt is fixed. Unfor-
tunately, there are some impacts caused by external factors in the workspace:

1. The disks are delivered to the robot at a random order. But no shape is delivered
twice before all other three shapes have been delivered, so the robot is always capable
to fill the whole object before the next object will be processed.

2. The orientation of each disk is not constant. Each disk may be rotated arbitrarily
around its z-axis by any degree.

3. Due to deterioration in the feeding mechanism, the pickup position drifts slightly
along the negative x-axis of the conveyor belt. So every time a disk is delivered, its
position will move slightly compared to the previous disk. This deviation is minimal
and will only be measurable after a significant number of executions.

4. The general orientation of the tray where the disks shall be inserted is constant in
each execution. So we know the round disk must always be inserted at the top right
corner of the tray and so on. But the tray’s position on the workbench is not fixed.
Therefore the exact location of each slot is unknown.

5. Because the allowance of each disk and the corresponding slot is very low, the inser-
tion procedure in lines 3 and 4 will only succeed if the robot grasps the disk at its
exact center and the rotation of the disk is aligned to that of its slot. Otherwise the
insertion will fail due to a jamming of the disk.

The problems described in this task comprise some of the most typical applications for
sensor based robots and their problems:

• The task of pick-and-place with the problem of object localization

• The task of selection with the problem of object classification

• The task of peg-in-hole with the problem of sensor-based and controlled movements

As outlined in Section 1.1 these problems shall be overcome by installing external sensors
in the workspace instead of creating fixtures and feeding / damping devices. For the task
presented here, three different kinds of sensors shall be employed:

25

• A distance sensor (see Figure 1.2, third from left) placed at the side of the conveyor
belt to monitor the disk’s position on the belt.

• A camera (see Figure 1.2, first from left) supervising the pickup position p_belt to
classify the disks by their shape.

• A force-/torque-sensor mounted to the wrist of the robot (see Figure 1.2, second from
left) to locate the general position of the corresponding slot and then insert the disk.

In summary, we can say that the task presented here is representative for the area of
handling in industrial contexts. Creating a feasible solution for this task is not trivial
especially for the target group of this work: Developers with only limited expertise in robot
programming. So there is a substantial need for the development of a way to incorporate
external sensors into a given robot program that can be accomplished by non-experts.

3.1.2 Information Contained in Sensor Signals

To successfully deal with the problems mentioned here, we need external sensors to identify
changes in the workspace so we can compute a reaction to it. The first task is to find a
function that transforms sensor values into a universal description of the change. While
this is a straightforward process for ’easy’ sensors, e.g. distance sensors, it proves to be
a lot more difficult for complex sensors, like those dealing with images from cameras.
Additionally, the sensor values are nearly always corrupted by some kind of noise.
In order to use sensor signals to modify the robot’s behaviour during execution, the relevant
information must be extracted from the signal. The problem is that this is dependent on
three factors:

• The type of sensor used: Imaging sensors such as cameras provide us with a diffe-
rent signal than simple distance sensors in terms of dimension, meaning, and others
aspects.

• The type of task: Force/torque sensors can be employed for insertion tasks but are
practically useless for object supervision because the sensor has to be in touch with
the object.

• The placement of the sensor in the workspace: A camera that is used to locate objects
will provide us with different views of the object depending on the viewpoint of the
camera. Because of this the detection algorithms must be parametrized with respect
to their position in realtion to the supervised object.

The classical approach is to analytically determine a function describing this transforma-
tion. But, for complex sensors this task turns difficult very fast and sometimes finding an
analytical solution is simply not possible if the underlying physical principles are unknown
to the programmer.
We can see that it is up to the developer of the robot program to create these functions

26

because no general approach can be given. The developer must describe how this informa-
tion is to be extracted from the sensor signal. But knowledge in sensor data processing is
required to achieve this. As a logical consequence we must find ways to enable a developer
with no special knowledge in this area to create these functions.
In order to take a general approach on the creation of adaptive robot programs, we must
find a universal description for all possible workspace changes in industrial handling tasks.
Otherwise each robot program will be designed customly for a specific task. Even if uni-
versal algorithms for flexibility and adaptivity can be employed, these must be specifically
programmed by the developer in order to use the information contained in the sensor si-
gnals.
If there is a universal description for all possible alterations, we can use the following ap-
proach: In a first step, the sensor signal is transformed into this description. In the second
step, the robot program works only with this description, allowing the developer to employ
universal algorithms for flexibility and adaptivity.
Note that we neither deal with the task of selecting a suitable sensor and installing it in the
workspace nor with the problem of accessing the sensor signal within the robot program.
The first problem depends too much on the task while the second is a problem from the
domain of electric engineering, where device interfaces must be specified, etc.
In summary, the purpose of this chapter is to find answers to the following questions:

• What types of workspace alterations can be observed by an external sensor?

• Is there a universal approach to classify all sensor signals according to the information
contained in them?

• How can sensor information be used in a robot program regardless of the type of
sensor and without limiting the approach to certain tasks?

• What knowledge in sensor data processing is required by the developer to transform
a given sensor signal into the universal description?

3.2 Related Work

The task of inferring information from noisy sensor data is covered thoroughly by various
books on pattern classification, e.g. [23], [47]. But all of these describe methods how to
extract the relevant information from the sensor values, assuming that this information
is somehow present in the data. Multiple papers deal with the task of planning sensing
strategies for robots, e.g. [79], [102]. Most of these assume a specific task [15], [56] or are
aimed at employing multi-sensor strategies [29], [46]. Various papers deal with the task of
setting up the sensors in the work cell to allow information retrieval [63]. Kriesten proposes
a general platform for sensor data processing, with the drawback of assuming that the sen-
sors are already capable of detecting changes [12]. Papers covering the topic of employing
sensors for robot tasks from a general point of view are [50] and [97]. There is one paper

27

dealing specifically with drift in the servo motors of robot joints [67], but again, this work
is geared towards a specific type of sensor.
Two types of sensors are typically used for manipulation tasks: Force-/torque sensors and
cameras. When force-/torque sensors are employed, maps are created describing the mea-
sured forces with respect to the offset to the goal position. Chhatpar describes possibilities
to either analytically compute or create these maps from samples [33]. Based on this, Tho-
mas shows how these maps can be computed using CAD data of the parts involved in the
task [117]. In both cases, the maps must be created before the actual execution of the task
and they are only valid if the parts involved are not subject to dimensional variations.
When the information is acquired by use of cameras, the first step is to perform some kind
of pre-processing of the data to extract the relevant information. To determine in which
way this information relates to a positional variation is once more task of the programmer
and highly dependent on the type of the task. Examples are given in [48], [93] and [125]
In summary, all of the papers mentioned above either propose specific solutions for given
types of sensors, tasks or algorithms to extract the relevant information from the sensor da-
ta. Neither is there a universal approach for sensor integration nor are any of the solutions
presented aimed at non-experts.

3.3 Classification of Information Contained in Sensor

Signals

In order to maintain a universal approach to create flexible and adaptive robots, we classi-
fy handling tasks and provide two measures to group the sensor information into distinct
groups. This classification will be used later to create a well-defined interface for the de-
veloper. In order to make this process easier for non-experts, we outline how both types of
properties fit into a universal description. This will be used later on in the programming
concept to create a general approach to flexible and adaptive robot programming.

3.3.1 Definition of Handling Tasks

In a first step, we take a closer look at handling tasks. At this juncture we advert to the
German norm VDI2860 [64], that defines such tasks for industrial contexts. The norm
VDI2860 is pseudo-normative, but is sufficiently adhered to by European manufacturers,
so it will do for our purposes.
The norm defines the term handling as a sub-task of the group effect material flow. Other
sub-tasks are shelving and transporting. The difference to shelving and conveying is that
handling also incorporates rotatory degrees of freedom. The norm defines the term handling
as follows:

Definition 1 (Handling) Handling is the creation, defined modification or temporary
maintenance of a specified spatial layout of geometrically defined objects in a reference

28

Figure 3.2: Overview of the
operations defined in the
VDI norm 2860 for hand-
ling in industrial contexts.
The norm is a specialisati-
on of the general operati-
on manipulate object flow
which consists of two mo-
re specialisations: Trans-
port and shelve that are
both defined in VDI norm
2411.

coordinate system. Additional conditions - such as time, amount and trajectory - may be
given.

Handling is further divided into five subgroups. Elementary functions are defined for each
of these groups. These functions constitute atomic operations that cannot be split into
further functions:

1. Store: Objects are placed in containers or other storage devices for later retrieval.
This group contains no elementary operations.

2. Manipulate quantity : Sets of objects can be manipulated by dividing and combining
sets. The elementary operations are dividing and combining sets.

3. Move: Objects are manipulated with respect to their spatial arrangement. The ele-
mentary operations are rotating and adjusting objects.

4. Secure: Objects are secured to maintain spatial features. The elementary operations
are holding and releasing objects.

5. Control : Objects are checked to establish features. There is only one elementary
operation, checking.

When we take a closer look at these groups, we can see that only three groups are of
importance for this work: Moving, securing and controlling.
In moving and securing, the robot must be able to compensate imprecisions. Here, a geo-
metric displacement must be compensated. This displacement can either occur in an object
held by the robot or in the workspace, when the robot (or a held object) interacts with it.
In controlling, the robot must inspect objects to check if certain properties hold or not. In

29

this work supervising is used in the sense that the robot employs sensors to check if an
object satisfies a given property or not. These properties modify the further execution of
the task at hand. At this point it is necessary to distinguish between signals and properties:

• A signal is a Boolean value accessible in the robot system that can be evaluated
by given commands in the robot programming language. For example a light barrier
emits a signal if an object passes. The signal is connected to the robot system and can
be accessed anytime during execution to create branches in the robot program. Signals
are a standard in modern robot systems and all robots by major manufacturers are
equipped with signal handling capabilities. Signals are of importance when the robot
program is created, because they are used to lay out the general behaviour of the
robot. An example for a signal is the stopping of the conveyor belt by a light barrier
in the example task described in Section 3.1.1. When the conveyor belt stops a signal
is sent to the robot. The robot will wait for this signal before it continues grasping
the object.

• A property on the other hand describes a characteristic of a part of the robot’s
workspace that is measured using an external sensor. It does not influence the general
program flow of the robot in the sense that different actions are to be taken if a
property holds or not. An example for a property is the classification of objects with
a camera in the example task in Section 3.1.1. The robot will only alter the insertion
position according to the shape, but will not conduct different actions depending on
the disc’s shape.

The subgroups store and manipulate quantity are of no importance for this work. This is
because either there are no elementary functions (storing) or they are only of interest for
the general program structure (manipulate quantity).
This leads to the following result: Alterations in the robot’s workspace modify the robot’s
behaviour in the sense that movement, securing and controlling functions must be able to
be modified by external sensors to ensure correct and safe execution.

3.3.2 Elementary Information Contained in Sensor Signals

At this point we are aware that there are only three general operations in handling tasks
that depend on external sensors to ensure flexibility. The question is what kind of infor-
mation can be contained in a sensor signal. Not all sensors are usable for every operation.
In addition, different sensors provide us with different types of data. Unless we are capable
to find a universal way to describe the information inherent in any given sensor signal, all
robot programs must be tailored to the specific sensor used for the task.
We now analyze what general type of information from external sensors is required for
flexible and adaptive robot programs. The question is why we should use external sensors
in a robot program? For this work, we assume that we can classify the answers into two
categories:

30

• To measure a geometric property of an object: The sensor is used to determine how
an object has moved or altered from one execution to the next. This can be the
location of an object (in relation to a specific position), its rotation or a change in its
shape (when flexible or organic materials are handled). All of these can be expressed
in (sets of) six-dimensional Cartesian coordinates for position, size, and orientation.
This information is used for the elementary functions in the groups of moving and
securing.

• To form a decision: The sensor is used to determine if an object satisfies a (series
of) condition(s). Classifications fall into this group, since they can be expressed as a
series of if-then statements. Another issue is to decide if a search motion has reached
its goal. All of these can be expressed as Boolean values: A property either holds or
not. This information is mainly used for the elementary functions in the group of
supervising, but may be used for moving as well. A specific example will be given in
Section 7.5.

In the context of industrial handling tasks, these categories are complete. This means that
there is no other type of information that can be contained in a sensor signal that does not
fall into these categories. The only information we are interested in are geometric properties
of objects to modify positions or general properties of objects to select a corresponding
action. If some kind of property p can not be described in a Cartesian coordinate system,
it must be a property that does not influence any position in the task. This is because the
object will not have changed in a geometric sense, so no position (e.g. for insertion) needs
to be modified. If p is a non-geometric property of an object o, this can be described using
a Boolean equation: Does o satisfy p? Because of this, all information contained in a sensor
signal is either a geometric property or describes the condition of an object.
Geometric properties are the main reason to use sensors. We want to modify a position using
the sensor signal to compensate a workspace alteration. For instance the disk’s location on
the conveyor belt in the task described in Section 3.1.1 can be described as a geometric
property.
Conditional properties are of interest as well. For instance, choosing the general insertion
position based on the disk’s shape is realized by using a shape property. Another example
of this is to determine if insertion of the disk into the corresponding slot was successful.
Note that this hypothesis only deals with external sensors. Internal sensors monitoring
the robot’s state are explicitly not included here. All workspace alterations in industrial
handling tasks can be classified with this hypothesis.

3.3.3 Point in Time to Extract Sensor Information

Another way to classify sensor information is to group them by the point in time during task
execution when information can be accessed. We classify the answers into three categories:

• A sensor is used preparatoryly, if the sensor signal can be accessed and evaluated
before the robot performs a movement based on that information. Typical examples

31

are imaging sensors that monitor objects. The image is used to determine the object’s
position and a robot moves to this position. Furthermore, there is no need for the
robot to perform a movement before the sensor signal can be processed.

• A sensor is used concurrently, if the robot must perform a movement that alters the
sensor signal. The robot waits to evaluate the altered signal before executing the next
movement. Typical examples are force-controlled trajectories along surfaces or force
controlled insertion. In both cases, the robot moves along a trajectory or a search
path in relation to the current sensor signal. The signal must be evaluated constantly
to determine the next part of the motion.

• A sensor is used subsequently if the information is available after the robot has per-
formed the whole task. This is mainly used for inspection to ensure correctness of
the result and to discard faulty parts.

In industrial handling tasks, only preparatory and concurrent sensors are of importance
to allow for flexibility and adaptivity. Subsequent sensors cannot influence the robot’s
behaviour since the information can only be evaluated after the robot has performed the
task. Preparatory sensors are mainly used for supervision, while concurrent sensors are
used for search motions and insertion procedures. We therefore will only analyze the first
two types in more detail.

3.3.4 Classifying Sensors for Handling

In a next step, we analyze if for every combination of these two properties there is an
industrial application where such a sensor is required:

• Preparatory sensors are employed to determine geometric properties e.g. when came-
ras or distance sensors are installed in the workspace to detect an object’s position.
Because they are not mounted to the robot their signal can be evaluated anytime
providing us with a geometric description of the object’s location. This description
can be used straight away to move to the correct location, provided that the robot
does not block the sensors view of the object.

• Concurrent sensors are employed to determine geometric properties e.g. when for-
ce/torque sensors are used for complex insertion procedures. In this case, the robot
performs a part of the insertion motion, then stops to compute the next position in
the insertion trajectory based on the sensor signal.

• Preparatory sensors are employed to determine conditional properties e.g. when ca-
meras are used to classify objects by their shape or some other property. This can be
done without the need for a special robot motion.

• Concurrent sensors are employed to determine conditional properties every time a
search is executed. The conditional property in this case is the Boolean decision if the

32

Availability of Sensor
Signal

Type of Object Property
Geometric Conditional

Preparatory Supervision Classification
Concurrent Guided search Search termination

Table 3.1: Use of external sensors in industrial handling tasks.

search has terminated. Unless this condition evaluates to ’true’, the search continues.
E.g. this is done using a force/torque sensor for intelligent insertion procedures.

We can fill the matrix illustrated in Figure 3.1 with example applications for every combi-
nation. As there are example applications for every possible combination, we must provide
(abstract) algorithms to deal with each combination.
In summary, we can say that in industrial applications sensors are either used to determine
geometric properties to modify existing positions or to form a decision based on conditio-
nal properties. It does not matter if the sensor is used preparatoryly or concurrently. Both
cases can occur in industrial handling tasks.
In order to program a robot to react flexibly to its environment, the developer must crea-
te these functions to extract the information from the sensor data. We call this type of
function sensor transformation. The input is a sensor signal and the result is a universal
description of the workspace change encountered.
The task of creating these functions can only be alleviated to a certain amount as they are
highly dependent on the workspace and the type of sensor used. Nowadays, most manufac-
turers of industrial sensors provide libraries for this, e.g. imaging software by Halcon [4].
But at a minimum, the developer must parametrize and test these functions. In the worst
case, the developer must create the whole function from scratch.
The advantage in the use of sensor transformations is that an additional layer of abstraction
is introduced. The program can be designed independently from the actual sensor because
all workspace changes are described in abstract terms. Now we may replace the sensor with
a different type and - as long as the sensor transformation is correct - no alterations have
to be made to the program.
In the next two sections, we describe how functions can be created calculating conditional
and geometric properties with only basic knowledge by the developer.

3.4 Conditional Properties

Up to now, we have not analyzed how a developer can design algorithms to extract infor-
mation from a given sensor signal. In this section, we focus on the definiton of conditional
properties. In the example task from Section 3.1.1 conditional properties are used to de-
termine the shape of the object and to check if the insertion procedure can terminate or
must continue.

33

As outlined in Section 3.3 a conditional property evaluates the sensor data to check if a
certain property holds. One of the most common uses for conditional properties is to de-
termine if sensor guided motions shall be continued or must be stopped, e.g. in controlled
movements along surfaces or search motions. Note that in case of a controlled movement
the next position of the trajectory is altered by the same sensor as well. But this calculation
represents a geometric property and not a condition. This leads to the following definition:

Definition 2 (Conditional property) A conditional property measures some aspect of
an object in terms of a Boolean decision. The property evaluates to true, if the object
satisfies that measure. Otherwise the property evaluates to false.

Regardless of the type of application and sensor all conditional properties take some kind
of sensor data as an input and return a single boolean value as output. A conditional
property is described as a function

fc : Sn 7→ {0, 1} (3.1)

where S is the range of values and n is the dimension of the sensor. Typically S = R but
other values are possible as well, e.g. RGB values for image data, where S = {0...255}3 for
one pixel in the image.
More complex decisions can be constructed by nesting a series of conditional properties.
For example, the exact shape of an object can be assigned to an abstract object type oi
with i = {0...k} where k ∈ N is the number of different shapes. To achieve this, we use
k different conditions f_k, each of them only checking if the current object is of type k.
Then the classification algorithm is a series of nested decisions:

Pseudocode 2 (Creating complex decisions with conditional properties)
1 int classifyObject(S sensorData)

2 {

3 if(f_0(sensorData)) // evaluate condition 0

4 return 0;

5 else if (f_1(sensorData)) // evaluate condition 1

6 return 1;

7 ...

8 else if (f_k(sensorData)) // evaluate condition k

9 return k;

10

11 return -1; // no object detected

12 }

3.4.1 Creating Conditional Property Functions

In many cases there is some kind of software provided by the manufacturer of the sensor
to transform the raw sensor signal into a meaningful description. In case of low-level sen-
sors, e.g. distance sensors providing us with only a one-dimensional value, the creation of

34

a conditional sensor transformation usually is straightforward and not a complex task at
all. Here, the developer must only set some threshold values describing for that range of
values a property holds or not.
There is a large number of commercial and open source software especially for the domain
of imaging sensors. Examples are the software provided by Halcon [4] and the open source
library Camelia [3]. With these packages, developers can specify conditional sensor trans-
formations easily and without the need for detailed knowledge in sensor data processing.
If the function is complex or the general type of the function is unknown, neural networks
may be used to learn the function automatically. In this case the developer must only pro-
vide a set of examples and classify them. This set is used to train the neural network. The
advantage of this approach is that no detailed knowledge is required by the developer. The
downside is that a large set involving a high amount of different cases is required to train
the network correctly. Another drawback is that it is impossible to analyze the function
and compare it to theoretical values or other approaches.
Another approach is to record the signals of all sensors during execution of test cases.
These records can later be analyzed automatically for bends and leaps that allow to set up
conditional sensor transformations accordingly. Automated methods for the analysis and
detection are described in [104].

3.4.2 Adaptive Estimation of Conditional Properties

When conditional properties shall be learned iteratively during multiple executions of the
robot’s task, we start with a basic sketch of the condition and let the robot update and
refine this function based on the experiences of each execution. This task becomes complex
rapidly and generally is out of the scope for non-experts in learning and artificial intelli-
gence. Because of this it is difficult to integrate adaptive features for online acquisition of
conditional properties into a robot system that shall be programmable by non-experts.
In this section we only give a rough outline to which extent we believe an adaptive acqui-
sition may be possible without the need for expert knowledge. In general, the learning of
a function describing a conditional property must be performed supervised. Unsupervised
or reinforcement learning requires an evaluation of the solution to rate the current state
of the function. In case of robot tasks, this evaluation must be achieved by using external
sensors. Either the same that were used to evaluate the function or another set of sensors.
This would require the developer to construct even more complex high-level functions for
evaluation. Because of this, the only feasible option is to let the developer supervise the
robot during training. The developer corrects the robot manually if the function produces
a wrong result. All sensor values and the corresponding correct result will be stored in
a database. This database is used after every execution to generate a new version of the
function describing the conditional property. We believe that the best approach to achieve
this is to use neural networks or their equivalent. While this approach has the downside
that the developer cannot analyze the function ’by hand’ because it remains hidden in
the network, the advantage is that the developer also is not required to specify any other
details than the size and general structure of the neural network. There are several works

35

on the design and implementation of neural networks for non-experts, e.g. [16], [92], [58],
[124].

3.4.3 Summary

In summary, the term conditional property covers a very wide area of sensor information.
All conditional properties transform the sensor data into a Boolean value determining if
the property holds or not. These kind of properties are more important when laying out
the general program structure or when planning capabilities are required from the robot.
Because of the heterogeneity in the range of handling tasks we were only able to give
outlines to develop functions describing these properties, but we have argued that this
kind of property is only of minor importance for the A-Bot project. We have outlined
multiple approaches to enable a developer to create such functions and illustrated why the
adaptive learning of such functions is only possible in a supervised way.

3.5 Geometric Properties

Unlike conditional properties, geometric properties describe an alteration of the robot
workspace in geometric terms. They constitute the main reason for the employment of
sensors in flexible robot programs. In this section, we will define the term geometric change
and show how this change can be modeled using analytical terms. Based on this, we show
which premises must be fulfilled in order to successfully recognize an occurring change
during a manipulation task. We describe methods how a compensation function can be
determined that computes a position deviation for a given sensor signal. The definitions
made here are on an abstract level. We will apply them to the domain of handling tasks
later in this work. A geometric change is defined as follows:

Definition 3 (Geometric change) A geometric change is a spontaneous deviation of a
position in Cartesian space between the estimated and the actual position of an object in
the workspace between two consecutive executions of the same task.

This means that we approach the position po of an object we believe to be correct du-
ring each execution t of a task and measure its deviation ∆po compared to the previous
execution:

∆po = po(t)− po(t− 1) (3.2)

This definition refers to the positional deviation of the object in Cartesian space. But we
will need a sensor to recognize this deviation. This sensor must not be the same that is used
to approach po, otherwise we are unable to recognize the change. This can be explained by
two examples: In the first example, the position is determined using the internal sensors
of the robot. If the object has moved, we cannot recognize this change solely with the
internal sensors. Instead we have to employ a second, external sensor to measure if a
deviation has occurred. In the second example, we use a force/torque sensor to describe a

36

force-dependent position. In this case, we can employ the internal sensors of the robot to
check if this position has moved.
We need to work with a pair of default values describing the original position and its
corresponding sensor value. Otherwise we can not determine if a change has occurred at
all. At a later point when this kind of property shall be learned during task execution,
we will also need to work with a default position. In reality this default position may be
virtual, e.g. set in the origin of the sensor. Then all sensor values will be transformed into
a Cartesian description how far the object is apart from the sensor’s origin.
We see that the position po of an object in Cartesian space is mapped to a (vector of)
sensor value(s), s, in the measurement space of the sensor, so we have a function

fchange : R6 7→ Sn (3.3)

where S is the range of values and n is the dimension of the sensor. This function describes
the resulting sensor signal if a change in the workspace occurs:

fchange(po) = s (3.4)

To successfully adapt to the change, we must be able to infer the position deviation from
the sensor values, that is build the inverse function of fchange

f−1change : Sn 7→ R6 (3.5)

with
∃f−1change : f−1change(fchange(po)) = po (3.6)

Based on this requirement, we can directly postulate that a physical change must modify
the sensor signal. Otherwise we would not be able to recognize a change, that is

∃c ∀po ∈ Rn : fchange(po) = c (3.7)

We can easily see that no inverse exists for this function. There is always an inverse for all
bijective functions. In addition, if fchange is continuous, fchange is strictly monotonic as well.
If necessary the surjection can be guaranteed by a deliberate constraint of the measurement
range of the sensor. The function f−1change is the sensor transformation we are looking for.
We can insert the sensor signal into this function and will get the current alteration to the
default position in Cartesian coordinates as a result.
Another requirement is that the dimension of the sensor must be at least as high as the
degrees of freedom (DOF) of the change. Otherwise there can be no inverse for fchange.
If we are only taking the physical effect into account that maps a position to a set of
sensor values, there is no universal solution for fchange. Instead the sensor values for a given
position are highly dependent on the object’s position in the workspace and the type of
object that is to be manipulated. It should be noted though, that there are similarities of
the sensor transformation to the Jacobi matrix [91].
Another thing that must be kept in mind is the signal-to-noise ratio (SNR) of the sensor
for the given object. We can only recognize a change if the alteration of the sensor values
for a given deviation is significantly higher than the noise generated by the sensor.

37

3.5.1 Determination of a Geometric Sensor Transformation

To be able to adapt to a geometric change, we must specify a function

fg : Sn 7→ R6 (3.8)

with
fg(s) = f−1change(fchange(po)) (3.9)

so that we can compute an estimated relative change for a given sensor value.

Analytical Computation of fg

The straightforward way to determine fg is to work out an analytical solution. But some-
times this task proves to be too complex: While the type of function may be known, it can
be extremely difficult to determine a set of parameters, that fit the function well enough to
the problem at hand. An example is shown in Figure 3.4 on the right. The image shows the
data sheet for a distance sensor. A developer faced with the task of creating a function that
takes the current sensor value as an input and returns the distance to the supervised object
in millimeters must determine which type function approximates the illustrated curve and
fit the function parameters accordingly.

Analytical Approximation of fg

If we cannot calculate the parameters of fg analytically, but at least have some idea about
the type of the function, we create a training set T containing pairs of the physical change
and the sensor value. To build T , we systematically create artificial changes and measure
the sensor values for each change. Using this training set, we can approximate fg, so that it
will be close enough to f−1change to ensure a valid guess for an existing change. The accuracy
of fg is then determined by the size of T and the accuracy of each sample in T . The
minimum size of the training set is determined by the complexity of fchange and is equal to
the number of parameters in the change function, although the size should be significantly
higher to counterbalance noise in the sensor data.
Once we have created a training set, we can use it to approximate fg, provided that fchange
fulfills the requirements mentioned above. To achieve this, we use analytical (iterative)
methods to fit a given function to the data that minimizes, e.g. the mean error of all pairs
in T . Various algorithms for curve fitting exist, the most popular are the Householder
algorithm [60],[87] and the Levenberg-Marquardt algorithm [80], [84]. The problem with
these and other approaches is that we must have some kind of idea about the general type
of fg, that is what sensor values are influenced by which DOF of the change.

Estimation of fg for Unknown Function Types

The problem gets even more complex when the type of function itself is unknown. Here,
we will need the same training set as for an analytical approximation. Then we can employ

38

series expansion, neural nets or equivalent methods to obtain a solution for T . In this case,
we estimate the type of function that fits the training set best. For example, we can use
multilayer perceptron (MLP) networks [22],[101] to implicitly learn fg. While all of these
approaches save us the task of analytically determining the general outline of fg, the price
we have to pay for this is that the size of T increases drastically, because we will need a
lot more samples to train the MLP adequately.

3.5.2 Adaptive Estimation of Change Functions

One problem with the three approaches presented so far, is that solutions are fixed and
prevent the robot from adapting to changes in the environment. For example, the robot
must be stopped and re-calibrated if a drift in the workspace or the sensor system occurs.
With our our newly introduced model we show how calibration data for fg can be computed
iteratively during the first executions of the task. These methods can be integrated easily
into the programming environment, only requiring the developer to specify a minimum
of task-dependent parameters. Additionally, we show how the robot adaptively optimizes
the task with respect to execution time based on a steadily improving approximation of
the function. We focus on sensors emitting one-dimensional signals, such as distance or
force/torque sensors. We do not deal with imaging sensors as this class of sensors usually
requires an upstream pattern matching algorithm to distinguish the relevant information
from the background data.
Approaches for approximation or estimation of fg require a training set T . So far, we have
assumed that we create T offline before the actual execution. Another option is to create
T online, so we let the robot match which change will produce which sensor values during
the execution of the task. The actual algorithms to infer fg from T remain unchanged.
The offline approach has the advantage of providing us with very exact pairs for T , re-
sulting in a very well approximated function fg. This can immediately be put to use and
delivers the best possible results without having to re-train the robot at a later point. The
disadvantage is that we need to know in which DOF the change will occur beforehand in
order to create a set T that covers all possible changes. If we choose to place no external
restrictions on the change, we must deal with six possible DOFs, thus enlarging T drasti-
cally.
In case that there is no way to obtain T offline, we must make use of learning algorithms to
obtain and classify training data during the actual task execution, called online creation of
T . Every time we measure a change, we add a new pair to T . In this case we do not have to
artificially build the training set. But the main problem with this approach remains that
we do not know the correct change for a given sensor value.
The central idea of this section is that fg is unknown and cannot be calculated analytically
or approximated beforehand. Instead, the robot will compute an approximation fest of fg
online during the first executions of the task. Instead of two separate phases, i.e. calibration
of the sensor and the actual execution of the task, the calibration process is encapsulated
in the execution (see Figure 3.3). The calibration might take longer now, nonetheless the
program will work correctly from the very first execution onwards. In addition, the devel-

39

Figure 3.3: In the classical ap-
proach to sensor based robot
programming, the sensor is ca-
librated before the actual pro-
gram is executed (top). In the
approach presented here, the
calibration process is integra-
ted into the execution cycle
(bottom).

oper will spend less time setting up the sensor and the program is capable of adapting
to changes both in the workspace and in the sensor data, e.g. due to a warm-up of the
sensor, without the need for a manual recalibration. The robot starts with a very rough
approximation fest of fg and refines this approximation gradually with each execution by
incorporating newly gained information.
During execution, the robot uses fest to react to changes occuring during the current exe-
cution. If the object has moved away from po by x to po′ , this is detected through the
sensor value s:

s = fchange(po′) = fchange(po + x) (3.10)

Thus, the robot must modify its movement by calculating:

pest = fest(s) = fest(fchange(po + x)) (3.11)

Now, the robot moves to pest. If fest is close enough to fg then:

pest = po′ (3.12)

If the change was estimated correctly, this knowledge is incorporated into the change
function by adding a new tuple to T . If the estimate was wrong, there is not enough
information stored in T to perform a reasonable correction using the current sensor value
s. Thus, the correct position must be determined and fest must be modified in such a way
that the next estimate will be correct for the current sensor value. This is done by updating
the data stored in T . Initially, this will often be the case since early versions of fest are
quite inadequate.
At this point we are using a conditional property to validate the geometric change. The
conditional property is: Was the change computed correctly or not? This property is easy
to program as it only involves subtracting the sensor value after correction sc from the
default sensor value sd and checking if the difference lies beneath a set threshold ct.

pc =

{
0 iff |sd − sc| > ct

1 iff |sd − sc| < ct
(3.13)

When the robot has performed the motion defined by pest, the new position is either correct
or it is skewed because fest was not accurate enough. In the latter case, two possibilities

40

arise. At this moment it is vital to decide whether robot motions will modify the sensor
signal or not. This is best illustrated by an example. Consider the following task:
A steel rod is delivered to the robot via a conveyor belt. The belt stops when the rod passes
a light barrier (Figure 3.4, left). The robot is to pick up the rod using a vacuum gripper
and place it in a box for transport. The rod may be placed in any position as long as it
faces upwards. This means we have translational changes along the x-axis and rotational
changes around the z-axis in the coordinate system of the conveyor belt. To measure these
misalignments, we employ two distance sensors that are placed parallel to the y-axis of the
conveyor belt (Figure 3.4, middle). The developer faced with the task to design this robot
program now has to plan how the position and orientation of the rod can be recognized
and how the robot should react. There are two possible instances:

1. When the robot moves over the belt to pick up the rod, this motion does not alter the
sensor signal because the rod itself has not moved. If pest was not accurate enough,
the correct position must be searched for. This is usually the case when preparatory
sensors are used. The developer can either manually guide the robot to the correct
position or instruct the robot to perform an automated search. But it is up to the
developer to define a valid search algorithm, because this strongly depends on the
task1. Once the correct position po′ has been reached, the data tuple (po′ , s) describes
a valid data point of fg, because the sensor value has not changed during the search.
This tuple is added to T describing the current knowledge about fg. With increasing
size of T more and more knowledge about fg is collected and the more precise the
next estimations will be.

2. This instance occurs, when the robot has located the rod and grasped it. Now, if
the robot rotates the rod, this will alter the sensor signal. In this case a corrective
motion can be performed instead of a search. This is usually the case if the sensor is
used concurrently. We can employ an automated search: The direction of the search
is defined by the Cartesian coordinates that are altered by the sensor. The search
terminates when the default sensor value has been reached. Then the robot has
corrected the change.

Since this correction alters the sensor signal, we use it to judge the performed correction
and compute subsequent corrections accordingly. A correct tuple for T is (po′ , s). Here,
we only know s, not po′ . But po′ is simultaneously the offset along the x-axis of (po′ , s)
from the root, due to the monotonicity of fest. If we perform multiple corrections until we
reach the root, we can compute po′ as the sum of all corrections the robot has made. From
a mathematical point of view, this is the equivalent to finding the root of an unknown
function. At this point we employ the secant method [99], that is defined by the recurrence

1Keep the search as simple as possible. As soon as the sensor is calibrated adequately well, the change
function’s estimate is accurate and always locates the object correctly. So this search is only executed in
the very first iterations. Because of this it is not necessary to implement a fast, efficient search strategy,
since this represents only a backup strategy in case the change function is still inadequate for a given
sensor value.

41

Figure 3.4: Experimental setup. Left: A steel rod is delivered along a conveyor belt (blue arrow)
until it reaches a light barrier (blue line). The rod can be in any position on the belt (red). Middle:
Reference position of the rod and placement of the distance sensors to recognize the position and
rotation of the rod. Right: Scan of the data sheet provided by the manufacturer describing the
sensor signal for given distances (x-axis: distance, y-axis: sensor signal). The resolution of the
sensor is in the range of [10; 80] cm. To obtain correct values the sensors are placed 10 cm away
from the edge of the conveyor belt.

relation

xn+1 = xn −
xn − xn−1

f(xn)− f(xn−1)
· f(xn) (3.14)

where f is an unknown function. As can be seen from the recurrence relation, the secant
method requires two initial values, x0 and x1. The values xn of the secant method converge
to a root of f if the initial values x0 and x1 are sufficiently close to the root. The order
of convergence is φ, where φ = (1 +

√
5)/2 ≈ 1.62 is the Golden Ratio. In particular, the

convergence is super linear. This result only holds true under some conditions, namely that
f is twice continuously differentiable and the root in question is simple and may not be a
repeated root. Change functions, as we have defined them, fulfill these conditions.
In our case, f is the real change function fg and the first value x0 is simply the change we
wish to calculate, po′ , while the second value x1 is the first corrective motion the robot has
performed, pest , that is based on the current estimate of the change function fest. Note
that fest is used only once for the initial correction, all subsequent corrections are based on
the secant method (see Figure 3.5) only using current sensor values. Since the convergence
of this method is super linear, we will not need many additional corrections xn, n > 1,
should x1 prove to be poor.
It is important to consider the following: When the next value xi+1 is calculated, it must
be kept in mind that we have already performed correction xi before we could measure
si+1 to rate xi. So we must subtract the impact of xi from xi+1.

42

Figure 3.5: Illustration of the first two steps of
the correction algorithm: For a given variation
preal we perform an estimated correction pest ba-
sed on the corresponding sensor value s0, the real
change function freal (red line) and our current
estimate fest (green line). We move the robot to
position p1 and retrieve a new sensor value s1.
We then use the secant method to grade the last
correction and move the robot accordingly to p2.
All subsequent corrections are performed using
the secant method only.

Another advantage of this approach is that all corrections xi and corresponding sensor
values si = fg(xi−1) are known. We can store these as pairs (xi, si) in a temporary stack.
When we have reached po, we can use this information to create multiple new data tuples
for T . If we have performed i corrections until the robot reaches po, the top most pair
(xi, si) on the stack already describes a valid data tuple for T . The next pair on the stack
(xi−1, si−1) describes a correction to po altered by xi. So (xi + xi−1, si−1) is another valid
data tuple for the set. Subsequent processing of the stack provides us with a valid data
tuple for every correction performed, so we add i new data tuples to T . This leads to an
accurate approximation of fest after fewer executions compared to the addition of only one
tuple to T in every execution.
The secant method only works for one-dimensional functions. It is possible to combine
multiple sensors to obtain an n-dimensional signal. In this case, the Broyden method [27]
can be used, that is similar to the secant method. This method is only applicable if a robot
motion alters the sensor signal, as is described in Instance 2 above.

Possible Utilization of Other Approaches

The secant method is not the only method to determine the root of a function. Other
methods are Newton’s method, fixed point iteration, and the bisection method. We will
now compare the secant method to these and show why the secant method is the best
choice for this task.
Newton’s method and fixed point iteration both use the derivative of the function to
calculate the next correction. But, as we have explained in Section 3.5.1, it is not always
possible to find an analytical solution. Additionally, if this solution were known, it would
be more sensible to record a number of examples before setting up the main program and
use the examples to determine the function parameters.
The bisection method does not rely on the function’s derivative, but has another drawback:
To find the root of a function f in an interval [a, b], both f(a) < 0 and f(b) > 0 must hold,
or vice versa. If both values are negative or positive, this method cannot be employed. This
is a serious drawback for this case, since we cannot ensure that the first correction we have

43

Knowledge about fchange Methods for approximation

Thorough / Complete Analytical computation
General type of function Analytical approximation
Evaluated training data only Function estimation
Unknown or no training data Supervised learning strategies

Table 3.2: Classification of approximation methods to determine the compensation function

performed will result in a new sensor value that has the inverse sign of the first value.
To our knowledge the secant method is the only applicable method that enables a robot to
perform a series of corrective motions without any need for backtracking motions by the
robot until the root of an unknown change function is reached.

3.5.3 Summary

All of the described approaches are summarized and ordered by their complexity in Table
3.2. If the underlying physical relation between sensor and position deviation is known, the
accuracy of the approximation is only dependent on the signal-to-noise ratio of the sensor.
In case of online creation of T , estimating fg with neural nets or similar methods may not
be reasonable: In the very first executions T will be too small for adequate training. Later
on, we have to keep in mind that every pair in T describes an initial estimate of a change
for a given sensor value. The quality of T is determined by the quality of every estimate.
When we have to estimate a lot of values, the function will start to fluctuate strongly when
many tuples lie closely together. This will deteriorate the quality of T , thus reducing the
net’s ability to correctly calculate the drift for a given sensor value.
In all cases, fg must be continuous (or will be, should a neural network be used), otherwise
it cannot be approximated by the methods described above.
In summary, the proposed methods are independent of the type of sensor and can be
applied to all situations if the sensor is capable of detecting a change.

3.6 Experimental Evaluation

In this section, we will show the validity of our approach by three experiments. In the first
experiment, we implement a recognition of rotational variations around an object’s z-axis
using distance sensors. We determine the geometric change function first analytically and
then approximate it using a training set generated offline. Afterwards, we compare both
approaches. In the second experiment, we train a robot to react to translational deviations
along the x- and y-axis of a disk placed on a table. Firstly, we fit a given function to
our training set and afterwards train a neural network to learn fg and then compare
both approaches. In the third experiment, we derive the change functions from the first
experiment iteratively during multiple executions of the task.

44

3.6.1 Measuring the Rotation of a Steel Ruler

We want to find a measurement for the rotation of a steel ruler lying on a table, so we
do not have to ensure that the ruler is orientated correctly each time we want to grasp it.
For this purpose we use three Sharp GP2D120 distance sensors set up in a straight line
facing the ruler (Figure 3.6, left). Each sensor has the resolution of 1 cm in the range of
4 to 30 cm. The sensors are set up 20 cm apart from each other. While it is a straight
forward task to determine the ruler’s distance from the sensors (something that can be
solved analytically quite easily) we are interested in allowing rotational variations of the
ruler. In theory, we can measure this variation by subtracting two sensor values from each
other and comparing this value to one of the original sensor values. Then the rotation of
the ruler is simply

frot(si − sj) = arctan(
si − sj
d

) (3.15)

where si and sj describe distance measurements of two sensors i, j. The parameter d
describes the distance that the two sensors are set up apart from each other. Note, that
this is the only parameter in the change function. Theoretically, we would determine this
parameter and set up an appropriate algorithm to calculate the rotational offset. But here,
we will try to determine this parameter experimentally. To achieve this, the robot grasps
the ruler, rotates it counterclockwise in steps of one degree and measures the sensor values.
This compromises our training set (Figure 3.6, right) of 30 samples for angles of 0◦ to 30◦.
To approximate this function we have used a computational approach described in Section
3.5.1 employing the Levenberg-Marquardt algorithm. We have used two general types of
functions for the approximation. The first is of the same type as the theoretical offset
function frot, an arctan-function with one free parameter d. The second function is a simple
linear function of type a + b · x, with two parameters. When we use the sensors installed
40 cm apart, we only use the first 22 of the 30 training pairs. For rotations bigger than
22◦, the measured distance of the ruler to the third sensor exceedf the sensor range. The
functions are displayed in (Figure 3.7) and the results are summarized in Table 3.3. We have
calculated the mean error of each sample to the theoretical value, giving us an impression
about the SNR of the sensors. This is relatively low, so we can only recognize changes that
are larger than 2◦, but the width of the gripper is big enough to deal with this tolerance. To
evaluate how well the approximated functions compare to the theoretical function, we have
analytically computed the integral error of the difference of the two functions on a range
of 0 to 10 cm. We have chosen this range because it is significantly higher than the SNR
of the sensors and a difference of 10 cm in the two sensors values would mean a rotation
of 26◦ and 21◦ for a sensor distance of 20 cm and 40 cm respectively. This gives us an idea
of how well we can estimate the function with the given training data. We can see, that
if we know that the change function is an arctan function, we can form an estimate with
a relatively low error ratio. The error is significantly higher if we do not know the type of
change adaptation function and guess it to be linear.
In summary, even with the relatively low resolution of the sensor we are able to enable the
robot to flexibly grasp the steel ruler, even if it is displaced by up to 13 cm and rotated

45

Figure 3.6: Left: Setup of the experiment described in Section 3.6.1. Three distance sensors are
used to determine the rotation of the steel rod. Right: Measured distances for given angles and
theoretical values. The red and blue lines depict the theoretical change functions for a distance
of 40 and 20 cm respectively. The green and purple lines depict the measured differences between
the two sensors for a distance of 40 and 20 cm respectively.

by up to 21◦. All we have to do is to build a training set by deliberately rotating the ruler
and measuring the resulting sensor values.

3.6.2 Measuring the Offset of a Disk on a Table

In this experiment, we use a force/torque sensor to recognize the offset from the center of
a round disk along the x- and y-axis of a table. The use of this sensor has the advantage
that it is mounted at the robot’s tool tip, so no additional sensors have to be placed in the
robot’s workspace (see Figure 3.8).
The idea is that if the disk moves along the table, we can detect a significant moment along
the x- and y-axis because the robot will not grasp the disk in its center. While it is still
possible to analytically determine a change function, this is highly dependent on the weight
of the disk, its position, etc. Because of this, we try to determine fcomp experimentally.
We have chosen to acquire the training set T with an offline approach and have set up a
simple algorithm that moves along a grid of a specified size around the center of the disk,
picks it up at given intervals and measures the resulting moments.
We know that the relation between the measured moments and the offset is linear and
have arranged the general offset compensation function in that way:

fcomp

(
mx

my

)
=

(
a1 + b1 ·mx + c1 ·my

a2 + b2 ·mx + c2 ·my

)
(3.16)

46

Figure 3.7: Theoretical and approximated functions for a rotational change function. The training
data is shown as red dots. The theoretical function is shown in green. The approximated functions
are shown in blue (arctan) and purple (linear).

Sensor distance
[cm]

Number of
samples used

Mean error of
raw data to
theoretical
model [◦]

Integral error of
arctan

approximation
to theoretical

model [0-10 cm]

Integral error of
linear

approximation to
theoretical model

[0-10 cm]

20 30 2.63 1.64 17.83
40 22 2.28 0.92 11.46

Table 3.3: Accuracy of approximated change functions compared to theoretical function for two
different sensor distances.

Figure 3.8: Setup of the second
experiment. The vacuum gripper
grasps the disk at specified off-
sets from the center and measu-
res the forces and torques for each
position. Based on this informati-
on the offset compensation functi-
on is approximated using a House-
holder approximation and a MLP
neural network.

47

Figure 3.9: Measured moments mX and mY (red) of the disc for given deviations and approxi-
mated offset functions (green) using the Householder algorithm for supervised acquisition with a
training set of 81 samples.

We assume that a deviation along the x- and y-axis influences the moments along both
axes. The sensor values along the grid and the approximated functions for a grid size of
9x9 are shown in Figure 3.9.
We use the same training sets to train a MLP network to learn the same offset compen-
sation function. The MLP consists of three layers with two input and output neurons and
three neurons in the hidden layer. Each MLP is trained for a maximum of 100,000 epochs
with an desired error of 0.001. The functions learned by the MLP network for a grid size
of 15x15 are shown in Figure 3.10.
It can be seen that a deviation along the x-axis mainly influences the moment along the
y-axis and vice versa. We calculate the mean error of the approximated function and the
training set for various grid sizes, giving us an idea of the SNR of the sensor. To test our
offset compensation function, we deliberately move the disk by a random offset preal and
record the corresponding sensor values mreal. Afterwards, we enter mreal into our compen-
sation function and compare the estimated offset pguess to the real offset preal. We repeat
this with 100 different offsets for every grid size. The results are summarized in Table 3.4.
We see that due to the SNR of the sensor, that is about 3.5 Nm, we need at least 16
samples in our training set to obtain a reasonable approximation for fcomp. Below this
value the noise of the sensor prohibits a reasonable approximation. On the other hand, it
is unnecessary to create excessively large training sets with hundreds of samples. Above 81
values, there is no significant improvement of the approximation if we increase the number
of samples.
In case we do not know the type of function and use a neural network to approximate the
function we need more than twice as many samples to approximate the change function
with the same accuracy. But for training sets of this size, an equally good approximation
is possible.
In both cases the low mean error of the approximations for low grid sizes is caused by

48

Figure 3.10: Measured moments mX and mY (red) of the disc for given deviations and approxi-
mated offset functions (green) using a neural network with a training set of 225 samples.

Number of
samples used for
approximation

Mean error of
raw data to

approximated
model using the

analytical
function [mm]

Mean accuracy
for 100 random

offsets using
analytical

function [mm]

Mean error of
raw data to

approximated
model using the
MLP network

[mm]

Mean accuracy
for 100 random
offsets using the
MLP network

[mm]

4 3.13 10.99 0.31 12.47
9 3.28 6.33 1.23 8.99
16 3.57 4.03 1.97 7.92
25 3.61 3.57 3.10 4.88
81 4.01 3.62 4.55 4.05
121 4.09 3.60 4.65 4.03
225 4.05 3.62 4.04 3.50

Table 3.4: Comparison of approximation with a given type of function and a MLP neural network.
The accuracy of the approximated change functions determined with the Householder algorithm
and a neural net for various sizes of supervised training data. The accuracy is determined by
testing both functions with samples not used for the approximation.

49

exactly this fact: There are only few training samples, so it is possible to find a very good
approximation with a low cumulative error for all samples, but the mean error for samples
not used for the approximation is relatively high. After a certain sample size, the mean
error of the approximation remains constant, thus enabling us to determine the SNR of
the sensor.
With both approximations, we are able to automatically check if and how far the disk has
moved along the table and use the result to adapt to the environment accordingly. The
approximations are precise enough to allow for an adaptation without the need to re-grasp
the disk.
In summary, we show that it is possible to easily approximate change functions indepen-
dent of the type of sensor with comparatively little effort. The less knowledge we have
entered into the approximations, the bigger the training set must be in order to successful-
ly approximate the function.

3.6.3 Online Computation of Change Functions

We implement the task described in Section 3.5.2. The sensors used are distance sensors
GP2D12 made by SHARP with a measurement range of [10; 80] cm. The first sensor
supervises the position where the robot is supposed to pick up the rod and measures the
translation along the x-axis. The second is located 44 cm away from the first along the y-
axis of the belt (Figure 3.4, middle). The difference between the two sensor values describes
the rotation around the z-axis.
The data sheet for the sensors shows that the sensor signal is not linear with respect to the
physical distance (Figure 3.4, right), so it is not possible to use a simple linear conversion
to determine the translation or the rotation of the rod. In theory, the change function
describing the rotation can be derived as an Arcus-Tangens function, but the parameters
for this function are unknown. Therefore, the robot shall learn both functions adaptively
during task execution. A reference position pref is set up (Figure 3.4, middle), describing
the ideal position and orientation the rod should have. This position would be identical to
the position of the rod if a feeding mechanism is employed. It is important to measure the
sensor value for pref as well. Later on, all measurements are compared against these values
and if it exceeds the SNR of the sensor, a change is recognized.
The robot program for a single task execution is now short and relatively simple:

Pseudocode 3 (Robot program for the experiment described in Section 3.6.3)
1 PROGRAM pickupRod() {

2 offset_est = getCorrection(Distance);

3 MOVE offset_est;

4 IF (force_z-axis() < force_contact) THEN

5 searchRod();

6 update(Distance, HERE);

7 graspRod();

8 MOVE p_ref;

50

9 DO {

10 rotation_est = getCorrection(Rotation);

11 MOVE rotation_est;

12 } WHILE (rotation_est != p_ref)

13 MOVE p_dropoff;

14 release_Rod();

15 }

In lines 2 and 3 the function getCorrection uses the current value from the distance
sensor as parameter and moves the robot to the estimated position of the rod. We use a
force/torque sensor to check whether the rod was grasped correctly (line 4). This describes
a simple conditional property. If this is not the case, we employ a basic search motion
probing the conveyor belt in fixed intervals for the rod (line 5). When the rod is located,
we manually update T , grasp the rod and move it to the reference position (lines 6 to 8). At
this point the rod may still be rotated to an unknown degree. In lines 9 to 12 we correct this
rotation by repeatedly calling getCorrection until the reference position is reached. The
secant method is integrated into this method and remains hidden from the developer. Then
we move the rod to p_dropoff and release it (lines 13 and 14). Note that the program itself
does not contain any sensor data processing apart from the two conditional properties in
lines 4 and 12. Additionally, it is neither necessary for the developer to determine the type
of the change functions nor any parameters for these functions. To calculate the Cartesian
change for an unknown sensor value, we use a simple linear interpolation over all data
tuples in T .
We execute the program 100 times. Every time the translation and rotation of the rod is
chosen randomly. The initial estimate of both change functions is deliberately badly chosen
as a bisecting line (Figure 3.11, top and bottom left). For the change function describing
the distance of the rod, we could have also created data tuples using the data sheet of the
sensor (Figure 3.4, right). We choose not to do this, for two reasons: Firstly, the data tuples
would have to be measured manually by the developer and modified by the distance of the
rod’s default position, which is a cumbersome task. Secondly, the data sheet is rather small
and the resolution is low so it is difficult to determine exact values. Here, it is easier to
just use a bad approximation for the very first executions, because this will change after
a few executions. Because of this, the robot was unable to grasp the rod correctly during
the very first executions and also needed multiple corrections to compensate the rod’s
rotation. After 10 executions the estimations of the change function look similar to the one
in Figure 3.4 and an Arcus-Tangens function respectively (Figure 3.11, top and bottom
middle). After 100 executions we obtain a precise interpolation of both change functions
(Figure 3.11, top and bottom right), allowing the robot to grasp the rod 20 out of 20 times
(100%) without the need for a search motion. The rotation is corrected successfully with
just one rotation in 14 out of 20 cases (75%). In the other cases, the robot had to perform
more than one rotation to align the rod correctly.
The accuracy of the estimated change functions in locating and rotating the rod during
the adaptation process is shown in Figure 3.12. We show whether the robot was able to

51

Figure 3.11: Estimates of the change functions to compensate the translation and the rotation
of the rod. The top row depicts the change function to measure the translation of the rod, while
the bottom row depicts the functions to measure the rotation of the rod. The images on the left
depict the initial estimates of both functions, the images in the middle depict the functions after
ten executions of the task and the images on the right depict the functions after 100 executions
of the task.

52

Figure 3.12: Overall (green) and averaged (blue) percentage of correct estimations of the rod’s
translation (left) and rotation (right) on the conveyor belt using the corresponding change function
for 100 executions. A red dot with a value of 0 indicates that the robot could not locate the rod
or compensate its rotation directly with the given change-function, but had to perform a search
or use multiple rotations instead . A value of 1 indicates that the rod was found without the need
for a search motion or rotated correctly at the first try.

grasp the rod and rotate it correctly using the estimates of the change functions (red). A
value of 0 means that the robot had to search for the rod or perform multiple rotational
corrections, respectively, while a value of 1 means that the estimate was correct. The green
lines show the overall accuracy of the robot over all task executions up to that point, while
the blue lines show the accuracy over the last 20 executions. We see that the robot was
capable of grasping the rod correctly nearly all the time after 50 executions, and had an
overall accuracy of 80%. Due to the fact that two sensors are necessary to measure the
rotation, the SNR of this combined sensor is relatively high, so the correction could not
be performed in one motion every time. In spite of this, the robot was still capable of
performing a perfect correction in 75% of all cases.
With this experiment, we have shown that it is possible for the robot to learn geometric
change functions from scratch by employing search motions to compensate estimation
errors. The use of the secant method to further speed up the learning of such a function
can be encapsulated into the programming language and does not need to be programmed
explicitly by the developer.

3.7 Conclusions

In this chapter, we laid the theoretical foundations for programming of sensor equipped
robots by non-experts. In a first step, we analyzed industrial handling tasks and isolated
the operations that may require external sensors in case of workspace changes.

53

We show that the information gained from sensor signals can be classified into two cate-
gories: Conditional properties and geometric change functions. For this work, conditional
properties are only of minor importance in relation to geometric properties. A transforma-
tion of the sensor specific signal into this abstract description allows us to employ universal
algorithms to compensate workspace changes. These algorithms will be developed in the
following chapters.
Because of the diversity in the scope of applications it is impossible to define a set of fixed
properties that will cover all situations. So this task has to be performed by the developer.
We outline various approaches to develop these sensor transformations easily. The focus of
this work is on geometric change functions. We present methods to determine this function
automatically and order them by the amount of knowledge necessary for the approximati-
on. The presented requirements and methods are independent from the type of sensor.
We present a method to determine this data online during multiple executions of the task.
The intention is to develop methods independent from the type of sensor so they can be
easily incorporated into a robot program. An additonal advantage is that these methods
also adapt to drifts in the sensor signal e.g. caused by warming effects. The sensor signal
will change for the same situations. If the function cannot adapt to this effect, the robot
will move to the wrong positions. With our method, the data will be modified automati-
cally to reflect this effect, enabling the robot to act correctly.
Finally, we presented three experiments to validate our research. We showed that it is
possible to employ the proposed methods to successfully determine change functions for
pick-and-place tasks with different sensors. In addition we have shown that these functions
can be learned adaptively during task execution with only minor changes of the robot
program.

54

Chapter 4

Simplified Sensor Integration

We have shown in the previous chapter that information contained in sensor signals can
be grouped into two categories - conditions and geometric changes - reflecting the desired
knowledge we need to encounter workspace changes in robot handling tasks. This classifi-
cation is independent from the actual task and the type of sensor used. But these functions
do not influence the robot’s behaviour so far. In this chapter, we develop a framework to
integrate sensor transformations easily into a given robot program enabling the robot to
react flexibly to changes in the workspace.
The chapter is organized as follows: In Section 4.1 we explain why it is not sufficient to
simply add these functions to an existing robot program. In Section 4.2 we examine the
different types of change that can occur in the workspace and examine which of these
must be encountered with external sensors. In Section 4.3 we measure the potential for
adaptation strategies by examining how a given program can be tuned on different levels
of granularity in order to identify ways to reduce execution time. Based on these results,
we outline our new approach to extend programs with external sensors in Section 4.4 and
explain how sensor information is evaluated in this approach. We analyze which class of
handling tasks can be solved with our approach in Section 4.5. Section 4.6 summarizes this
chapter. The results of Sections 4.2 and 4.3 are published in [39].

4.1 Motivation

Handling tasks differ from manipulation tasks in the sense that there is a stronger emphasis
on positions rather than trajectories. The underlying assumption is that it is of minor
importance in which way the robot moves from one position to the next as long as it
does not collide with its surroundings. While there are applications where the trajectory
is also of importance, e.g. complex insertion tasks, it is of more importance to determine
the end points of each trajectory precisely enough. This preference of positions yields the
advantage that the control cycle does not need to be coupled tightly with sensor data
processing. However it is not possible to simply add sensor transformations developed in
Chapter 3 to positions. This is due to the following factors:

55

• The point in time at which the sensor data is recorded and evaluated is critical.
E.g. if an imaging sensor is evaluated while no object is in view, the result will
be undetermined and the robot’s behaviour is unpredictable. In the example task
described in Section 3.1.1, the robot may evaluate the distance sensor only when the
conveyor belt has stopped. Likewise, the object can only be classified as soon as the
robot has grasped it and held it in front of the camera.

• Complex operations like insertion procedures are not trivial. Sometimes the sensor
must be evaluated more than once in order to guide the robot through a complex
operation. In the example task described in Section 3.1.1, the insertion procedure can
not be performed in only one single motion, but subsequent motions must be made
based on the current data of the force/torque sensor. Effectively, this will result in a
while-loop than terminates when a specific condition is met (namely: The object has
been inserted correctly.). This condition is checked by the same sensor but can only
be evaluated during insertion.

Of course, it is possible for skilled developers to modify a given robot program to enable
the robot to complete the task at hand, but this does not fulfil the desired property of easy
to program as mentioned in Section 1.2. In this section, we analyze if the tasks outlined in
the VDI norm 2860 can be categorized in such a way that a general outline to integrate
sensor data processing into a robot program can be given. We are searching for an abstract
approach to deal with changes in the workspace regardless of the actual task and the
sensor employed. This approach shall allow the robot to react flexibly and adaptively to
the alteration at hand. Criteria to rate the approaches are:

• How strongly are instructions that move the robot and instructions for processing
sensor data interleaved in the final program? The idea behind this is that complex
programs with interleaving instructions are hard to design and maintain for non-
experts.

• The required expertise of the developer. The more knowledge is required by the
developer especially about sensor data processing, the smaller the user domain will
be.

• The expandability of the concept with different types of sensors. If a specific solution
is only feasible with a certain type of sensor, this will reduce the range of tasks that
are solvable.

• The applicability of the proposed concept. Are all types of handling tasks solvable
with the approach or are there constraints that will render certain tasks impossible?

• The required processing power of the robot system. E.g. if the approach involves a
large amount of planning algorithms this may cause the robot to react too slowly for
time critical tasks.

We will not analyze other approaches to intuitive robot programming at this point, but
refer to Chapter 2 where this has already been done.

56

4.2 Workspace Changes Across Multiple Executions

In a first step we analyze which changes in the robot’s workspace can occur between
multiple executions of the same task. Here we are interested in changes that do not require
any kind of planning by the robot. That is, the robot is not supposed to try and find new
ways to solve the task at hand. Instead we focus on alterations in the workspace that will
require external sensors in order to recognize and allow the robot to react to these changes.
When the robot is capable of dealing with these alterations we have gained the desired
flexibility.
To start with we classify the changes that a robot should be able to deal with and explain
that of these can be covered by using sensors. Figure 4.1 shows how these changes can be
subdivided into four groups along two characteristics:

1. The origin of the change: A change in the workspace can either be caused by the
task itself or by external factors. Changes caused by the task describe the desired
flexibility the robot should possess. On the other hand a change that is caused by
external factors was not foreseen when the task was specified. This change happens
unexpectedly. While this kind of change is generally unwanted, it must still be ac-
counted for. The problem with this type of changes is that only rarely an explicit
strategy to deal with such changes can be given because of their spontaneous nature.
In the example presented in Section 3.1.1, task inherent changes can occur at the
general position of the disk on the conveyor belt, the arrival order of the different
disks and the exact location of the insertion position. A change caused by external
factors is the drift causing the disks to move on the conveyor belt. Another example
is if a human moves the table where the disks are to be inserted significantly. In this
case the insertion would fail because the insertion position has moved by a significant
amount.

2. The occurrence of the change: A change can either occur non-recurring or frequent-
ly. Non-recurring changes only happen in the very first execution, when the robot
does not possess any knowledge about its environment at all or when a significant
modification is made to the workspace. Normally, these modifications are only made
intentionally, if the program is to be altered. But undesired changes may occur as
well, when the environment is altered unintentionally by external factors. Frequent
changes happen in up to every execution of the task. These changes reflect the actual
need for external sensors, because the robot must be able to detect them in every
execution.
In Section 3.1.1, non-recurring changes are the general position of the disk on the belt
and the position of the object the disks shall be inserted to as well as a movement
of the table by a human. All these changes occur only once, so as soon as the robot
has learned them, they can be regarded as being constant. Frequent changes are the
alterations of the pickup and insertion position, the order in which the disks arrive
and the drift of the disk on the belt. These changes have to be taken into account in
every execution of the task.

57

Figure 4.1: Classification of changes that can occur between two executions of the same program

Changes that are brought about by the task itself are indeterminacies and variations. The
difference between these is defined as follows:
An indeterminacy is something we are not aware of at that moment, but once we have
learned about it, it will remain constant for a prolonged period of time and will not change
during subsequent executions. One example is the position of the object on the table in
the task described in Section 3.1.1. When developing the program, the programmer usually
only knows that there will be a table but not its exact location and orientation in Car-
tesian coordinates. The robot must be calibrated to learn this indeterminacy (usually by
teach-in).
Variations on the other hand occur every time the robot performs the task at hand. They
are intentional and occur due to the heterogenic nature of the manipulated objects. This
is the main reason why external sensors are used for industrial robot applications. For
example, when handling food or other organic materials no object is exactly the same - the
objects differ in size, weight, form, etc. In this case, the robot must be able to act flexibly
enough to deal with these variations. This can either be accomplished by compliant me-

58

chanical devices or by incorporating sensors to measure the objects and act accordingly. In
the example from the previous section variations are the order and the orientation of the
disks on the conveyor belt and the exact location of the corresponding slots in the object.
Changes caused by abrasion differ from those caused by the task in the sense that usually
they are not intended by the developer; still, they must dealt with. Here, we can subdivide
the changes into two groups as well: Faults and errors as well as drifts.
Faults and errors occur when a sudden change in the workspace takes place. For example
a fault would occur if the table in the workspace falls apart due to wear and tear or is
moved away by a person. Faults denote an abrupt change in the environment. A common
approach is to stop execution and alert a human supervisor if the robot detects that a fault
has occurred that cannot be resolved. Other approaches are feasible as well, but no general
strategy for error supervision can be given here as this is highly dependent on the task.
Every time a fault occurs the robot should inform the supervisor of the task regardless of
the fact if the fault can be compensated.
The drift is a problem caused by gradual changes within the workspace, i.e. the settings
of machines and tools change over time. While this dislocation is minimal from one exe-
cution to the next, it can amount to a significant dislocation when it occurs over multiple
executions. In our example, the position of the disks is subject to a drift caused by a faulty
feeding mechanism. The drift can be modelled as a continuous change within the system.
Classical robot programming with fixed positions is unable to deal with this problem. After
a certain number of program cycles, either the machines, the tools or the program itself
must be re-calibrated by a human operator. Using a continuous adaptation strategy we
can tutor the robot to react to this change without the need for recalibration.
Non-recurring changes are only of interest when the static robot program is developed.
The developer must identify the indeterminacies and outline an error handling strategy (if
any). When all non-recurring changes have been identified, a static robot program can be
created telling the robot to move to all indeterminacies in a specified order (with specified
trajectories). While the supervision of faults and errors is usually carried out using external
sensors, the handling strategy itself must be outlined by the developer.
An error handling strategy is generally laid out as a series of conditional jumps in the
form: If this condition holds, we have an error of type X. To resolve this error, perform the
following movements.
This condition may be evaluated using an external sensor. Autonomously dealing with
faults - that is, recognizing a fault and finding a solution - requires planning strategies,
that are out of the scope of this work, so we will not deal with these here. For non-recurring
changes the developer himself is more capable than the robot of finding a solution and mo-
difying the program accordingly. Incorporating a complex algorithm for fault detection
and compensation would make the robot program exceedingly large and excessive. Exter-
nal sensors may be used to determine indeterminacies (e.g. in sensor based programming,
see Section 2.3). But in industrial handling contexts these indeterminacies are not de-
pendent on a sensor in the sense that the robot must evaluate the sensor frequently to
determine the indeterminacy. Once the position has been determined, it will not change in
subsequent executions (if it does, it would not be a non-recurring but a frequent change,

59

e.g. a variation)1. So, the use of external sensors to determine a non-recurring change is
rather a support mechanism than a necessity.
Frequently occurring changes - variations and drifts - can both be handled with a conti-
nuous adjustment strategy. They are characterized by the same set of parameters describing
the extent to which they are allowed to occur during execution. All changes exceeding this
threshold are classified as an indeterminacy or fault, respectively2. To deal with this class
of changes external sensors is mandatory otherwise exact handling can not be achieved. In
sensor based robot programs we should be able to deal with at least variations. Additio-
nally, if we can teach the robot to recognize and compensate drifts, we will be making the
overall program more robust.
We see that the general program flow of a flexible robot program is not - or only minimally
- influenced by frequent changes, because these are minor deviations from the original inde-
terminacies in the program flow. So movements based on or modified according to external
sensors can be regarded as extensions of a static robot program. They will not modify
the general program flow. This is one of the reasons we have decided to take a two-step
approach to adaptive robot programming as outlined in Section 1.2.
In summary, changes that occur only occasionally are of interest when the general program
structure is laid out. Changes that occur frequently are the main reason to employ external
sensors in a robot program.

4.3 Optimizing Robot Programs

In addition to being able to deal with variations and drifts when executing a task, the
robot should be able to do this within a certain time frame. That is, it is not sufficient
to just be able to adapt to a variation if this will significantly prolong the time required
to finish the task. The execution time of the task becomes more important if the task is
repeated many times, as explained in Section 1.1.3. It is also of importance to find ways
to optimize a given robot program with regard to its execution speed.
How fast is fast enough? This strongly depends on the number of repetitions of the task.
If the task is executed only once or a couple of times, the overall execution time is rela-
tively insignificant (as long it is executed correctly). The more often the task is repeated,
the more crucial execution time gets. For example, if it takes the robot twice as long to
complete the task as a human worker, this is acceptable if the task will be executed only
once. In this case it is more crucial that the robot can be programmed quickly, so that the
developer can deal with other tasks. But, if the task shall be repeated for a very long time,
this execution time is not acceptable, because in this case it will make more sense to let a
human worker perform the task. In order to speed up execution time, the program must be

1This holds for processing tasks like welding as well. The starting position of the weldseam is usual-
ly known. All subsequent motions must be modified using a sensor. While the starting position is an
indeterminacy, the subsequent trajectory is a variation.

2We will show in Chapter 6 that it is possible to deal with certain types of faults when performing an
automatic drift recognition and compensation.

60

optimized. But this process is time-consuming as well. So before the robot is programmed
to achieve a task, the developer must also consider the number of repetitions of the given
task.
It is difficult to find a mathematical formulation to determine how fast a robot must exe-
cute the task in order to justify its use instead of a human worker. In general, two factors
are important: Firstly, how long does it take to program the robot? This is the develop-
ment time td. Secondly, how long does it take the robot to execute the task and how many
times will it be repeated? This is the execution time for a single task te and the number
of repetitions r. The total time to finish the task tt is then tt = td + te · r. So if tt is lower
than the time it takes a human worker to finish the task, employing a robot is sensible.
But even if tt is higher, it may still make sense to prefer the robot to a human worker.
One argument is that the human is free to perform other tasks. Another is that some tasks
are inherently dangerous to humans. For these reasons, no general formula can be given to
determine when the use of a robot is profitable.
For any given robot program, we can divide the task of optimizing this program into four
levels of abstraction with respect to the execution speed (see Figure 4.2). The higher the
level, the more the internal structure of the program will be altered. Note that we only
deal with optimization of the program code itself. Neither do we re-arrange the workspace
nor do we introduce new mechanical devices, such as better sensors or intelligent robots.
This ordering is strict in the sense that an alteration on a given level implicates that all
parameters for optimizations on lower levels have changed and may be optimized as well.
The lowest level (zero) represents the robot program in its original state, i.e. no optimiza-
tion has taken place yet.
On the first level, we can optimize the acceleration and velocity profiles along the trajecto-
ries of the robot. Usually every (transfer-)movement can be divided into three parts: The
departure from an object, the transfer itself and finally the approach to an object. Various
methods exist to determine the optimal trajectory (and subsequently the corresponding
acceleration profile) for two given positions, e.g. [120] and [90].
On the second level we deal with the task of calculating the optimal - either the shortest
or the fastest - route to a given goal position. Here we must distinguish between two ca-
tegories: Open-loop movements and closed-loop movements. In the case of an open-loop
movement, the optimal route is the best trajectory between the actual position and the
goal position, as there are no external constraints on the trajectory or the goal position.
Once again, if the positions are known, we can use existing methods such as in [120] to
calculate the optimal trajectory. However, if we need sensor information to accomplish the
movement, as is the case in a closed-loop program, we need to optimize the control itself.
This is accomplished by minimizing the overshoot in every execution cycle of the controller.
This includes vibration-avoiding motions when handling flexible materials. In this case the
motion should be executed in such a way that the held object will oscillate as little as pos-
sible when the motion has ended. While these motions are controlled by sensors, solutions
to optimize these depend only on the parameters of the held object. Closed solutions exist
as proposed by [131], [130] and [105].
On the third level of abstraction we optimize the positions themselves. Once again it is use-

61

Figure 4.2: Layers of optimization for a given robot program.

ful to distinguish between open-loop and closed-loop programs. If the application-specific
positions are fixed and will not change between repeated executions of the program, there
is no possibility for optimization. However, it may be useful to determine better interval
positions that may result in a shorter overall trajectory to the goal position. In the case
of a closed-loop program, the position is dependent on the sensor information available.
A typical example is the hole in a peg-in-hole task. Here the robot is guided to the exact
location of the hole by a sensor. Another example are movements that are started or stop-
ped by the sensor to compensate for environmental uncertainty. All variations from Section
4.2 can be placed in this field. They can be regarded as a search in n dimensions using an
external sensor. If the motion is simply stopped by a sensor, this search is one-dimensional.
If the robot shall locate a hole in a plate, the search is two-dimensional along the surface of
the plate and so on. There are various possible approaches for optimization: One can either
re-calculate the starting position of the search to place it closer to the goal position - thus
reducing the time required for the search. Another option is to determine better-suited
threshold values for sensor-controlled movements to prevent errors, e.g. a false decision to
start or stop a movement. In this case the robot can learn optimal threshold values for the
sensor data to start and stop the movement as proposed by [106]. Finally, we can try to
optimize the search path. This approach will be pursued in Chapter 5.
On level four of the abstraction diagram we can re-order certain logical parts of the pro-
gram to reduce waiting time or generate better paths along multiple positions. It may also

62

be possible for the robot to execute another task while waiting for a machine to finish
processing an object. While this level still defines an optimization on the software side
of the system, it requires external knowledge about the structure of the task, e.g. which
robot commands must be treated as an entity and pre-conditions that must be met before
another part of the task can be executed.
It should be noted that the optimization on a high level of abstraction produces the pos-
sibility for optimization at lower levels as well. For example, if we compute a new position
that is somehow better suited for the task at hand, we can also re-calculate the trajectory
leading to that position and subsequently the acceleration profile for that new trajectory.
Up to now the decision to optimize the program is nearly always made by a human su-
pervisor who selects a certain strategy out of the various algorithms mentioned in Section
2.4.2 and applies them to a designated part of the program. Here, we propose that this
optimization be performed automatically every time the task has been completed. The
developer only marks the areas and levels of abstraction where optimization is permitted
while the actual optimization itself is done by the robot system.

4.3.1 Measuring the Potential for Optimization

When deciding to optimize a given robot program the programmer must decide which parts
of it should be improved. Usually, he will choose those parts where he believes execution
time can be gained. In order to be able to deal with this situation analytically, we have set
up some basic experiments for each level described in Section 4.3. The idea is to define a
typical situation and a very good (if not the best) solution to it. We will then downgrade
this solution by a certain measure and see how much longer the robot requires to reach
its goal. We think that in most cases this reasoning works the other way as well. That is,
the same amount of time is gained when the solution is improved by the same measure.
The goal is to have some kind of chart that tells us for which levels an optimization is
auspicious and in which cases the amount of time required to find an optimization may not
offset the benefits. All experiments were conducted on a Staeubli RX130 robot with the
monitor speed set to 10. The sensor we have used is a wrist-mounted force/torque sensor
90M31A from JR3.
For the lowest level (Level 1) we set up an experiment where the robot moves along a
given trajectory using the square wave acceleration profile provided by the manufacturer.
The only parameter modifiable for this profile is the maximum allowable Cartesian acce-
leration. In the experiment, we perform a straight line motion between positions A and B.
The goal position B is set to be either 1 cm, 10 cm or 50 cm from the starting position A,
respectively. For each of these three motions, we use the maximum acceleration allowable
and the maximum acceleration reduced to 90 % and 80 %, respectively. We measure the
time it takes the robot to complete the motion and calculate the percentage by which this
differs from the fastest possible motion (see Table 4.1).
To measure the impact of a trajectory optimization on Level 2 we set up a point to point
(PTP) trajectory between the given positions A and B. (Cartesian motions are omitted
since they are always slower than PTP motions.) We then scale the length of this trajectory

63

Acceleration scaling factor

Length of motion 1.0 0.9 0.8

1 cm
0.271 sec 0.287 sec 0.288 sec
(100 %) (106 %) (106 %)

10 cm
0.736 s 0.751 s 0.767 s
(100 %) (102 %) (104 %)

50 cm
1.696 s 1.728 s 1.760 s
(100 %) (102 %) (104 %)

Table 4.1: Required time for a motion of a given length and a fixed maximum acceleration. The
values in brackets denote the change in percent to the reference motion (Factor 1.0)

Trajectory scaling factor

1.0 1.1 1.2

Time elapsed
2.57 s 3.16 s 3.40 s

(100 %) (123 %) (132 %)
Total of
joint-rotations

36.1 ◦ 39.2 ◦ 41.8 ◦

(100 %) (109 %) (116 %)

Table 4.2: Required time and total sum of degrees covered by all robot joints during a PTP
motion between two points. The values in brackets denote the change in percent to the reference
motion (Factor 1.0). The length of the trajectory is scaled by adding a virtual interval position
that is covered by the trajectory.

in joint space by adding a virtual interval position C on a continuous path and moving
this position so that the resulting overall trajectory from A to B in joint space is stretched
by a factor of the original length. We measure the time the robot required to complete the
motion and the overall sum of degrees that all joints rotated during the motion execution
(see Table 4.2).
The experiment used to measure the impact of an optimization of interval points for com-
plex trajectories (Level 3) is similar to the one described above. However, instead of using a
PTP motion, that essentially moves all joints of the robot regardless of external constraints
(Level 2), here we typically employ straight-line motions to navigate around obstacles. A
typical example is a pick-and-place operation where the robot has to move the grasped
object around an obstacle to reach the goal position (see Figure 4.3). The better the in-
termediate position C is chosen, the shorter the overall trajectory will be. Thus, for this
experiment we set up a pick-and-place operation and measure the time it takes the robot to
move from starting position A to goal position B using a continuous path motion covering
the intermediate position C. We scaled the length of the trajectory by shifting position C
and measured the time it takes to complete the motion as well as the total number of joint
rotations of the robot (see Table 4.3).

64

Figure 4.3: Experimental setup for Level 3. The
robot moves from A to B, avoiding the obstacle
by employing the intermediate position C. For
this experiment, we moved C outwards from the
dotted trajectory so that the resulting overall
trajectory from A to B was elongated by a fixed
factor.

Trajectory scaling factor

1.0 1.1 1.2

Time elapsed
2.57 s 3.34 s 3.47 s

(100 %) (130 %) (135 %)

Sum of joint-rotations
36.5 ◦ 38.9 ◦ 41.08 ◦

(100 %) (107%) (112 %)

Table 4.3: Required time and total sum of degrees covered by all robot joints during a pick-and-
place motion between two points A and B with intermediate position C. The trajectory length is
scaled by moving C. The values in brackets denote the change in percent to the reference motion.

65

PID parameters scaling factor

1.0 1.1 1.2

Time elapsed
16.98 s 17.12 s 17.20 s
(100 %) (101 %) (101 %)

Sum of joint-rotations
37.0 ◦ 37.2 ◦ 37.2 ◦

(100 %) (100 %) (100 %)

Table 4.4: Required time and total sum of degrees covered by all robot joints for a PID controlled
move along a surface of 50 centimeters. The values in brackets denote the change in percent to
the reference motion (Factor 1.0).

Movement speed scaling factor

1.0 1.1 1.2

Time elapsed
62.81 s 62.85 s 62.83 s
(100 %) (100 %) (100 %)

Overshoot - 0.1 mm 0.2 mm

Table 4.5: Required time and overshoot of the tool-tip compared to the original motion for a
force-guarded move onto a flat surface. The values in brackets denote the change in percent to
the reference motion (Factor 1.0).

To measure the impact of sensor-controlled movements (Level 2, closed-loop), we set up
an experiment that moves the robot along the surface of a table at a set distance. For sim-
plicity’s sake, we used a proportional-integral-derivative (PID) controller and determined
reasonable values for the proportional, integral and derivative parts, so that the movements
appear fluid to the human eye. We then scale all values by 10 % and 20 % respectively and
measure the time and the total number of joint rotations that occur while performing this
sensor-controlled movement (see Table 4.4).
In case of sensor-dependent positions (Level 3, closed loop), there are actually two para-
meters we can vary: The first is the speed of the movement itself and the second is the
threshold value of the sensor, that tells us if we have reached the goal position. As with
the other experiments, we employed a force-guarded movement on a flat surface that stops
when the force along the z-axis of the tool-tip exceeds 10 N. In the first experiment we
scale this threshold and measure the time it takes to execute the motion and the overshoot
to the original motion. We repeat each motion ten times and compute the average of both
time and overshoot. In this experiment there were no measurable differences between the
original motion and the two scaled motions, so we conduct a second experiment in which
the threshold value remains unchanged and we scale the motion speed with which we ap-
proached the surface to 90 % and 80 % of the original velocity, respectively (see Table 4.5).

On the highest level (Level 4), the execution order of logical task steps, we defined eight

66

Route length scaling factor

1.0 1.1 1.2

Time elapsed
50.81 s 60.20 s 59.20 s
(100 %) (118 %) (117 %)

Sum of joint-rotations
308.8 ◦ 498.3 ◦ 530.2 ◦

(100 %) (161 %) (172 %)

Table 4.6: Required time and total sum of degrees covered by all robot joints for a route along
all corners of a cube with a side length of 20 cm. Three different routes were used: The shortest,
and two routes that are among the top ten percent and top twenty percent of all possible routes
respectively. The values in brackets denote the change in percent to the reference motion.

Layer of optimization

1 2 3 4

Open loop
3 %

22 % 30 %
18 %

Closed loop 1 % 0 %

Table 4.7: Possible gain on each level of optimization if the corresponding parameters are opti-
mized by 10 %.

positions forming a cube with a uniform side length of 20 cm. The task is to move to all
corners of the cube starting at one corner and then back to the start. This experiment is
a practical implementation of the traveling salesman problem [37]. For eight points there
are 5040 different routes presenting a valid solution. We determined the shortest route and
two routes that are among the top 10 % and 20 % of all routes with respect to their length.
As in all other experiments, we measured the time and the total sum of joint rotations
occurring along the route (see Table 4.6).
We summarize the possible gain yielded by all experiments in Table 4.7. Only the time
potential for an optimization of 10 % is displayed. For the potential at Level 1, we used
the average of three results.

4.3.2 Conclusion

We can see that an optimization by 10 % on a given level seems to be very profitable
for the open-loop parts of the program. However, we have to consider two things: Firstly,
the results for Levels 1 and 2 are of theoretical value at best. An optimization of a robot’s
acceleration profile would require the developer to modify program code at the very heart of
the robot system (if this is possible at all) as this constitutes one of the core functionalities
of the robot. Acceleration profiles are usually set by the manufacturer because of this
reason. Sometimes it is possible to set specific values for the acceleration of each joint of
the robot. But this is done in terms of percentage of the maximal value physically possible.

67

Values cannot be set higher than this. So the best optimization possible is to set all joint
acceleration values to the maximum value. No improvement can be made after this. On
Level 2 the best motion from one position to another is a PTP motion, if there are no
external constraints such as obstacles etc. This motion can be regarded as a straight line
motion in the joint space of the robot and is already the shortest joint motion. While the
results for the closed-loop parts of the program seem to be disappointing, it must be kept
in mind that a good choice of parameters for a given sensor is tricky at best. Unless the
programmer is highly experienced in this field or a very thorough analysis of the parameters
has been made, the choice of these parameters is usually trial-and-error. While the gain is
minimal if an already well-chosen parameter is moved closer to the optimal value, the gain
will be much higher if the same parameter was poorly chosen to begin with. We believe that
the potential for optimization on these levels is much higher than these first experiments
predict. The potential for optimization in Levels 3 (open loop) and 4 is significant and it
might be worth the effort to attempt an optimization for these levels.
In summary, we can say that while optimizations of a robot program are possible on many
levels, some are either of only theoretic value (acceleration profiles), can be optimized
offline by closed solutions (all open-loop aspects) or require extensive further knowledge
about the task, e.g. a model of the workcell (trajectories and logical ordering of parts of
the task). While there is only little to be gained when optimizing closed-loop motions by
10%, the hard part is to find reasonable parameters at all. Here it is of higher interest to
find suitable parameters with only little required input by the developer. The optimization
strategies should remain hidden from the developer as much as possible. In Section 5.3.2
we will show how searches (that are parts of variations) can be optimized significantly
without any input from the developer.
In this work we will deal with optimizations on Levels 3, closed loop, and 4. As outlined
above, Level 1 optimization is made by setting all joint acceleration values to the maximum
value allowed by the manufacturer. We will employ PTP motions with no interval positions
so no optimization can be performed on Levels 2 and 3, open loop. Controlled movements
(Level 2, closed loop) are of importance for processing tasks but only very rarely for
handling tasks. In addition, Dauster [36] has developed a method to automatically optimize
such movements over multiple executions. We will use that work if controlled movements
are required for task execution. On Level 3, closed loop, we are interested in finding sensor-
dependent positions fast and accurately. On Level 4, we are interested in optimizing search
paths, as the whole path can be regarded as a series of movements that are interchangeable.

4.4 Intuitive Sensor Integration

The central question of this chapter is how external sensors can be integrated intuitively
into a given program. Here, we describe how a given static robot program can be extended
by external sensors using the results of the analyses from Sections 4.2 and 4.3.

68

4.4.1 Extending Static Programs by External Sensors

Currently, sensor data processing algorithms are integrated directly into the program. Data
acquisition and processing instructions are interleaved with robot instructions.
The advantage of this approach is that the robot is highly flexible and sensor data pro-
cessing can be optimized along the current robot motion. But the developer must have
a very good understanding how sensor data processing and robot motions interact with
each other. It takes skilled developers to create such programs. Persons with only limited
knowledge in robot programming will have difficulties integrating external sensors in this
way.
In modern robot programs we can distinguish between positional information and the pro-
gram flow. The program flow can be seen as a detailed manual describing how the task is
to be completed. The positional information is separate from this flow in the sense that
this information describes the place where the task is to be executed. For example, this ap-
proach is taken in the Kuka Robot Language (KRL) [6]. Because external sensors describe
alterations of the workspace and no planning capabilities are required (that would alter the
program flow), we take a different approach in this work: Instead of adding more lines of
code to the program, we extend the positional information to incorporate sensors. Since all
workspace changes are related to objects and their positions, it makes sense to encapsulate
sensor data retrieval and processing into the positions. Alterations of the program flow -
that is, executing another branch of the program based on a decision made by an external
sensor - are specifically not addressed here. If these types of decisions must be made, the
developer must modify the program flow. We will explore the use of conditions for a subset
of decisions altering the program flow in Section 4.4.4. Here we want to provide an intuitive
way to integrate this knowledge without the need for special programming skills. This new
concept is illustrated in Figure 4.4.
This approach has the advantage that robot instructions and sensor data processing re-
main separated, which increases maintainability and allows for a more intuitive concept
of programming. Another advantage is that the development is now made by thinking in
workspace alterations only. Humans have a hard time interpreting an abstract sensor signal
or thinking in robot joint values. This extension of the positional information is more intui-
tive than abstract sensor data processing algorithms in the main program and is adequate
to deal with the imperfections in the workspace encountered here.
We have explained how sensor signals are translated into Cartesian descriptions of changes
or are used to check if certain conditions hold in Chapter 3.3. Here, we assume that the
alteration of the workspace can be observed by a sensor and that there is some kind of
sensor transformation function giving us a description of the alteration in terms of either
Cartesian coordinates or object properties, such as shape, colour, etc.
The interaction of all involved components is illustrated in Figure 4.5. The robot system
uses a database (Position Manager) that stores all positions of the program. A robot
position (Extended Position) is not only composed of values describing the position and
orientation of the robot in a taskframe (Basic Position) but also of a number of extensions.
An extension is a description how a sensor signal modifies the position. Each extension

69

Figure 4.4: Proposed concept of sensor data evaluation.

evaluates a sensor and a number of Cartesian change functions and Boolean conditions.
An open question at this point is at which point in time during execution the sensor needs
to be evaluated. We will examine various approaches to this in Section 4.4.5.

4.4.2 Applying Sensor Information to a Position

When a robot requests a position from the database, the database checks if that position
exists first. In the next step the basic coordinates of the required position are retrieved.
Then the database checks if any extensions are attached to the position. These are processed
in the order they were set up. The current sensor value for each extension is retrieved and
used to compute the modification by the sensor. These modifications are added to the

Figure 4.5: Interaction of classes in the proposed framework.

70

default position. The final result then is returned.
The whole process of requesting a position by the robot and answering the request is
shown in Figure 4.6. The sequence diagram shows the process of selecting the position p
from the database and applying the modifications according to the current sensor data.
The position manager looks up p and determines the default coordinates. This involves
accessing the sensor and transforming the sensor data into a position modifier. This is done
in a function called calculateModifier. Depending on the type of extension, this function
performs differently. We will explain this function in detail in the following sections. When
all extensions have been processed, p is passed to the move command.
This is a universal algorithm to evaluate sensor dependent positions, which is by no means
task-dependent. This algorithm can be encapsulated into the programming environment
and will remain hidden from the developer. The advantage is that the developer does not
need to know how different extensions are processed in the database but only needs to
parametrize them.

4.4.3 Modifying Positions Using Geometric Change Functions

This leads directly to the first type of extension that may be attached to a position.
Within a change extension, we specify a sensor S and a corresponding geometric sensor
transformation f . This is attached to a position p. When p is to be approached with a
move command by the robot, S is evaluated and the signal is transformed using f . The
result is a Cartesian description of the current change d. This is applied to p by addition.
This algorithm is encapsulated into the function calculateModifier from Figure 4.6. A
sequence diagram of the function is shown in Figure 4.7. Depending on the type of extension
the sensor data is processed differently.
It should be noted, that we do not deal with trajectories. As illustrated in Section 4.3 the
task of finding a suitable trajectory between two positions requires a detailed model of the
workspace. It is beyond the scope of the actual program to deliver such a model, we assume
that - unless special intermediate positions are provided by the developer - the robot will
always take the shortest path between two consecutive positions. This is usually a straight
line in the joint space of the robot.
With this extension the robot already is capable of localizing objects using the sensor signal.
That is, simple changes can be dealt with. Up to now, searches and advanced drift handling
techniques, such as drift compensation, require further modifications of this framework. We
will explain how these can be handled in Chapters 5 and 6.

4.4.4 On the Use of Conditions in Flexible Robot Programming

Before we explain at which point in time sensor data is evaluated and applied to a position,
we examine the use of conditions in flexible robot programs. Because a condition does not
encode any kind of geometric information per se, but only a binary statement, we cannot
use such properties to modify the robot program directly. So when are conditions used in
robot programming? There are three scenarios where a condition may be used:

71

Figure 4.6: Sequence diagram to request a position from the position database.

72

Figure 4.7: Sequence diagram to apply sensor information to a position. Note, that a call may be
made to retrieve another position. This call will recursively process another extended position as
described in Figure 4.6.

73

1. To modify the general program flow.
In this case a condition will be used to select a certain branch of the program and
execute different sets of motions depending on the result of the evaluation of the
condition. In modern robot programming languages, this concept is called a signal.
Most robot systems are equipped with wiring capabilities to connect external devices
sending electrical inputs to the system. Examples are triggers for light barriers, con-
veyor belts, etc. So these signals can be seen as simple conditions, in the sense that
they also form a boolean decision, but no complex sensor data processing is made to
come up with the result. This includes synchronizing the robot with other machinery,
e.g. conveyor belts.

2. To select a position.
In this case a condition is used to determine a property of some object in the
workspace and move the robot to a position that depends on that property. Un-
like a geometric property, the actual position cannot be inferred from the sensor
signal, but is encoded by the developer. So the relation between the position and the
corresponding condition must be set manually by the developer. An example would
be the selection of the insertion position based on the object’s shape in our example
task.

3. To end a sensor controlled operation.
In this case a condition will instruct the robot to either continue or to stop the ope-
ration and execute subsequent commands in the program. Once again, the condition
will not provide us with any information where the robot shall move, but only with
the information that some kind of sequence must either be continued or repeated. An
example would be the insertion of the disk in its corresponding slot. Here, a condition
would instruct the robot to continue the insertion until the object’s position matches
the position of the slot.

For our work, we are only interested in the second and third scenario. We assume that
the total program flow with all branches has already been laid out, so there will be no
additional sets of motions that need to be integrated into the program as outlined in the
first scenario. The second scenario constitutes a classification based on a condition, while
the third scenario constitutes a search with a terminating condition.
Searches form a subclass of variations where the sensor is used concurrently. We will ex-
plain how these problems are solved in Chapter 5. In this section, we will only outline how
classifications can be integrated into our programming concept, as for these the sensor will
be used preparatoryly:
The developer must specify a mapping C. The purpose of C is to relate a position pi to
a condition ci. C is then attached as an extension to a position pc. The coordinates of pc
are not of importance and may be set to zero. In the program a move command to pc will
access C. All conditions are evaluated and the position pi whose condition evaluates to
true will be approached. The order in which the positions are added to C is of importance.
The first condition that evaluates to true will define the final position.

74

This algorithm is embedded into a new type of extension called classifier extension. A
sequence diagram of the algorithm processing this type of extension is shown in Figure 4.7.
With this extension and the one outlined in the previous section, we can integrate sensors
that are used preparatoryly. The position is modified accordingly before the robot will
move to that position because the sensor information does not depend on a robot’s move-
ment, as opposed to a search motion. If sensors are used concurrently, other more complex
approaches have to be taken. Extensions for this and their corresponding algorithms for
this are described in Chapter 5.

4.4.5 Point in Time to Update the Position Database

Every time the robot moves in the work cell this will influence the sensor values. Some
sensors may only provide useful information at specific points in time. For example a
force/torque sensor mounted to the robot’s wrist can only be used if the robot is in contact
with an object. In other scenarios the robot may move into the field of view of a camera
and occlude the object that is to be supervised by that camera. So, it may be crucial to
access the sensor at a precise point in time when executing the task in order to obtain
meaningful values.
There are four options at what point in time the sensor signal can be evaluated:

1. Permanently at specific intervals

2. When there is a significant change in the sensor signal

3. When the position is accessed in the database

4. When the developer explicitly commands it

In the first, third and last case the sensor is accessed explicitly by a pull from the robot
system. In the second case, the sensor pushes its information to the robot system.
The first option is unacceptable since it will impose a significant computational load onto
the robot system. The retrieval interval must be set relatively low in order to detect changes
as fast as possible. But for a significant number of sensors the system will be kept busy by
just evaluating all sensors and applying the results to all positions in question.
The second option avoids this problem by only sending new sensor information if the signal
has changed significantly. But this will also happen if the change is unintentional, e.g. if
the robot moves into the field of view of the camera. In this case a decision must be made,
if the change is of interest to the robot system, that is if it is a valid change. This decision
is made by so-called validity functions that evaluate the current state of the system and
return a Boolean value. Validity functions fv for a given sensor S, a robot R and a position
p are defined as follows:

fv(S,R) =

{
0 iff R is in such a state that S provides a faulty signal for p

1 iff R is in such a state that S provides a correct signal for p
(4.1)

75

Every time the sensor detects a significant change, the corresponding validity function is
evaluated and only if it evaluates to true the position is updated in the database. The
downside is, that the developer is not only faced with the task of describing how sensor
data modifies the position but must also create a corresponding validity function. Another
disadvantage is that it is not possible to define such a validity function at all unless a
detailed model of the workspace and the robot is available. A good example of this problem
is a distance sensor that will only tell us the distance to the next object in its view. We
have no way of identifying if the object in question is really the object we want to supervise
or the robot that has moved between the sensor and the object. This can only be done
by using a more complex imaging sensor, increasing the complexity to define a validity
function. In case of a distance sensor, the only way is to create a model of the workspace
and the robot and then use this to determine if the robot occludes an object. But this is
an even more difficult and time consuming task contradicting our goal of fast and simple
development for non-experts.
The third case imposes the least workload onto the robot system and is relatively easy to
implement. Only if the position is accessed in the database, the sensor signal is evaluated.
While this is an adequate approach in most cases, it does have its limitations as illustrated
in the examples above.
When the fourth option is pursued, the developer must set specific markers in the program
to inform the database that a sensor shall be evaluated at this point. While this approach
offers the highest flexibility it has some serious drawbacks:

• It violates the concept of strict separation of robot instructions and sensor data
processing. Although sensor data processing is done in the database, the developer
must access the program code to integrate sensors.

• Every time a sensor is evaluated, the database must check all positions if they are
influenced by that sensor. For large databases this imposes a significant workload on
the system. This applies to options 1 and 2 as well.

• When a different type of sensor is used or the program is modified, the position
markers must be checked for correctness again. This reduces re-usability.

Because of this, the third option is the most generally applicable. We will show in Chapter
7 that in most cases the problem of occlusion and faulty sensor data can be avoided already
by either altering the robot’s movements or placing the sensor in a different location. We
will also describe a modification to the developed software to explicitly evaluate a sensor
signal at a given point in time without having to provide a validity function.

4.5 Applicability of the Proposed Concept

In this section we evaluate the proposed programming concept on a theoretical level. Our
focus is to evaluate which applications can be solved with our approach and if there are
limitations that impede a successful execution for some tasks.

76

In a first step, we will take another look at changes in the robot’s workspace. For this we
assume that we have measured the workspace and all objects before we start the execution
of the task. That is, we know every position of every object at this point. Now, when task
execution starts the workspace will change. At the very least because of the motions of
the robot. In addition, the robot will alter the workspace somehow - this is the task it
is supposed to perform. But there may be other alterations as well, e.g. objects will be
delivered via a conveyor belt. So we classify changes of the workspace once more, but this
time with another objective: Is the workspace altered only by the robot or by external
actions as well?
If the only modifications to the workspace are made by the robot, we can maintain a very
exact model of the workspace, since we know all changes because they have to be made
by the robot. This is called a static workspace. An example for this is locating an object
on a non-moving conveyor belt (see Figure 4.8a). Because the position will never change
unless the robot moves the object, we can determine its position using sensors and be sure
that it will remain in the measured position until the robot accesses it. Note that we still
assume that no planning capabilities are required to solve the task. So in principle we can
solve all manipulation tasks in static workspaces with the new concept.
If we allow other machines aside from the robot to modify the workspace, we call this
a dynamic workspace. In this case, we must further differentiate between two types of
modifications

1. We classify a modification of the workspace as discrete in the sense that a modification
will occur at some point in time and the system describing the workspace will enter
a new state and remain unchanged for a prolonged period of time.

2. We classify a modification of the workspace as continuous in the sense that a modi-
fication will occur constantly during parts (or even the whole) of the execution.

Discrete dynamic workspaces are of the same difficulty for the robot as static workspaces,
because the same assumptions hold: If sensors are set up accordingly, the robot will detect
that change and can compute a suitable modification of the corresponding position. Because
this change remains constant, we can argue that the workspace has entered a static state
once again. An example for this is shown in Figure 4.8b. Here, we assume that the conveyor
belt transports the objects until they reach a light barrier at the end of the belt. When this
happens the belt stops. While the belt is moving, the workspace is altered dynamically. But
when it stops, the workspace enters a discrete state once more (until the object blocking
the light barrier is removed). If the state would have altered once more before the robot
could act accordingly, the workspace would be continuous dynamic.
In case of a continuous dynamic workspace we must take a closer look at the response time
tr that passes from detecting and processing a change and approaching the altered p. If in
that time p only changes so much that it is still accurate enough given the tolerances of the
task, we argue that all tasks belonging to this class can be regarded as discrete dynamic.
This holds because the robot is fast enough to react to the change although p will alter
continuously. An example for this is shown in Figure 4.8c. The conveyor belt does not stop,

77

Figure 4.8: Examples of different types of environmen. In all cases the robot shall locate the box
in position p on the conveyor belt using sensor s. (a) depicts a static environment. (b) depicts an
discrete, continuous environment. (c) depicts a continuous environment. (d) depicts a continuous
environment where the change happens too fast for the robot to react in time.

but moves at constant speed that is set so low that it will move only by an insignificant
distance in tr until the robot has moved to this position.
If tr is high or the workspace changes relatively fast, the actual position pa will differ
significantly from the calculated p. If the speed v by which p moves is constant (and we
either know this speed or can measure it somehow), we can employ live coordinate systems
that allow us to model moving positions: We calculate p and apply a live coordinate system
that moves at speed v. Now the position will always be accurate no matter at which point
in time the robot will approach it. If v is not constant, then there is no way we can monitor
that change and act fast enough to encounter it. An example is shown in Figure 4.8d. Here
the speed of the conveyor belt is set so high that the robot is not fast enough to grasp the
object because it will have moved significantly from the calculated position.
In summary, we can say that the proposed concept of adding extensions describing sensor

78

evaluation to robot positions allows manipulation tasks in static and dynamic workspaces
unless the speed at which the monitored positions move is significantly higher than the
robot speed or is not constant.

4.6 Conclusions

In this chapter, we have shown that all workspace changes can be classified by two metrics:
The origin and the occurrence of the change. Changes that require external sensor for
compensation are those that occur frequently, in up to every execution. In a second step
we have classified optimizations of robot programs into four layers of abstraction. We have
shown that for our work the main problem is to design sensor dependend positions and
optimize these with respect to execution time. Based on these two findings we have outlined
a position-centered approach to program robot handling tasks. With this approach, sensor
data processing is coupled to the position database instead of integrating it into the robot
program. The proposed concept is designed to be independent from both the task and the
type of sensor used. We have evaluated at which point in time the sensor information may
be processed and when the position database is to be updated. We have argued that it is
sufficient to evaluate the sensor when the position is called by the robot. In a last step,
we have theoretically evaluated what types of workspace changes in handling tasks can be
encountered with the proposed concept. We have argued, that in principle, we can deal
with all types of workspace changes, unless the alteration happens significantly faster than
the robot’s reaction time or is non-linear.
In Chapter 7, we conduct experiments to evaluate the proposed concept in practice. But
before that we address two problems, that we have factored out so far: In Chapter 5, we
deal with changes requiring iterative compensation. This will require more extensions to
the framework. Another factor we have not dealt with so far is the concept of adaptivity.
For preparatory sensors, there is no need for this as the robot can react immediately to the
change. We will describe various methods to optimize a robot program when concurrent
sensors are used in Chapter 5 as well. In Chapter 6, we deal with changes that occur
unintendedly: drifts caused by abrasion and faulty alignments of objects in the workspace.
Here, we can also employ adaptivity methods to predict arising drifts and encounter these.

79

Chapter 5

Variations

Variations are the main reason to employ external sensors in robot handling tasks. In
this chapter we will explain approaches how the framework devised in Chapter 4.4 can be
used to handle variations. In Section 5.1 we define the term variation and classify different
types of variation by the number of corrections required to compensate them. We show
that there are three different types of variation. We explain that the framework designed
so far is already capable of handling one of these types. The other two types of variation
must be compensated using search motions. In Section 5.2 we evaluate other approaches to
conduct searches in industrial robot tasks. In Sections 5.3 and 5.4 we explain approaches to
deal with the remaining two types of variation - blind and informed searches. We focus on
the optimization of these searches by adaptive means in order to speed up execution time.
In a separate Section 5.5 we explain how searches can be used to learn geometric change
functions during task execution. We summarize this chapter in Section 5.6. The results of
Section 5.3 are published in [43].

5.1 Characteristics of Variations

In Section 4.2 we have explained that a variation is a continuous change caused by the
task. At this point, we will define a variation more precisely.

Definition 4 (Variation) A variation is an alteration of either the position, the orien-
tation or a characteristic of an object involved in a robot handling task from one execution
of the task to the next. This alteration can not be forecast or predicted by mathematical
models.

Unlike a drift (see Chapter 6), a variation is caused by the task and does not have a
preferred direction. How we can deal with a variation is closely related to the question if
the sensor can provide the robot with enough information to compensate the variation in
a single motion or if multiple motions may be required.

80

Figure 5.1: Variations that can be
resolved using preparatory sensors.
(a) A distance sensor is used to loca-
te an object on a conveyor belt using
a geometric property. (b) A came-
ra is used to determine the shape of
the object and place it accordingly
using a conditional property.

5.1.1 Direct Compensation

In many cases, the robot can compensate the variation with a single motion. Typically this
is the case if sensors are used preparatoryly. This is because we can determine the state
of the object without the need for the robot to perform a series of motions1. The sensor
will provide us with sufficient information to resolve the variation and modify subsequent
motions accordingly. This is enough to compensate the variation correctly. It is not of
importance if the sensor provides us with a geometric description of the variation or a
conditional property or both.

• In case of a geometric property, we use the corresponding change function to calcu-
late a Cartesian description of the variation and apply this to the default position
as described in Section 4.4.1. An example for this kind of variation is shown in Fi-
gure 5.1 on the left. Here, a distance sensor determines the location of an object on
the conveyor belt. The robot evaluates the corresponding change function and can
immediately grasp the object with a single motion.

• In case of a conditional property, we use a mapping to link the state of the object to
a set position as outlined in Section 4.4.4. An example for this kind of supervision is
shown in Figure 5.1 on the right. Here, the robot grasps the object and holds it in
front of a camera. A conditional property function is used to determine the shape of
the object. Depending on the shape, the object is placed in a corresponding position.
Again, this can be done with a single motion.

• If the sensor is capable of measuring both, a geometric property and a conditional
property, we can discard the conditional property and just use the geometric property.

The framework outlined in Section 4.4 is already capable of handling variations that can be
compensated with a single motion. The extensions used for this are described in Sections
4.4.1 and 4.4.4. Sequence diagrams of the algorithms are shown in Figure 4.7.

1This can still imply that the robot has to move to a certain position or grasp the object before the
variation can be measured.

81

5.1.2 Iterative Compensation

Sometimes the robot cannot compensate the variation in a single motion. The robot must
perform multiple measurements of the variation and corrective motions until the variation
has been compensated. A typical example are insertion procedures. Here it is usually
impossible to insert an object with only one motion. Instead the insertion is executed
partially. Then the state of the object is measured anew and the next part of the insertion
is executed. This case requires at least a condition function to evaluate if another motion
has to take place or if the variation was encountered correctly. In case of an insertion this
would mean, that the sensor must at least be able to check if the insertion was successful
or must be continued.
If we only needed to infer a geometric property, this would imply that just a single motion
is sufficient to encounter the variation. In this case we perform a supervision, which we are
capable of solving already as outlined in the previous section.
For variations that must be compensated iteratively, there are two possibilities:

• There is only a conditional property available to check if the variation has been
encountered correctly. In this case the robot must perform a blind search: The search
path is fixed and does not depend on sensor information. An example for this kind
of variation is shown in Figure 5.2 on the left. A force/torque sensor is used to locate
the hole on a plate. The information provided by the sensor can only be used to check
if the robot has found the hole or not. No information is given about its location in
relation to the robot’s position. The search path is fixed and will be followed by the
robot until the hole has been found.

• Not only is there a (terminating) condition, but also a geometric change function.
In this case the robot performs an informed search: The change function is used to
calculate the next position in the search path. An example for this kind of variation
is shown in Figure 5.2 on the right. The robot shall insert an object into its corre-
sponding slot using a force/torque sensor. The sensor is not only used to check if the
insertion was successful but also allows the measurement of moments and forces to
infer the next position of the insertion.

These two types of variation cannot be solved by the framework so far. The reason is
that up to now, the sensor is evaluated exactly once and its result is either added to the
position stored in the database or is used to select a position from the database. In order
to encounter these new types of variation, the robot must be able to check the sensor
repeatedly and act accordingly. This results in a loop. The terminating condition is the
conditional property to check if the search has terminated.

5.1.3 Extending the Framework to Handle Search Motions

In order to conduct searches, we must first extend our framework. We define a search in
an industrial handling context as follows:

82

Figure 5.2: Variations that must be
resolved using concurrent sensors. (a)
A force/torque sensor is used to check
if the robot has located the goal po-
sition while searching for a hole in a
peg-in-hole task. (b) A force/torque
sensor is used not only to check if
an insertion was successful but also
to determine the next position during
that insertion.

Definition 5 (Search) A search is the coverage of an n-dimensional region R, defined by

• a search path PR covering R or

• a function fR evaluating some sensor signal sv to determine the next search position

and a condition cR evaluating a (different) sensor sR testing the termination of the search.
The search begins in an arbitrary position in R and moves to subsequent positions within
R which are either defined using PR or by using fR with the sensor signal of the current
position. The search terminates successfully when cR evaluates to true and fails if R has
been covered completely without cR = 1 in the last position.

This results in a straightforward implementation of a search extension for a position. This
extension realizes a while-loop that terminates when cR evaluates to true. In every execution
of the loop the robot moves to the new position either specified by PR or by fR. The
implementation in pseudocode looks like this:

Pseudocode 4 (Search extension)
1 WHILE(!c_R AND !searchSpaceCovered()) {

2 IF(fixed_path())

3 nextPosition = nextPositionInPath();

4 ELSE

5 nextPosition = applyChangeFunction(getSensor());

6 move nextPosition();

7 }

The next position in the search is either calculated by traversing the search path or eva-
luating sR. The execution terminates when either cR evaluates to true or the function
searchSpaceCovered() indicates that R has been searched completely.
Unlike variations that are compensated directly, the robot must perform multiple motions

83

when processing a search. Because of this, we must augment the sequence diagram from
Section 4.7. In order to conduct a search, the position database must execute a while-loop
when processing the extension. In this loop the next position in the search is either extrac-
ted from the path PR or calculated using fR. Then this (intermediate) position is sent to
the robot. When the robot has approached the position, it informs the position database.
At this point the terminating condition cR is checked.
This modification leads to a new case in the sequence diagram, which is processed for
search extensions. This addition is shown in Figure 5.3.
Three things are noteworthy about this extension: Firstly, the developer does not have to
deal with the creation of this while-loop, as it will be the same for all types of search. Se-
condly, while this construct effectively sends move commands to the robot, it is nonetheless
associated with the position database and not the program code. This is because access
of a position augmented with a search extension does not return a single position but an
array. The robot will then move to every position in this array, but will stop when cR is
met. So the distinction between positional information and program code is maintained.
Thirdly, in case of complex insertion operations it may be necessary to move from one
position to the next not in a straight line but on a given trajectory. There are two ways to
achieve this. Either the developer also specifies a function that computes the trajectory for
two given points or the trajectory itself is split into a series of straight line motions and
each intermediate point is added into the search path as well.

5.2 Related Work

Before we examine the different types of searches any further, we will (briefly) evaluate
other concepts concerning industrial search motions. The topic of robots performing search
otions in different areas is very wide, so we will only refer to works dealing with searches
in industrial environments with results that can be transferred to this domain.
A good overview is given in [110]. Despite the fact that sensor data processing has ma-
de significant progress allowing for relatively fast processing capabilities, standard search
motions which only use minimal sensory information are still commonly used in industrial
applications. Also of interest are the works of [114] and [72] which cover robot motion
planning based on sensor data and probability densities.
If a search cannot be avoided, usually cameras are used to supervise the search area for
the given variation. While this approach is straightforward and has the advantage that the
localization can be made while the robot performs some other task, this is only applica-
ble if the search area can be monitored at all. A typical example for a task where this is
impossible is the assembly of a gear box in a car. Tolerances are extremely small and the
search area is occluded by other parts of the vehicle so camera supervision is impossible
and local sensors must be used. Images of a key insertion using insertion maps is shown in
Figure 5.15.
Sharma [109] incorporates stochastic models into gross motion planning and defines a sto-
chastic assembly process that yields increased performance.

84

Figure 5.3: Addition to the sequence diagram 4.7 from Section 4.4.2. In case of a search motion
the next position in the search is calculated (which may be done using a sensor) and send to the
robot. When the robot acknowledges the position, the condition is checked and - depending on
the result - the search either continues or terminates.

85

One important field of research outside the industrial domain is complete coverage paths
in mobile robotics. Here a robot must cover an area e.g. to search for injured people after
an accident. A good overview of this field of research is given by [132]. Also of interest is
[61], which uses a genetic algorithm approach and knowledge gained in previous executions
to optimize the path of a mobile robot.
There exist a multiplicity of approaches for various instances of the peg-in-hole problem,
which is a special kind of informed search. These were already discussed in Section 2.3 and
2.4. The downside to all of these solutions is that they are geared towards specific tasks or
types of sensor. There are only a couple of general approaches which will be discussed in
detail in Section 5.4.
In summary, efficient search strategies are one of the central problems of robotics. While
there are many specific solutions, e.g. [32] and [53], these are nearly always tailored towards
specific tasks and the results can rarely be transferred to other areas.
In this work, we take a more general approach to search motions for industrial applications
and outline the requirements for optimized search strategies as this widens the possibility
of application. Unlike searches in unstructured environments the search area is precisely
defined in industrial applications and does not change over multiple executions. The only
requirement is that it provides a binary decision whether the goal of the search has been
found or not.

5.3 Blind Searches

As defined in Section 5.1.3, a search is either defined by a fixed search path or a function
which is used to calculate the next position in the search space. Both cases require a
terminating condition. In this section, we focus on searches with fixed search paths. We
call this type of search a blind search. The sensor is only used to check if the search has
terminated. The search path itself will not be modified during the search. However, it
is possible to generate different search paths for every execution. This concept will be
explained in detail in Section 5.3.2.
A blind search is a motion that covers a specified area with a fixed set of motions in order
to locate an object whose exact position pg is unknown. Exactly one object is searched for
at a time. Here, we set the following preconditions:

1. The search area can be m-dimensional, but its boundary in every dimension must
be a straight line. The area can be divided into a set R̂ of cells describing discrete
(hyper) cubes with fixed edge length δc. When the robot moves to a cell, the whole
area covered by that cube is probed. The decision whether pg is found is binary, so
there are no hints guiding us towards the goal. We assume that it takes a constant
time span to check if the goal is located in a cell.

2. There are no restirctions in movements between two cells. There is no need for a
neighbouring connection between two cells. No cell lying between the current and
the next is tested when moving there.

86

3. A valid search path P = (p0, ..., p|R̂|) must visit each cell of the whole area at least

once. We include the possibility that the search fails: pg /∈ R̂. A search path is then

an ordered sequence of all cells in R̂.

4. The distance between two cells is relevant when planning the path. There is a positive
cost function d(ci, cj) describing the time and effort to move from cell ci to cj. Two
neighbouring cells have unit distance.

These conditions describe the general requirements imposed on a search path. Additionally,
a change of direction in the search path may slow down the motion in order to perform
the turn along the path. We disregard this factor here. Search paths are rated along their
respective total (maximum) length l.

5.3.1 Standard Search Paths

In case a blind search is required it is impossible to specify a fixed execution time as we
cannot say at which point in the search pg is reached. Because of this, we must calculate
the worst case time the search may take. This is the time it takes the robot to traverse
the whole search path if pg happens to be the very last position in the path or is not
found at all. In order to maintain reasonable execution times when blind searches are
employed, developers usually create search paths that always move to adjacent cells in R̂.
This approach yields the advantage that the distance between two positions in PR is always
1. If the path has no dead ends, this will yield a total path length of l = |R̂|. This is the
optimal value for any search path in R̂.
There are many ways to create paths with optimal length for a given search space R̂.
Mathematically, this problem is equal to finding an arrangement of all positions in R̂
where

d(pi, pi+1) = 1 ∀pi ∈ {0, . . . |R̂| − 1} (5.1)

In practice, there are a number of ways to order the cells in PR algorithmically ensuring
an optimal total path length. We discuss a selection of these in this section. This is by no
means a complete collection, but serves to illustrate ’common practice’ in modern robot
programming.
For one dimension a standard search path simply orders all cells in a straight line from the
beginning to the end of the search range. The search starts at one end of R̂ and moves in
steps of unit length until the other end is reached.
There are two de-facto standard search paths for searches in two-dimensional environments:
A zigzag path and a spiral path (see Figure 5.4). The zigzag path starts at one corner of R̂
and traverses along the border of one dimension until the end of that dimension is reached.
Then one step is taken in the second dimension moving to the neighbouring cell. The path
leads back parallel to the first line to the beginning of the first dimension. This process is
repeated until the end of the second dimension is reached. In a continuous search space,
the spiral path starts in the center of R̂ and describes a circular motion which continually
extends until the borders of R̂ are reached. In a discrete search space, there are only four

87

Figure 5.4: De-facto standard paths for searches in a two-dimensional plane providing a minimal
path length l. Left: A zigzag path is used if there is no knowledge present about the distribution
of pg. Middle: A spiral path is used when the developer suspects that pg is usually located in the
center of R. Right: Spiral paths fail to cover R with minimal l if the search area is not square.

directions the path can take: Up, down, left and right. But the motion is analog to the
continuous spiral path. Spiral paths are preferred to zigzag paths if the goal position pg is
more commonly located in the center of PR.
Standard search paths can be generated for any dimension n using the following recursive
algorithm.

Pseudocode 5 (Creation of a n-dimensional standard path)
1 path createPath(int dim, int[] max_delta, int[] delta)

2 {

3 path P, R;

4 if(dim == 1)

5 return createStraightLine(0, max_delta[0], delta[0]);

6 else

7 {

8 R = createPath(dim-1, max_delta, delta);

9 liftPath(R, dim);

10 setCoordinates(R, dim, 0);

11 int delta_cnt = 0;

12 while(delta_cnt < max_delta[dim])

13 {

14 if(delta_cnt%2 == 0)

15 appendPath(P, R);

16 else

17 appendPath(P, reverse(R));

18 delta_cnt += delta[dim];

19 setCoordinates(R, dim, delta_cnt);

20 }

21 }

88

Figure 5.5: Two examples to create a higher dimensional path using a standard path from a lower
dimension. Left: A one-dimensional straight search Q and its reversal Q′ are used to construct
a two-dimensional search path. Right: The two-dimensional search path from the left is used to
create a three-dimensional search path.

22 return P;

23 }

Without loss of generality, we assume that all dimensions in R̂ start at 0 and extend to
maxi for every dimension i. Additionally, we set ∆ci = 1 ∀i, so we will perform steps of
size one in every direction. PR will start at p0 = {m0 = 0,m1 = 0, ...,mn = 0}.
The algorithm takes the following arguments: The dimensionality of the path and two
arrays describing the extent and step sizes of every dimension. We start with an empty
path P = {} (line 3). If the dimension equals 1, a straight line is created and immediately
returned. Otherwise a standard path Q of dimension n − 1 is created. In case of n = 1,
this will be a straight line from m0 = 0 to m0 = max0 (line 5). Otherwise the algorithm
calls itself to generate a path of dimension n− 1 (line 8).
Now we have obtained a standard path Q of dimension n−1. We lift the dimensionality of
every position in Q from n− 1 to n (line 9). The value of the nth dimension mn is initially
set to zero (line 10). We use a function reverse that takes a path as argument and returns
the reversed path.
In the next steps, we append Q and reverse(Q) in an interleaving approach to the final
path P (lines 12 to 20). We append the paths in the following order: Q, reverse(Q), · · · .
Every time a complete path is appended to P , we increase mn by ∆c and set the dimension
accordingly (lines 18 and 19). This process is repeated until mn = maxn. The path P is
returned (line 22).
The algorithm is illustrated for a two- and a three-dimensional path in Figure 5.5. Some
aspects are noteworthy about these standard search paths:

89

• All paths are optimal regarding their length and no cell is visited twice. So l =
∆c× |R̂|. This results in a minimal worst case time to traverse R̂ completely.

• Spiral paths can only be generated for two-dimensional searches. It is impossible
to extend such a path into three or more dimensions without losing optimality for
Gaussian probability distributions.

• Spiral paths can only be generated when the number of cells in both dimensions does
not differ by more than one. Otherwise R̂ is not square and the spiral will block itself
from reaching parts of R̂ eventually (see Figure 5.4).

5.3.2 Probability Based Search Paths

The central idea of this section is to re-use knowledge gained in previous searches to create
search paths tailored to the task and thus shorten the time span required for the search. Up
to now, we have assumed, that we only have little or no information about pg. In case of a
two-dimensional search, a spiral search is preferred to a zigzag search if we suspect pg to be

at the center of R̂. Apart from that we have always assumed that we have no information
about the location of pg. In this case standard paths are optimal for all dimensions of R̂
because they are optimal with respect to the total path length.
But a robot usually executes the same task several times. Every time a blind search is
conducted, we gain some information about pg. For this, we present the concept of a search
path generated along a given probability density. The idea is that the robot stores successful
positions from previous executions and creates a probability density from this knowledge.
This can be achieved by employing the methods described in [95]. The path is not fixed
and may change with every update of the probability density.
In addition to the conditions outlined at the beginning of Section 5.3, we add a fifth
precondition:

5. There is a probability density ϕ describing the chance that the object lies within any
given cell. This density may be continuous.

Condition 5 is an addition describing the knowledge we have gained about the location
of the object that we are searching so far. This allows us to start the search at the most
probable cell and descend along the density instead of employing a pre-determined path.
Some examples of probability distributions on a two-dimensional plane are shown in Figure
5.6.
Apart from the total path length l we will use two more criteria along which we compare
different search paths to each other: (1) The expected number of cells visited EC(P)

EC(P) =

|P |∑
i=1

ϕ(pi) · i (5.2)

90

Figure 5.6: Examples for different probability densities in a two-dimensional plane. (a) A Gaussian
density with center in the middle of R̂. (b) An off-centered density where the maximum lies along
a quarter circle in the third quadrant of R̂. (c) A multi-modal density with four maxima in R̂.

as well as (2) the expected length of the path EL(P) for the given probability density ϕ(pi)
and path PR

EL(P) =

|P |∑
i=1

ϕ(pi) · d(pi−1, pi) (5.3)

A developer faced with the task of designing a search path should consider two aspects.
On the one hand, it may be useful to limit the total length to its minimal value, so the
path is not exceedingly long. On the other hand if the average search time is crucial, it
may make more sense to create a search path with higher total length but lower expected
values. The type of search decides which of the two expected values is more important: If
the movement between two cells is relatively fast compared to the time it takes to check
a cell, the number of cells visited is significant. In case of slow motions, e.g. controlled
movements along surfaces, the expected length is of more importance.
When standard paths are used, the zigzag path is usually chosen if the probability density
is uniform, so there is no need to start at a specific cell.2 The spiral path usually is chosen
when ϕ is unimodal, e.g. Gaussian, with mean at the middle of R̂. In this case the search
starts in the most likely position and gradually descends along ϕ. Fleischer showed that
this type of path is optimal if pg is subject to a Gaussian probability distribution with a

mean at the center of R̂ [51].
Now we are interested in finding search paths that optimize the expected values for a given
probability density. A search path which is minimal in this sense will find pg as soon as
possible.
To create a search path P with lower expected values than a standard path for the given
dimension of Ŝ, we have to approach cells with high probability first while neglecting cells
with low probability until the end of the search. In case the expected length of the path

2All standard paths are optimal in every dimension when the probability distribution is uniform. This
is because they are optimal with regard to their total length l and ϕ(pi) = c ∀pi ∈ P .

91

is of importance, it should be attempted to minimize huge jumps across R̂ as much as
possible. The downside is that the distance between two consecutive cells in P now may
be much higher than 1. So this search path may not be minimal with respect to the total
length.
In a sorting strategy to generate an optimized search path, the cells of R̂ are ordered like
this: The beginning of the path is the most probable cell, so

p0 = {ci|ci ∈ R̂ ∧ ∀cj ∈ R̂ : ϕ(ci) ≥ ϕ(cj)} (5.4)

The remaining cells of the path are chosen by a recursive definition: We always choose the
next cell according to its probability in relation to its distance d to the current cell, so

pk+1 = {ci|ci ∈ R̂ \ {p0, . . . , pk} ∧ ∀cj ∈ R̂ \ {p0, . . . , pk} :
ϕ(ci)

d(pk, ci)n
>

ϕ(cj)

d(pk, cj)n
} (5.5)

The impact of the distance when choosing the next cell is controlled by the exponent n,
which must not be negative. The choice of this parameter depends on the type of application
and must be chosen by the developer. The lower the value of n, the smaller the impact on
the distance in the selection process. So cells with a high distance to the current cell may
be selected as well. The higher n is, the more the selection process favours cells that lie
close to the current cell. Note that if n is set to zero, the cells are simply ordered along
their respective probability. This will minimize the expected number of cells visited, but
result in an extremly long total path, as it will cover great distances to move from one
cell to the next (Figure 5.7, left). Vice versa, if n is set to infinity, the path always moves
to neighbouring cells (Figure 5.7, right). Technically, we cannot get stuck in dead ends,
because of Condition 2 (see Section 5.3). But it is possible that we must move to a cell
far away from the current one, because there are no neighbouring cells left. This strategy
is not heuristic but always computes the best path for the given probability density and
choice of n. It may be possible that more than one path exists with the same expected
value. An example is shown in Figure 5.7 on the right for a Gaussian distribution. All
spiral paths that start at the center will have the same expected value regardless of the
fact which neighbouring cell is visited first. The strategy presented here only computes one
of these paths.h e internal ordering of cells with the same probability and relative distance
to the current cell decides which this will be.

5.3.3 Experiments

In this section we describe simulation results to show how optimized search paths compare
to standard search paths for various probability densities. We have limited the simulations
to a two-dimensional workspace. In this case the paths are already complex compared to
a one-dimensional search, but still can be visualized.

Simulation Setup

We have set up a two-dimensional squared workspace with an edge length of 15cm. The
position we are trying to find is a hole with a diameter of 1.5cm. We have set the size of

92

Figure 5.7: Impact of the distance when sorting cells. Both paths begin at the center. Left: The
relative distance between the cells has no impact at all. Right: The relative distance between the
cells is of infinite impact.

the cells in R to ∆c = 1cm2. This gives us 225 cells in the search area. So, there are 225!
possible search paths, which is already too much for a brute-force computation.
We have created three probability densities:

1. A Gaussian density ϕg with mean pm = (7, 7) cm at the middle of R and σ = 1 cm.

2. A mixed Gaussian density ϕm consisting of four maxima at p1 = (3, 3) cm, p2 =
(11, 3) cm, p3 = (3, 11) cm, p4 = (11, 11) cm and σ = 1 cm each. A typical example
for such a density is a peg-in-hole task on a square plate where the hole is not centered
and the plate may be rotated by 90◦, 180◦ or 270◦.

3. An off-centered density ϕc with a maximum along the third quadrant in a circle
around pm with radius r = 5 cm. A typical example for such a density is a peg-in-
hole task where the plate may be rotated by any value between 0◦ and 90◦.

Plots of these three densities are shown in Figure 5.6. We have not used a uniform density,
because no knowledge is present in such a density. To that effect, the expected value of all
search paths is identical. The only difference will be in the total length. Because of that it
is sufficient to use a standard search path.

Comparison to a Standard Path

We used these three densities and generated search paths for each one. For each density
we generated paths with varying values for n in the range [0; 10] with increments of 0.1.
We then compared the generated paths to a standard spiral path starting at the center
and measured the ratio by which the total length and the expected values differ from this

93

standard path. Figure 5.8 shows two paths for the Gaussian probability density for four
different values of n. Figures 5.9 and 5.10 show generated paths for the same values of n
for the other two probability densities.
We can see that the sorting strategy generates paths that follow the underlying density
and prefer neighbouring cells. For low values of n there are significant jumps in the path.
The higher n is set there more neighbouring cells are preferred. Nevertheless, these paths
can lead to dead ends as well. In this case substantial jumps have to be made to reach cells
not yet visited.
Now we compare this strategy to a spiral path. Figure 5.11 shows the ratio by how much
the generated paths relate to the spiral path for different values of n. We compare all paths
by the expected number of cells visited before pg is found, the length of this expected path
and the total path length. All results are set into relation to a spiral path starting at the
center of R. A value larger than one means that the generated path performs superior to
the spiral path. Vice versa a value below one means that the path performs worse than the
spiral path.
In all cases, the total path length (blue line) is higher, therefore worse, than that of the
spiral path, which already is optimal. But with higher values of n, the paths draw near the
optimal length.
For low values of n, the sorting strategy generates paths that test significantly fewer cells
than the spiral path (red line). But, because these cells are far apart, the expected length
covered (green line) may be worse than that of the spiral path. With higher values for n,
the two lines converge, because now neighbouring cells are preferred, similar to the spiral
path. The higher n gets, the lower the advantage of the sorting strategy, because of the
dominance of neighbouring cells in the selection process.

Random Probability Densities

In the next step, we have generated random probability densities in order to evaluate
our strategy for a broader set of probability densities. We have created these densities by
randomly placing k Gaussians uniformly in the search area. For every value of k up to 256,
we have created 100 different probability densities. Then, the sorting strategy is applied to
each density with various settings for n. We compare the generated paths to the standard
spiral path and compute the average for each combination of k and n. The results are
shown in Figure 5.12.
We can see that the generated paths perform better than the spiral path for low values of
k regardless of the choice of n in terms of the expected length of the path (Figure 5.12,
left). The more Gaussians are combined the more the overall probability density converges
to a uniform density. In this case neither the optimized paths nor the spiral paths are
superior because there is no information present in the probability density at all. When we
take a look at the overall length of the search path (Figure 5.12, right), once more we can
see that paths generated with a low impact of the relative distance between two cells are
significantly longer than the spiral path. With increasing n, the optimized paths are nearly
as short as the spiral path. There are two noteworthy aspects: The ratio increases faster

94

Figure 5.8: Different search paths created for a Gaussian probability density. The impact of the
factor n on the distance between consecutive cells in the path is shown over each image. Top left:
For n = 0.0 the cell with the highest overall probability is chosen next, regardless of its distance.
Top right: For n = 0.1 there are still significant ’jumps’ in the path. Bottom left: For n = 1.0
there are only significant jumps in the path, when the path is in a dead end. Bottom right: For
n = 5.0 the path tries to avoid dead ends as much as possible.

95

Figure 5.9: Different search paths created for an off-centered probability density. The interpreta-
tion is analog to Figure 5.8.

96

Figure 5.10: Different search paths created for a multi-modal probability density. The interpreta-
tion is analog to Figure 5.8.

97

Figure 5.11: Comparison of probability based search paths to a spiral search path for the pro-
bability densities shown in Figure 5.6 for different values of n. The red line shows the ratio of
the expected number of cells visited. The green line shows the ratio of the expected length of the
search path. The blue line shows the ratio of the total length of the search path. Top: Results for
a Gaussian probability density. Middle: Results for an off-centered probability density. Bottom:
Results for a multi-modal probability density.

98

Figure 5.12: Expected length of path (left) and total length of path (right) in relation to a standard
spiral path for the varying values of k and n.

for high values of k. This is because the Gaussians lie closer to each other. But for high
values of k and n, the ratio decreases. This is because now there are so many Gaussians
in the overall density that the path tends to lead into corners and large jumps have to be
made to approach the next free cell increasing the total length of the path.

5.3.4 Conclusion

Blind searches are a part of general searches, where the search path is preset and does not
change during one instance of the search.
Blind search paths based on probability densities are capable of locating the position in
question faster than standard search paths. The central idea is to search in areas with high
probability of success first in order to maximize the expected value.
We have described the general requirements for path planning and three ways to rate search
paths. While standard paths are optimal with respect to the total length, optimized paths
are improved standard paths in terms of the average time the search takes. We have shown
in simulations that for Gaussian probability densities, the optimized paths perform almost
as well as standard paths and even better if there is more information present about the
search area. The strategy presented here is not heuristic, but always computes the best
path for a given probability density and choice of the impact of the distance between two
consecutive cells.
The advantage of our approach is that standard search paths can be seen as special solu-
tions to the more general approach taken here. The algorithms to create optimized paths

99

are independent from the type of task. They can be incorporated into the programming
environment and no additional knowledge is required by the developer. The update of the
probability density describing the search area and the path planner itself are completely
hidden from the developer.
This kind of search only requires a terminating condition to be specified by the developer.
Depending on the task, this may be very simple or extremely difficult. As we are aiming for
generality, it is not possible to describe methodologies to create such conditions. As an out-
look, there is the idea of an automated analysis of sensor data recorded during (multiple)
exemplary executions of the search. Since the search terminates when some aspect of the
sensor data changes significantly, discontinuity detection methods [106] may be employed
to create conditions automatically.

5.4 Informed Search

Blind searches constitute the simplest form of search. The robot moves along a given path
until a condition is met. This approach works for a lot of tasks, but has two significant
disadvantages:

1. We may gain more information from a sensor than the mere signal to terminate the
search. Sometimes changes in the sensor data give us some kind of information in
which direction the search should move. If the path is modified accordingly, the time
required for the search may be decreased significantly.

2. Especially for peg-in-hole operations fixed paths may not make sense. Because the
object can get stuck successful insertion cannot be guaranteed. Here, it is necessary
to move the object in a specified sequence to achieve insertion.

To encounter these problems we establish informed searches. Here, in addition to the ter-
minating condition, a function fR is used instead of a fixed path. The function takes the
current sensor signal as an argument and computes the next position of the search.
The exact type of fR is highly dependent on the type of task and the sensor used. For
example fR for any type of search will differ significantly if a force/torque sensor or if a
camera is used. Likewise, a function fR to insert a round peg into a hole is only of limited
use should the shape of the peg be square.
Because of this, the developer must create this function by himself. In this section, we
outline some basic approaches of ’best practices’ to create such functions. The focus lies on
easy and fast creation of fR not on optimality with respect to any of the criteria formulated
in Section 5.3.
Similar to blind searches, informed searches can be conducted easily with the proposed
framework. The developer not only specifies a terminating condition but also the function
fR to compute the next position in the search. It should be noted, that here fR must be a
geometric change function because the robot needs to know where the next position in the
search shall be. This information can either be given in absolute coordinates or relative to

100

the robot’s current position. The search is then realized with the algorithm embedded in
the search extension described in Section 5.1.3.

5.4.1 Linear Correction

In many cases, the relation between the sensor signal and the next (or final) position in the
search is linear. A classic example is the insertion of objects using a force/torque sensor as
shown in Figure 5.13. An offset of the object along the x-axis will induce a moment along
the y-axis. Here, the relation between the offset and the resulting moment is linear.
This leads to very simple strategy to conduct informed searches: The developer specifies
which sensor data will influence the search into which direction and sets a scaling factor.
This information can be encoded in a three tuple (ci, sj, fj). Each tuple instructs the robot
to calculate the next position pj+1 by taking the i-th coordinate ci of the current position
pj and modifying it by the sensor value sj that is scaled by fj. More than one of these
tuples can be created to allow for searches in multiple dimensions.
An example for a two-dimensional insertion of a round peg would look like this: We use a
force/torque sensor which provides us with a six-dimensional measurement of the current
forces and torques in x-, y- and z-direction of the robot’s tooltip. The whole sensor data
is encapsulated in a six-vector s, where s[3] describes the current moment measured along
the x-axis, mx, and s[4] describes the current moment measured along the y-axis, my. We
create two tuples t1 = (0, s[4], 0.001) and t2 = (1, s[3], 0.001) meaning that we will modify
the x-axis of the current search position by my scaled by 0.001 and the y-axis by mx scaled
by 0.001. The next search position pi+1 is then calculated as

pi+1 = pi +

(
my · 0.001
mx · 0.001

)
(5.6)

where pi is the current position of the search.
Note that in this example no boundary checking is enforced. This means that the robot
may leave R̂. Boundary checking can be easily included in the algorithm, but may result in
failing searches when the next position would be computed to lie outside R̂. In this case,
the search must terminate without success.
With this algorithm even some types of searches can be realized where the relation between
sensor signal and next position is not linear but only monotonic. In this case, the scaling
factor must be chosen very carefully to prevent overshoot for either small or large sensor
values.
One idea to integrate adaptivity into this type of search is to optimize the scaling factor.
When a search has been executed we can re-construct the whole search path from start to
end. This allows us to compute an optimal value for the scaling factor which would have
moved the robot from the starting position directly to the goal. This factor may then be
used in the next execution of the search.

101

Figure 5.13: Example tasks for a simple informed search using linear correction. Left: One-
dimensional insertion: A force/torque sensor is used to measure the moments along the y-axis.
The measured values are scaled and applied to move the robot along the x-axis. Right: Two-
dimensional insertion: The moments along the x- and y-axis are measured and scaled and applied
to the y- and x-axis in order to insert the disk.

5.4.2 Partitioning the Problem

We are not trying to create an optimal solution, but favour simplicity of programming
and prefer solutions which are stable enough to be successful but may be slow compared
to other, more detailed approaches. One way to achieve this is to split the task into a
series of smaller, more easy searches. The proposed framework allows us to create multiple
extensions and add all of these to the same position.
It is up to the developer to figure out if the task can be divided into a series of smaller,
simpler searches. Every search will then be realized as a separate extension.
An example is shown in Figure 5.14. We want to insert a quadratic peg into a hole. Instead
of developing a complex function which inserts the peg in one fluent motion, we sub-divide
the problem into three searches: Firstly, we perform a blind search to align the peg’s ro-
tation with the hole (Figure 5.14, left). We bring the peg into contact with the plate and
simply rotate it until we measure a significant moment either along the x- or y-axis or if
the force along the z-axis is close to zero. This will happen when the peg has the same
orientation as the hole. In a second step, we use a linear correction search described in
Section 5.4.1 along the robot’s x-axis to align the peg with two sides of the hole. In a third
and final search we perform another linear correction to insert the peg. It should be noted
that this is by no means an optimal strategy and is prone to a large number of problems.
More practical solutions tilt the peg in order to ensure a more stable insertion. But these
strategies are also a lot more difficult to realize, especially for unskilled developers.

102

Figure 5.14: Example to partition a complex informed search into a series of simpler searches.
Left: When inserting a quadratic disk, in a first step the disk’s rotation is compensated. Middle:
In the second step, the disk is aligned with two sides of the hole. Right: In the final step, the
insertion is completed. Each step is realized using a linear correction search in one dimension
each.

This strategy fails when parts of the task must be executed repeatedly. The framework on-
ly supports sequential processing of extensions. It is not possible to either skip extensions
depending on conditions or repeat them for a number of times. We will discuss the impli-
cations of this constraint in Section 8.2.2. One could argue that it may be practical if if-
and while-constructs were also permitted when extending a position. But it should be kept
in mind that such complex extensions may also be realized with a single change-function.
This change-function must employ an internal state machine to reflect the implications of
previous calls. In principle this is possible, but demands high skills from the developer. In
practice this results in another mixture of sensor data processing and robot motions, only
that robot motions are mapped to internal states of the change function.

5.4.3 Insertion Maps

Insertion maps are a different approach to realize complex informed searches. The concept
was developed by Chhatpar [33]. The central idea is to create a k-dimensional map that
stores sensor values for all possible locations in the search space. The variable k specifies
the dimension of the sensor signal. This is done in a pre-processing step before the actual
execution and can be automated (see Figure 5.15). In execution, this map is used by an
algorithm to locate the robot in R and then navigate it to the goal position. The algorithm
computes a series of motions to narrow down the amount of potential locations should
the current set of sensor values match multiple positions. Once there is only one possible

103

Figure 5.15: Example for the use of
insertion maps. Left: A key shall be
inserted into a lock with extremely
low tolerances. Right: Sensor values
for all possible locations in the search
space are recorded and stored in a
map. This step is performed during
setup. In execution, a localization al-
gorithm computes the matching po-
sition of the key and then traverses
along the map to the goal position.
Image courtesy of [33].

position left, a path is computed from the current position to the goal.
This approach can be used for complex searches and may be automated completely. The
only thing to be done by the developer is to create the map. In the works of Thomas [117]
this approach has been extended to compute these maps using CAD data, so that there is
no need to actually perform measurements in the workspace.
Using insertion maps, complex searches can be executed easily. The downside is that this
approach is only feasible if the objects involved are identical with every execution of the
task. Tolerances that would alter the maps are not allowed. This poses serious problems
when handling organic materials and parts which differ significantly from one another.
We have not extended this approach any further and only mention it here as an approach
to allow unskilled developers to create complex informed searches. In principle this work
can be integrated into our framework. The insertion map is used as a geometric change
function and no other alterations have to be made.

5.4.4 Skills and Skill Libraries

In flexible robot programming, skills and skill libraries are a popular approach to encapsu-
late complex operations into a single command. In theory this concept may be employed
here as well, as the aspect of sensor data processing remains hidden from the developer.
But a skill is called explicitly in the robot program and is by no means connected to the
position database. Because of this, we will not consider these approaches in this work.
Another disadvantage is that due to the large range of applications up until today, there
is no universal library encompassing a set of skills capable of dealing with all situations
arising in handling tasks. Inevitably, all libraries either focus on specific tasks or sensors.
This forms a contradiction to the requirements of this work.

5.4.5 Conclusion

Informed searches not only use a sensor to determine if the search has terminated but also
to compute the next position in the search. This allows us to perform faster and more

104

complex searches. This type of search is most commonly used in insertion tasks, but other
tasks are also possible. The functions used to compute the next position in the search are
highly dependent on the type of task and sensor used. Because of this, it is impossible to
give a universal algorithm enabling unskilled developers to create such searches. In this
section we have described various ways to create such functions without requiring expert
knowledge from the developer.
Simple linear correction based on the current sensor data allows us to solve a large range
of applications. More complex searches can be divided into a series of simpler searches.
Another approach are insertion maps to handle difficult searches in high dimensional search
spaces. All of these approaches are aimed towards non-expert developers and focus on fast
and easy creation, but not on optimality with respect to execution time.
A general problem of every informed search is that termination of the search cannot be
guaranteed. The change function that computes the next position can produce loops in
the search path preventing the robot from ever reaching its goal. It is not trivial to detect
these loops and terminate the search.
Universal adaptivity concepts are difficult to integrate in informed searches. So, these must
be designed by the developer as well. This will probably exceed the wealth of experience of
the developer. Because of this, we cannot give detailed algorithms for this kind of search.

5.5 Using Searches for Online Computation of Change

Functions

In Section 3.5.2 we have outlined how geometric change functions can be learned from a
scratch during the first executions of the task at hand. In this section, we show that the
algorithm to do this can be encapsulated into a search extension.
The idea outlined in Section 3.5.2 was that the robot will modify the change function if
it realizes the change computed from the current sensor value does not match the real
position in the workspace. In this case the correct change is measured and the change
function updated accordingly.

5.5.1 Using Searches to Check for Correctness

We can use a search extension to check if the position was estimated correctly and search
the position if necessary. In practice we will use two extensions:

1. The first extension uses the geometric change function fest and the sensor value s
to modify the default position p accordingly. This is the classic approach already
described in Section 4.4. If fest(s) is accurate enough, the robot will move to the
correct position. But if it is not, the robot will move to a wrong position. If this is
the case, we must determine the correct position p′ and update fest with a new tuple
(p′, s) reflecting this knowledge. But so far, we only know s not p′.

105

2. The second extension is a search extension. We create a condition c which checks
if the robot has moved to the correct position. This condition does not necessarily
need to evaluate the same sensor as the first extension. If the position was correct,
the search motion will terminate directly. Otherwise the search is continued. When
the search terminates, we have found p′ and can update the change function of the
first extension.

The update process is performed automatically. The only thing we must do is to provide
a mechanism to link the two extensions, to transmit the result of the search to the first
extension.
The search can either be a blind search or an informed search. Which type we can use
depends on the fact whether the robot motion will modify the sensor signal of the first
extension or not.

5.5.2 Blind Searches to Update Change Functions

If a motion does not change the signal, we execute a blind search. An example for this
scenario is given in Section 3.6.1 where we try to locate an object using distance sensors.
If the change function evaluating the sensor provides the robot with an inaccurate result it
fails to grasp the rod. This is checked using the force/torque sensor mounted to the robot’s
wrist. The robot then searches the position of the steel rod on the conveyor belt. The rod
itself will not move during the search. This means that the signal of distance sensor does
not change. So we have no other option as to perform a blind search, which terminates
when we touch the rod. At this point, we have determined the correct position of the object
by searching and know the corresponding sensor value from the first extension. Now we
can update the change function to incorporate this knowledge.

5.5.3 Informed Searches to Update Change Functions

If a motion does change the signal, we can execute an informed search. An example for
this scenario is given in Section 3.6.1 where we try to correct the rotation of the grasped
rod. When compensating the rotation, every motion will alter the signal of the distance
sensors. We use this fact to conduct an informed search which will be faster than a blind
search.
In order to use an informed search, we must specify a geometric change function to calculate
the next position in the search. The secant method is a suitable algorithm to do this, which
has been described in Section 3.5.2. This algorithm is independent on the type of task and
sensor as long as the function is monotonic. Because of this, the algorithm can be provided
by the robot system and there is no need for the developer to program this himself.

5.5.4 Updating the Change Function

In Section 3.5.2, we have argued that we must choose a representation by a data set T
containing tuples (p, s) mapping a position p to a sensor value s. This set is then used to

106

fit the change function fest to the data. This representation allows us to easily update the
change function by inserting new and removing incorrect tuples. The actual implementation
of fest is interchangeable. It is up to the developer to determine how the tuples in T are
used to approximate the change function. Any interpolation method can be employed,
because no additional knowledge about the function type of fest is necessary. Curve-fitting
methods may be used as well, which will lead to a reasonable approximation of fest after
fewer executions compared to interpolation methods. But, as is the case with all adaptation
and learning methods in general, the more information we have available right from the
start, the faster the methods will work adequately.
We show how these extensions and the update mechanism are realized in Chapter 7.

5.5.5 Conclusion

Searches can be used to allow automatic adaptation of geometric change functions. This is
achieved by adding a search extension to the basic extension. The search is only initiated,
if the change function of the basic extension provided a bad estimate. Both types of search
can be employed. The secant algorithm is a universal method that can be used for an
informed search, allowing for a fast location of the correct position. The change function
is updated automatically after the search has terminated.

5.6 Conclusions

In this chapter, we have taken a closer look at variations. We argued that variations can be
classified into two categories depending on the robot’s capability to resolve the variation
in one motion or if more than one motion is required.
We have shown that variations that can be resolved with a single motion are already
covered by the basic framework outlined in Chapter 4.4.
Variations that require more than one motion are called searches. Basic requirement for all
searches is a condition allowing the robot to evaluate if the search was successful or must
be continued.
Blind searches only need this condition and follow a preset search path. We have shown
that adaptive probability based search paths enable the robot to execute blind searches
faster than standard search paths.
Informed searches also use sensors to calculate the next position in the search path during
execution. While this allows complex searches, e.g. insertions, this type of search highly
depends on the task and the sensor. Because of this, we can only give some basic strategies
to create change functions for informed searches. It is even more difficult to create adaptive
informed search motions.
In a last section, we have shown how geometric change functions can be learned adaptively
by employing search motions as a second extension. This enables the developer to refrain
from creating change functions and additionally allows the change function to be updated
dynamically to react to altered workspace environments.

107

Chapter 6

Drifts

In this chapter we address ways of dealing with workspace drifts. The problem is that the
drift is unintended and not a desired property of the task. Because of that it is hard - if
not impossible - to model the drift in order to adapt to it. The benefits of a suitable drift
recognition and adaptation are the following: Firstly, the robot can present a warning to
the supervisor of the task if a drift occurs. Additionally, a prediction can be made when
the drift will have accumulated to an error. Secondly, an adaptation may be performed to
adjust the robot’s motions to the altered environment. Finally, the robot may be capable of
performing a corrective motion to counterbalance or reset the drift. Since we must employ
external sensors in order to detect a drift, we face the task of filtering the information of
the sensor signal for the existence of drifts.
The aim of this chapter is to show how drift recognition and adaptation can be encapsulated
into our programming framework for a robot to deal with workpiece drifts with minimal
knowledge and effort by the developer.
The rest of this chapter is organized as follows: In Section 6.1 we define workpiece drifts
and outline the fundamental requirements for its recognition. In Section 6.2 we give a
short overview of related work in this area. In Section 6.3 we explain how drift adaptation
is integrated into our programming paradigm. In Section 6.4 we describe two approaches to
generate a prediction based on the data provided by the sensor. Section 6.5 describes how a
typical task involving a drift can be solved with our approach and Section 6.6 summarizes
this chapter. The contents of this chapter are published in [41].

6.1 Properties of Drifts

In this section, we specify the basic properties of drifts. We focus on workpiece drifts, that
is, how a specific workpiece may change its location over multiple executions of the same
task. We deal with workpiece changes only, such as position, weight, etc. We do not deal
with drifts caused by the sensor itself due to temperature or lighting changes, etc.

108

6.1.1 Properties of Workpiece Drifts

The term workpiece drift describes a geometrical displacement dt of a workpiece’s position
p0 between multiple executions t of the same robot task, that is

pi+1 = p0 + dt (6.1)

The difference between a drift and a variation is that the drift is characterized by a preferred
direction. Variations on the other hand fluctuate around a given position. The preferred
direction may not be constant and can change over time. The extent of the drift is small
compared to the size of the workpiece, so a drift is usually only recognizable after multiple
executions.
This definition holds for one dimension in Cartesian space. Multiple drifts in different
dimensions can be combined to model more complex drifts, but for this we require that
the drift in each dimension is statistically independent for all dimensions, that is

p(di|dj) = p(dj) ∀i 6= j (6.2)

where p(di) describes the probability of an occurring drift during the current execution.

6.1.2 Drift Recognition

In order to detect a workpiece drift during a handling task, external sensors must be
employed.
The change of the workpiece’s position between two executions is small and may not be
detected by the sensor after only one consecutive execution. So the drift may be lower than
the signal-to-noise ratio of the sensor S

dt < SNR(S) (6.3)

In order to realize this drift recognition independent from the type of sensor, we use geome-
tric change functions. By transferring the sensor signal into a Cartesian description of the
drift, we are capable of designing sensor independent methods to detect and predict a drift.
To use a change function f , we must specify the default position p0 and the corresponding
sensor value s0

di = f(si)− f(s0) = f(si)− p0 (6.4)

From this point on, we will only deal with Cartesian descriptions of drifts. By measuring
the workpiece’s position during each execution, we build a time series D̂ over n executions

D̂ = d0, · · · , dn (6.5)

where
d0 = 0 (6.6)

because no drift has occurred yet or the sensor has just been calibrated in the very begin-
ning. Then, drift recognition is realized by checking D̂ after every execution and comparing

109

the values against a threshold chosen depending on the SNR of the sensor. It is necessary
to use a time series D̂ because otherwise we cannot distinguish between a drift and a varia-
tion. We can only determine a drift by checking for a pattern in the workpiece’s locations.
Otherwise every drift would be considered to be a variation.
Using D̂, we can determine if a drift has occurred. But, for successful adaptation to the
drift, we need to make a prediction about the future motion of the workpiece. We will show
how this can be achieved in Section 6.4.

6.2 Related Work

The task of monitoring a workpiece drift in industrial applications over multiple executions
is mainly covered in engineering literature. Chiang deals with general fault detection in
industrial applications and includes drifts in their fault scheme [34]. Kesavan and Lee
have given a classification of faults in industrial systems [71]. But there appears to be no
standard terminology for theses processes, with the exception of one possible example in
the terminology given by Raich and Cinar in [34].
Workpiece drift occurs only in industrial tasks that are repeated multiple times. Nowadays,
the use of external sensors in these tasks is still limited to applications where it is absolutely
necessary. On the other hand, autonomous robots rarely execute the same task twice in an
identical environment. Because of this, drift recognition and compensation strategies are
usually programmed on a per-task basis and form a detailed solution for a specific drift.
Sharma et al. have presented an approach to optimize robot motions for given stochastic
models of an assembly process, but focus on motions and do not specifically deal with
workpiece drifts [109]. LaValle focuses on robot motions as well, and takes external sensors
as input signals into account, but does not make use of a drift model [77].
In summary, all of these articles are about finding a specific solution for a given problem.
None of the articles use the knowledge gained in previous executions to create an adaptive
drift model. Here, we are interested in outlining a general approach to drift recognition
independent from the type of task and the sensors used for its supervision. Additionally,
we are interested in showing how a robot can deal with a detected drift and how these
strategies can be integrated into a programming environment without demanding detailed
knowledge about the process from the developer.

6.3 Integration into the Programming Framework

Here, we show how workpiece drifts can be detected during execution of a robot task.
Based on this we describe two ways of dealing with such a drift: Drift adaptation and drift
correction. We explain how these ideas can be encapsulated into a position extension.
We will only describe how drift recognition and adaptation can be set up for a drift occur-
ring in one Cartesian dimension. The process is similar for multi-dimensional drifts.
During setup, the developer must determine that sensor will be used to monitor a workpiece

110

for drifts. In the next step, the default position d0 of the workpiece in question is recorded.
This includes the corresponding default sensor value s0. Later on, all sensor values will
be compared against this value1. The last thing to do during setup is to specify a change
function for the given workpiece and the sensor.
When this is done, the developer must decide in which way the drift shall be modelled
and set the corresponding parameters for the model. We describe two possible models in
Section 6.4.
In the robot program itself, the developer has three options to deal with a drift: Supervision,
adaptation and correction.

6.3.1 Drift Supervision

The purpose of drift supervision is for the robot to check if a workpiece is moving and inform
the person monitoring the task when the workpiece is about to leave the workspace. In
this case the developer must specify the range of the workspace W . The current drift is
extrapolated and an estimate will be formed how many more executions can be performed
until the drift must be corrected.

6.3.2 Drift Adaptation

Under certain circumstances, it may be useful to alter the motions of the robot to accom-
modate a detected drift. We call this process drift adaptation. Usually, this will not be
necessary because of geometric change functions. If the sensor is used preparatoryly, the
robot will know the current position of the workpiece straight away and can act accordin-
gly. If the sensor is used concurrently, the robot can modify all subsequent motions as soon
as the workpiece is localized. However, there are tasks where drift adaptation is useful if
concurrent sensors are used. Usually this is the case, if the Cartesian range of the change
function is smaller than the allowed range of the drift. An example for a task like this is
given in Section 6.5. To perform an adaptation in the i-th execution, the default position
is set to the current position of the workpiece

d0 = di (6.7)

so the robot will use the adapted position in all subsequent executions.
After we have performed an adaptation, we can still use the drift data stored in D̂ for drift
supervision, but must accommodate the fact that drifts are described in relation to the old
default position. A simple way to maintain a correct description of all drifts up to now, is
to subtract all entries in D̂ by the current total drift di

∀dj ∈ D̂ : dj = dj − di (6.8)

1This approach requires a function to subtract instances of sensor data from each other. This is a
straightforward task for sensors providing us with numeric values, but more complicated for imaging
sensor data. In this case the developer must also specify a suitable subtraction method.

111

6.3.3 Drift Correction

Another option when dealing with a drift is to try to correct the environment or the
workpiece somehow by performing an unscheduled task, which is not performed during
the normal execution of the task. We call this drift correction. This should happen only
when the workpiece is about to leave the workspace. This corrective motion can be trivial,
e.g. the workpiece is grasped and moved back to d0, but can be quite complex as well,
e.g. an adjustment of a machine involved in the task. Because of this no general corrective
motion can be described. This motion must be designed by the developer instead. When
this motion is performed, we must reset D̂ because we have altered the environment, so
our current time series no longer represents the actual state of the environment.

6.3.4 The Drift Extension

In the cases of drift adaptation and drift correction, the decision when to perform an
adaptation or correction will be triggered by thresholds da and dc which are set by the
developer.
All three options can be integrated into a general function update_drift_position().
The developer only must set the specific parameters W , ta, tc and define a corrective
motion mc. update_drift_position() is called when the drift extension is processed by
the framework. The pseudocode of this function looks like this:

Pseudocode 6 (Updating Drift Information)
1 function update_drift_position()

2 {

3 d_mom = predict_Drift();

4 // drift supervision

5 nr_executions = calc_Remaining_executions();

6 notify_supervisor(nr_executions);

7 // drift adaptation

8 if(d_mom > t_a)

9 {

10 d_0 = apply_drift(d_0, d_mom);

11 modify_drift_data();

12 update_prediction_model();

13 }

14 // drift correction

15 if(d_mom > t_c)

16 {

17 correction_motion();

18 reset_drift_data();

112

19 }

20 }

6.4 Drift Prediction

In this section, we describe two approaches to automatically build a model that can be used
to detect the current and predict the future drift. We describe how a Kalman filter can be
used for this problem and a more general approach involving ARIMA models without the
need for a movement model.

6.4.1 Drift Prediction Using Kalman Filters

Kalman filters are mainly used for object tracking in mobile robots [26]. The task here is
analog, so we will use a similar approach.
Because we are only dealing with Cartesian drifts, we can construct a Kalman filter that
is capable of predicting the future drift independent from the type of sensor used for
supervision. Here, we will use the nomenclature of [70]:
The input-vector x̂t is made up from the current position of the workpiece dt in regard to
its default position d0 as well as the current drift between two executions, which can be
regarded as the current speed of the workpiece vdt . So

x̂t =

(
dt
vdt

)
(6.9)

We assume that the current drift is statistically independent from the current position.
Then, the covariance matrix

∑
t is defined as∑

t

=

(
σdtdt 0

0 σvdtvdt

)
(6.10)

where σdtdt and σdtdt describe the accuracy of the estimates.
The transition matrix At describes the alteration from x̂t to x̂t+1 and can be computed
as follows: We assume that the transition is determined by the current speed vdt , the
acceleration a and the time ∆t elapsed between the two measurements:(

dt
vdt

)
=

(
dt−1 + vdt−1 ·∆t+ 1

2
a∆t2

vdt−1 + a∆t

)
(6.11)

We can rewrite this to

x̂t =

(
1 ∆t
0 1

)
x̂t−1 +

(
1
2
a∆t2

a∆t

)
(6.12)

then

At =

(
1 ∆t
0 1

)
(6.13)

113

and

εt =

(
1
2
a∆t2

a∆t

)
(6.14)

Using εt we can compute the gain matrix Rt as

Rt =
dεt
da
σ2
a

dεT

da
=

(
1
4
∆t4σ2

a
1
2
∆t3σ2

a
1
2
∆t3σ2

a ∆t2σ2
a

)
(6.15)

where σ2
a is the variance of a. Here, ∆t can be set to 1 as the time between two consecutive

executions is constant, as long as the drift only occurs while the task is executed.
Finally, we need a vector zt that describes how we perceive a drift from one position to
the next. This is achieved by using the external sensor. But, if we would use the sensor
signal directly, the developer would have to specify this vector for every type of sensor.
By employing a change function that maps the sensor signal to Cartesian space, we can
compute a general form of zt, that is applicable for all types of sensors. In this case the
perceived position is exactly the current position blurred by the SNR δS of the sensor, so

zt = Ctx̂t + δS =
(

1 0
)
x̂t + δS (6.16)

These are all the vectors and matrices necessary for a Kalman filter to compute a prediction
of the next drift. The exact calculations are described in [70] and will not be repeated here.
This Kalman filter is parametrized by

∑
t, σ

2
a and δt, that must be set by the developer.

It is possible to set basic values, that work adequately well, but for optimization purposes,
these should be tuned by the developer.
Using this Kalman filter we get an estimation of the current drift of the workpiece. This
estimate describes how the workpiece will change its current position during the next
execution.
There are two drawbacks when a Kalman filter is used for drift prediction: Firstly, we can
only predict the very next drift, but no drifts in the further future. Secondly, if the drift
between two executions is lower than the noise of the sensor, we cannot predict any drift
at all, because the Kalman filter only uses the most recent values to update its internal
state.

6.4.2 Drift Prediction Using ARIMA Models

An alternative to Kalman filters is to use an auto-regressive integrated moving-average
(ARIMA) model. These models make use of bigger parts of D̂ allowing for predictions
of more than the very next execution. An ARIMA model is actually a combination of
three models, that can be described by one parameter each: An auto-regressive (par), an
integrated (pi) and a moving-average (pma) model.
Firstly, D̂ is differentiated pi times, resulting in a time series D̂′. The calculation for the
next prediction is then

dn+1 = εt +

par∑
j=1

parjd
′

n−j +

pma∑
k=1

pmakdn−k (6.17)

114

Note that - unlike the Kalman filter - no assumption about the movement of the drift (that
is its velocity and acceleration) is made.
A good choice of the parameters par, pi and pma is usually difficult, but in this case, we
can make some basic assumptions which will help us choosing suitable parameters. The
weighting parameters parj and pmak can be fitted automatically for given methods using
[24].
The auto-regressive parameter par must be 0, because the current drift is independent from
the prediction of the last drift; otherwise the act of making a prediction would already alter
the environment.
We need to differentiate D̂ exactly once, so pi can be set to 1. This is because we store the
total drift from d0 up to the current execution di in D̂. To predict the next drifts, we are
interested in the alteration from one execution to the next. So we must differentiate our
time series exactly once.
The moving-average parameter pma describes how many drifts from the immediate past
are used to approximate the current drift. This parameter can be chosen by the developer.
The choice of pma is dependant on the SNR of the sensor and the stability of the drift. If
pma is set too low, the noise of the sensor will corrupt the prediction of the current drift.
If the drift changes its preferred direction relatively often, a high value for pma will take
drifts into account that are no longer adequate.
Note that, if we set

pma = s(D̂) (6.18)

and

pmai =
1

s(D̂)
∀i (6.19)

where s(D̂) gives us the size of D̂, the ARIMA model is a simple linear extrapolation using
the whole time series D̂.

6.5 Experiments

In this section we will show how all three methods of dealing with drifts from Section 6.3
can be integrated easily into a robot task using Kalman filters and ARIMA models.

6.5.1 Experimental Setup

Consider the following task: A robot places a workpiece on the entry side of a conveyor
belt. The workpiece is then processed by some kind of machine. When the workpiece leaves
the machine, the robot picks it up again and performs some task with it without releasing
it. Afterwards this workpiece is placed onto the conveyor belt once again (see Figure 6.1).
In this experiment, we will use a round disk with a size of 150 mm in diameter. The robot
program for this task looks like this:

Pseudocode 7 (Pick and Place Task Containing a Drift)

115

FTS
DS

Figure 6.1: Experimental setup of the task with sensors DS and FTS described in Section 6.5.1

1 repeat

2 {

3 MOVE p_drop

4 RELEASE

5 // wait for machine to finish processing

6 WAIT

7 MOVE TRANS_y(l_belt):p_drop

8 GRASP

9 // perform some other task with workpiece

10 }

We place the center of the robot’s coordinate system into its base and the center of the
conveyor belt’s coordinate system into the position where the robot places the disk (see
Figure 6.2). The problem with this implementation is that if the x-axes of the two coordi-
nate systems are not exactly parallel, a drift dy along the conveyor belt’s y-axis will occur.
In theory the resulting drift is calculated as

dy = tan(α) · lbelt (6.20)

where α is the angle by which the coordinate systems are rotated in relation to each other
and lbelt is the distance between the drop-off and the pick-up position.
To supervise this drift, we use two different sensors, a force/torque sensor (FTS) and a
distance sensor (DS) which are positioned in the wrist of the robot and at the pickup
position, respectively (see Figure 6.1). We will try to adapt to this drift by measuring the

116

Figure 6.2: Coordinate systems of the robot and the conveyor belt in relation to the world coor-
dinate system for the task described in Section 6.5.1

torque of the disk around the x-axis and by measuring the distance of the disk when it is to
be picked up. So, the FTS is used in a concurrent way, while the DS is used preparatoryly.
Here, we are only interested in checking the validity of our drift recognition algorithms, so
we will not use the whole framework designed in Chapter 4 at this point. Instead we will
call update_drift_position() from pseudocode 6 directly by adding a line calling the
function before moving the robot to the pickup position in line 7 of pseudocode 7.

6.5.2 Parametrization During Setup

During setup, we record the position and the corresponding sensor values of the disk
when it leaves the machine for the very first time. This defines our default position d0
with the sensor values fts0 and ds0.We use the approaches described in Section 3.5.1 to
determine appropriate change functions ffts and fds for both sensors and the SNR of the
sensors SNRfts and SNRds. These are the parameters of the Kalman filters. For ARIMA
prediction, we set

pma =
1

10
s(D̂) (6.21)

assuming that the drift will remain constant.
To parametrize the recognition and adaptation process, we measure the width of the con-
veyor belt wbelt and divide it by two, because the ideal position of the disk will be in the
middle of the belt. This value will be used for drift supervision.

117

Figure 6.3: Recorded drift (absolute and current) during 20 executions of the task.

To adapt to the drift, we set da to half of the disk’s width. So when the drift exceeds this
value, the robot will modify the pickup position accordingly.
Finally, when we get too close to the edge of the conveyor belt, the robot shall pickup the
disk and perform a corrective motion to position it in the middle of the belt once more.
So, we set

dc =
2

3
· wbelt

2
(6.22)

and define a corresponding correction motion mc.

6.5.3 Drift Recognition

We have executed the task 20 times and recorded the sensor values during each execution
(see Figure 6.3), describing the total drift of the disk. The resolution of the distance sensor
is relatively low, so we can only measure distances in sizes of 1 cm.
In Figures 6.4 top and bottom we have plotted the predicted drift for the next execution,
the actual drift as measured by the sensor and the accuracy of the prediction for each
combination of the sensor and the prediction method. We can see that after 20 executions,
the combination of a Kalman filter and a force/torque sensor provides the most accurate
predictions. But, in general the Kalman filter tends to oscillate while ARIMA models take
longer to adapt to changes in the drift.
If a distance sensor is used to monitor the task, the predictions of the Kalman filter are
worse than those of the ARIMA method. This is because the Kalman filter starts to oscil-
late when measurable drifts occur rarely. The ARIMA method on the other hand adapts

118

Figure 6.4: Actual and predicted drift with estimation error for Kalman and Arima models using
a (top) force/torque sensor, (bottom) distance sensor.

119

m s

Real drift
FTS 2.35 0.65
DS 2.5 4.44

Kalman prediction
FTS 2.35 3.23
DS 1.97 17.48

ARIMA prediction
FTS 2.32 1.52
DS 0.05 10.17

Table 6.1: Mean m in mm and standard deviation s of occurring and predicted drift for both
types of sensor

relatively fast to this type of drifts.
If a force/torque sensor is used, it is the other way round. This sensor is more accurate,
recognizing drifts in every execution. Because of this, the Kalman filter adapts faster, but
the difference to the ARIMA prediction is less significant.
We have summarized the results in Table 6.1 showing the mean and standard deviation
of the drift as measured by the sensors and as predicted by a Kalman filter and an ARI-
MA interpolation respectively. In general we can say that the SNR of the sensor is more
important than the method chosen for the prediction.

6.5.4 Drift Adaptation and Correction

After setting up the prediction models and evaluating the drift, we set the thresholds ta
and tc to 20 mm and 50 mm, respectively. We execute the task 100 times, measured the
real drift using a Kalman filter and the force/torque sensor and log all adaptations and
corrections (see Figure 6.5). We can see that the robot is now capable to keep the current
drift below the adaptation threshold by modifying the pickup position according to the
prediction approximately every 10 executions. To prevent the disk from falling off the
edge of the conveyor belt, the robot automatically re-centers it in the middle of the belt
approximately every 20 iterations.
In summary, although there is a significant drift inherent in this task, in theory we can
execute this task infinitely. The robot automatically detects the drift and adapts its motion
to the shifting position of the disk, as well as performing a corrective motion from time to
time to reset the disk to the center of the conveyor belt.

6.5.5 Summary

Further work needs to be done in finding ways to automatically determine reasonable
parameters for the Kalman filter and the ARIMA model. Simple estimates work well, but
by tuning these parameters the prediction process might be optimized.
If an ARIMA model is used, the choice of pma can be optimized along the following idea:
We increment pma until a significant change in the current drift is encountered. This can be

120

Figure 6.5: Current (red) and absolute (yellow) drift for 100 executions of the task. When the
prediction of the drift exceeds the set thresholds for adaptation (pink) or correction (light blue),
the robot either modifies the pickup position (green dots) or re-centers the disk (blue dots).

done using the methods described in [106]. If this happens, pma is set back to a default size.
So the ARIMA model will only use values which are significant for the next prediction.
We will describe how the drift extension is realized in our framework in Section 7.3.2.

6.6 Conclusions

The focus of this chapter is to show that workpieces can be monitored automatically for
drifts that occur due to an imprecise setup of the workspace or an abrasion. This can be
done without the need for intricate calculations by the developer. We have defined the
term workpiece drift and have described two methods to detect and predict a drift for a
specific workpiece and a given sensor by examining a time series describing the workpiece
position over multiple executions. The presented requirements and methods are indepen-
dent from the type of sensor. We have shown that these methods can be integrated into
our programming framework, so that the developer only has to specify basic parameters.
Finally, we have presented an experiment to validate our findings. We have shown that it is
possible to employ the proposed methods to successfully detect and adapt to a workpiece
drift during an automation task.
The prediction methods may be integrated into a position extension, hiding the complete
drift supervision algorithm from the developer.

121

Chapter 7

Implementation

In this chapter, we present an implementation of the framework presented in the previous
chapters. In Section 7.1 we discuss the available hardware and necessary modifications
and additions to the basic concept presented in the previous chapters; we had to create a
distributed system separating the robot system from the positional database. We explain
the software modifications to the existing robot programming language in Section 7.2. The
organization of the position database is discussed in Section 7.3. The implementation of a
graphical user interface to further alleviate programming for developers is discussed in a
separate Section 7.4. We test our software with a series of programming tasks of typical
problems. The experiments and their results are discussed in Section 7.5. We give a short
summary of this chapter in Section 7.6.

7.1 Hardware

The proposed concept has been implemented on a Sẗı¿1
2
ubli RX130 with a control by Adept

(see Figure 1.1). The version of the operating system is 12.3 with a corresponding version
of the programming language V+. The system runs on a 86xxx processor with a system
memory of 32 MB.
The programming language only provides commands to access and retrieve data from a
force/torque sensor. This sensor is mounted to the robot’s wrist and is manufactured by
IR3. In addition, V+ encompasses a series of commands to alter and stop motions based
on data received by this sensor. This is performed directly within the central execution
loop of the control which runs at 60 Hertz. Motions can be altered with this frequency.
Inputs at signal level are the only other information which can be accessed. So no other
sensors can be accessed directly within the central control loop, but network connections
and data transmission are possible. Because of this, all other sensors must be accessed on
other computers and instructed to send their data via TCP/IP to the robot system for
evaluation.
Another downside is that the present version of V+ only allows for variable identifiers with
a maximum length of 15 characters. Variables may either be floating point numbers, strings

122

Figure 7.1: Design of the implemented system. The robot system, the position database and
each sensor are realized as separate applications running on different computers (grey boxes).
Communication between the components is realized using TCP/IP (grey connecting lines).

or positions / coordinate systems (called robot task frames). Complex data structures are
not allowed.
Because of these limitations we have decided to realize the position database on a separa-
te computer. Each sensor is accessed by an autonomous program and may be physically
connected to a different computer. The information of every sensor is transmitted to the
computer running the database. This is where all sensor data processing takes place. The
additional separation of sensor data retrieval and processing allows us to easily integrate
different sensors into the system. All data is sent as binary information to the database
where it will be transformed by sensor transformation functions. The general concept of
the distributed system is shown in Figure 7.1.
The robot requests a position using a network connection to the database and performs
the movement as instructed. In case of a search this may be more than one motion.
In this system, information from the force/torque sensor will not be processed by the robot
control any longer, but sent to the database instead. The downside is that motions cannot
be altered within the central execution loop anymore. But this is only of minor importance
for industrial handling tasks and not a general problem of the framework but caused by
the hardware limitations. We will show in Section 7.5 how such motions are realized using
our framework.
Processing speed of sensor information is only of minor importance in this implementati-
on. This is because no time-critical tasks such as online modifications of trajectories are
necessary. The execution will be significantly faster in a system which encapsulates all
components because a large part of the response time is caused by network delays.
We are using three types of sensor:

• A force/torque sensor mounted to the robot’s wrist.

123

• A camera which can be placed anywhere in the workspace and records RGB images.

• A series of three one-dimensional distance sensors. These are placed parallel to the
side of a conveyor belt in the workspace.

7.2 Robot Software

Moving the robot is realized with two commands in V+. Both take a coordinate system c

as a parameter: The move command instructs the robot to move to c in joint space. The
moves command performs a straight line motion in Cartesian space. The coordinate system
c can be constructed by concatenating multiple coordinate systems using the :-operator.
For example, the command move tool:trans(0,0,100) causes the robot to move 100 mm
in positive direction of the robot’s tooltip, where tool denotes the tool coordinate system
of the robot. The trans command takes either three or six parameters and returns a coor-
dinate system where either the position or the position and orientation are set according
to the parameters.
We have imitated the syntax of this command and created a new command called vmove.
This command takes three parameters:

• A reference coordinate system c_r.

• The NAME of the position which is to be looked up in the position database.

• A subsequent coordinate system c_s.

The purpose of c_r and c_s is to allow the programmer to define positions in the database
in relation to given coordinate systems (c_r) and allow further modifications (c_s) of the
position which cannot be reflected by the position in the database alone. For example,
the command vmove(tool,NAME,trans(0,0,100)) instructs the robot to request position
NAME from the database. The database evaluates all extensions connected to that position
and returns the modified position. Internally, this position is then approached with the
command move tool:NAME:trans(0,0,100).
When requesting a position from the database, not only the position is returned but also
additional information. These are flags indicating a drift or a correction of a drift. Using
a second command getPositionFlags, the developer can check for these flags in the pro-
gram. This is important if drift correction functions shall be called by the robot. The
developer can insert an if-command checking the position in question for the existence of
said flag and toggle a correction function.
In case of search motions, the first position in the search is sent to the robot with an
additional indicator that more positions may follow. The robot will repeatedly move to the
next position and inform the database to check the terminating condition. Only when the
search has succeeded (or terminated with an error), the vmove command returns.
Sensor data processing is performed when the position is requested by the robot. As outli-
ned in Section 4.4.5 this concept fails if the robot occludes the object from the sensor. In

124

this case we have implemented an additional command preProcess. The command takes
a position name as parameter. The position is only evaluated and returned to the robot
system, but not approached. The developer can store the position and approach it using
the move(s) command at a later point. Note that this command is only sensible if no
search motions are attached to the position.

7.3 Position Database

We have implemented the position database as a C++ application. The purpose of the
database is to store positions extended by sensor information and allow access by the
robot control. Upon request of a position, the extensions of the requested position are
evaluated. This includes accessing the sensors connected to the database and retrieving
information from them. The interpretation of the sensor data is performed exclusively in
the database. The sensor applications only send current values to the database. Lookup in
the database is done using the name of the position. If the position does not exist, a null
position is sent to the robot and a corresponding flag is set indicating this failure.
The database is encapsulated in a class PositionManager. The communication with the
robot system is done using the class RobotConnection.
We are using four main classes to represent a position in the database: The position itself
is realized using the class ExtendedPosition. This may be a simple position without any
sensor modifications, but an unlimited number of extensions may be attached. Default
coordinates are stored in an instance of the class BasicPosition. All types of extensions
are inherited from the class Extension which accesses the class Sensor to extract the
current sensor data. This data is encapsulated into a generic class SensorData to allow
universal retrieval and access procedures as well as enable us to integrate additional sensors
into the system.
The interrelationship between these classes is illustrated in Figure 7.2. It should be noted
that all variables are set to private by default and that there are corresponding set- and
get-operations for each of them. These functions as well as other supporting functions are
not included in the diagram to maintain clarity. The function getPosition of the class
ExtendedPosition returns a tuple. The second parameter serves as a flag indicating if a
search takes place and that additional positions will follow. The position manager then
coordinates the communication with the robot system accordingly. If this flag is not set,
only one position is returned.

7.3.1 Sensors and Sensor Data Transformations

We have created programs for every sensor to access the data and sent it to the position
database using TCP/IP. Each program runs as a separate process. The syntax to retrieve
data is consistent, which allows us to integrate new sensors directly into the system.
In the database application, this information is accessed using the abstract superclass
Sensor (see Figure 7.2). Three sensor classes inherit from the superclass. The superclass

125

Figure 7.2: Class diagram of the position database.

126

is abstract, because the procedure to request data and fill the container SensorData must
be adjusted to the type of sensor.
All sensor data is encapsulated in an instance of the class SensorData regardless of its
type. This type is stored in the class as well. This allows for an universal algorithm to
process the sensor data into either a Cartesian description or a Boolean decision. The type
identifier is used to prevent false processing of the data.
All classes that transform sensor data into information are inherited from the abstract su-
per class SensorTransformation. These are either Changefunctions or Conditions (see
Figure 7.3).
The class Condition is an abstract class as well. Conditions are split into SensorConditons

to process sensor information and And-, Or- and Not-Conditions that use other conditions
to create more complex conditions. The class SensorCondition allows the user to set a
compare value and to specify if the sensor value must be either larger than, less than or
equal to the (absolute) sensor value in order for the condition to evaluate to true. This
default implementation can be used for sensor data that is already in the form of numbers
of any kind. For more complex sensor data, e.g. images, the developer must derive a new
class from this class and overload the evaluate function accordingly.
Geometric change functions are realized in a likewise named class. Since the exact imple-
mentation of such functions strongly depends on the task and the type of sensor used, it is
abstract as well. The developer must derive it from this class and implement the function
getPosition. But in many cases some default algorithms can be used to create change
functions, especially for sensors providing us with information in the form of numbers.
Because of this, we have created pre-set classes for standard change functions.

• The class LinearTransform can be parametrized in such a way that we can extract
a specific number from the sensor data and apply a linear transformation of the form
f(x) = a+ b · x of this value to a specific coordinate. Since extensions are processed
in sequential order, more complex change functions can be created by concatenating
multiple linear transformations.

• The class FunctionApproximator realizes a one-dimensional function approximation
with a series of pre-defined interpolation algorithms. This class can be used if the
connection between the sensor data and resulting position is not linear. We used this
class to create a change function for the distance sensors in this work. Again, this
class takes one specific value from the sensor data and modifies one coordinate of the
resulting position, but more complex change functions for more than one dimension
can be created easily by concatenating multiple instances of this class.

• The third class, SecantMethod, was created to realize a change function based on
the secant method. This class can be used for search motions that are based on this
method. The main reason to use this class is to learn more complex change functions
as outlined in Section 5.5. This class will provide the necessary corrections for such
a search.

127

Figure 7.3: Class diagram with inheritances for all modules involved in sensor data processing.

128

• Another class not shown in the diagram is a class ImageProcessor, which was crea-
ted for change functions that work on images gained from cameras. Here pre-defined
change functions are hard to realize, but in this class we have implemented a series
of standard algorithms to pre-process image data, such as filtering and Fourier trans-
formation. While this class itself cannot be used directly to create a specific change
function, it will help a developer creating a class derived from this class.

In addition to the position manager, there are also databases to maintain all sensors and
conditions. But these are only required for the graphical user interface, which will be
discussed in Section 7.4. That is why they are not included in any diagram here.

7.3.2 Extensions

Unlike sensor data transformations, which must be implemented or modified by the devel-
oper to tailor a given sensor to a specific task, all extensions to a position presented in the
previous chapters are fixed and task independent. Each extension realizes a modification
of the basic position. Once again, we have created an abstract super class Extension. All
specific types of extension will inherit from this class. This class already realizes some func-
tionality, mainly maintaining references to the position manager and setting the default
position. All drift functionality is included in this class as well. This includes setting the
threshold, specifying the drift recognition algorithm etc. These features can be enabled by
the developer. If enabled, drift recognition and adaptation will take place automatically.
In case of drift correction, a corresponding flag is set when returning the position to the
robot control. The developer can employ the commands outlined in Section 7.2 to check
if this flag is set and call the drift correction function. The different functionality when
processing a specific extension is realized in the function processExtension which is just
a stub in this class. This function will be called by the position manager when an extension
is evaluated.
The class PositionExtension realizes the most basic extension possible as described in
Section 4.4.2. The developer specifies a change function and the robot will correct the po-
sition according to the result of this function.
The class ClassifierExtension behaves similarly. Here, the developer adds a series of
conditions and corresponding positions. This extension checks each condition and, if it
evaluates to true, processes the corresponding position. These positions may be augmen-
ted by extensions as well. This enables the developer to create extensions that will only be
executed if a certain condition holds. It should be noted that all extensions attached to a
position behind a classifier extension will be discarded. This is because a new position will
be selected by the classifier which may cause the robot to move to a different position in
the workspace. If the developer wishes to employ other extensions in addition to a classifier
extension, these must be placed in front of the classifier. This will cause all positions in
the classifier to be modified by this extension as well.
Both types of search are derived from another abstract class SearchExtension that in
turn is derived from Extension. The basic parameters for both kinds of search are set in

129

this abstract class. This includes the terminating condition, the search range and other
parameters. The class BlindSearch realizes a blind search. Here, the developer must on-
ly specify if adaptive path generation shall be enabled or if some default path shall be
used in every execution. Apart from that no other parameters must be provided. The class
InformedSearch is used to create informed searches. Since the calculation of the next po-
sition is done in a change function, the developer need not derive new classes from this
class, but only set some parameters and the change function. The search algorithm itself
does not need to be modified.
If searches are used to learn change functions, a search extension must be connected to a
change function in order to inform that change function about the correct position of the
sensor value. With the given implementation this is only sensible if the change function
is an instance of FunctionApproximator, since this class calculates the change function
using a set of data tuples. To realize this functionality, the developer can set corresponding
flags using link in the abstract class SearchExtension.

7.3.3 Processing an Extension

We have described the algorithm to process an extension in Sections 4.4.2 and 5.1.3. In
this section, we will only describe a minor modification that becomes necessary because
we use a distributed system.
To prevent the various components from busy waiting for responses from sensors or the
database, we have used a state machine instead of direct function calls. This means that
all requests (either by the robot to the database or by the database to a sensor) are send
as a command to the computer running that specific component. The caller returns to
an idle state and waits for a response from the callee. Timeout mechanisms were used
where appropriate. This functionality is realized using the QT library [8] that provides a
signal/slot mechanism to easily create state machines.

7.4 A Graphical User Interface to Manage the Data-

base

Up to this point, creating and adding positions to the database must be done by textual
programming and re-compiling the database application.
To further alleviate development especially for non-computer scientists, we have added a
graphical user interface (GUI) to the database application. With this GUI, a user can crea-
te, modify and delete positions in the database without the need for textual programming.
When the application is started, the database connects to all sensors and to the robot. In a
main dialog the user sees all positions in the database (see Figure 7.5). The user can select
a position and is shown the default values and all extensions attached to that position.
These can be ordered by a series of buttons. The user can add, modiffy and order positions
and extensions by pressing the appropriate buttons.
To create a new extension, the user is presented with a series of dialogs guiding him through

130

Figure 7.4: Inheritance graph of all types of extensions. The abstract super class Extension is
used to link an extension to a position in the database. The actual functionality of the different
extensions is encoded in the derived classes.

131

Figure 7.5: The main screen of the
graphical user interface. All positi-
ons currently stored in the database
are shown in the top half of the win-
dow. The extensions belonging to the
currently selected position are shown
in the bottom half of the window.
The user can add and modify and
order positions and extensions by a
series of buttons.

the creation process (see Figure 7.6). In a first step, the user selects the type of extensi-
on and depending on this selection, the extension is parametrized in the following dialog
screens. This is possible because the functionality of all extensions is fixed. Change functi-
ons are created in this dialog as well. The user selects the type of function and enters the
desired parameters. A separate dialog is used to create a condition, similar to the extension
dialog.
With this system, the user can manage the database without having to resort to textual
programming. The drawback of this approach is that it is not possible to create new change
functions or conditions by deriving them from the base classes. To overcome this problem,
a dynamic linking of special libraries during runtime may be used. With this solution,
the user must program the new functionality and compile it into a library. This feature
can also be used to allow manufacturers of new sensors to create such libraries and ship
them with the sensor. The user can then simply add these libraries to the system when
physically installing the sensor in the workspace. In this case the user does not even have
to create change functions and special conditions on his own. These can then be loaded by
the database application to enable the user to select these new functions in the GUI. We
have not added this functionality to the system, since it will only improve usability but
not the general features of the system.

7.5 Experimental Evaluation

We have tested our concept using this software. In order to do so, we have created a series
of example tasks, each of them dealing with a different aspect of flexible and adaptive robot
programming.

132

Figure 7.6: Dialog wizard to create new extensions. Top left: On a first screen, the user must
select the type of extension and name it. Top right: On the next screen, the sensor belonging to
that extension is chosen. Bottom left: Next, a suitable type of change function is selected. Bottom
right: The selected change function is parametrized.

133

7.5.1 Test Cases

We have created seven different tasks, each of them to solve a different task. To solve them,
two of the three sensors must be used: The force/torque sensor and the distance sensor.
We have not created tasks that specially need a camera. Programming change functions
for these would have exceeded the scope of these experiments. To get an idea about the
complexity of creating such a change function we had a student of computer science create
a classifier to detect different object shapes within a camera image. This task took the
student approximately 50 hours and resulted in a program of roughly 6000 lines of code.
This is good indicator that a non-expert developer would need at least professional software
libraries to allow creation of such functions within a realistic time frame. We have decided
to leave the camera out because of the complexity to work with such libraries and focus
on the other sensors instead.
Each task shall be solved twice: Once using the robot’s built in programming language
V+; and once more using the application described in the previous chapters. Solutions
with our application were solved using textual programming as well and not the GUI. This
is because we were interested to see how the probands would create the code describing the
positions in the database. Another issue was that typing a solution in one language and
clicking it together in the other devalues the measured time that is taken for each solution.
Due to these two aspects, we have asked the probands to create the solutions using our
framework textually as well. It is important to note that the workspace will not be modified
in any of the solutions to the tasks. Neither will there will be any re-arrangement of objects
nor the introduction of mechanical devices. All tasks are solved using existing sensors only.
Note, that all of these tasks can be solved by evaluating the sensors when the position is
requested by the robot. In no case is it necessary to toggle a pre-processing of the position
because the robot occludes an object from a sensor. While we cannot prove that this will
be the case for every possible handling task, there is strong evidence, that the concept of
’just in time’ sensor evaluation, as outlined in Section 4.4.5, is sufficient and explicit pre-
processing of positions can be avoided by careful positioning of the sensors in the workspace
and choosing adequate positions.

E1 - Pick

The goal of this task is to pick up an object which is delivered to the robot on a conveyor
belt (see Figure 7.7, left). The belt stops when the object passes a light barrier installed at
the end of the belt. This means that the y-coordinate of the pickup position is fixed. But
a variation in the x-coordinate of the pickup position is allowed, implying that the object
may lie anywhere between the light barrier.
To detect the object the distance sensor shall be used. The robot shall be able to grasp the
object safely by evaluating the sensor signal and applying the information to the default
position. The desired accuracy is 1 cm as this is also the general accuracy of the sensor.
The data curve of the sensor shows that the relation between distance and sensor signal is
not linear (see Figure 3.4, right). So a more complex change function must be created.

134

Figure 7.7: Left: Setup for experiments E1 and E2. The position and drift of the disk is measured
using distance sensors mounted to the side of the conveyor belt. Right: Setup for experiment E3.
The grasped disk shall be placed accurately in the center of the shape below.

Key aspects of this task are to realize that the data curve of the sensor is not linear and to
create a reasonable change function. In addition, the pickup position must be modified by
adding a PositionExtension and parametrizing this extension accordingly. The sensor is
used preparatoryly in this task.

E2 - Drift Recognition

The goal of this task is to implement a drift recognition. We set up the conveyor belt as
illustrated in the experiments of Section 6.1. Here the task is again to locate and grasp
the object on the belt. But this time, the robot shall place the object on the other end of
the conveyor belt. The conveyor belt was set up in such a way that a drift occurs. This
drift shall be recognized across multiple executions and a corresponding correction function
shall be created. Because the distance sensor is used in a preparatory way, an adaptation
by the drift prediction is not necessary.
Key aspects of this task are to employ persistent storage of the pickup position across
multiple executions by using a history. The history must be used to check for a drift
and toggle a corrective motion. This correction can be executed at various points in the
program: Either when the object is grasped or when it is placed on the belt at the other
end. We did not specify which of the two options shall be preferred. When realizing this
task, the drift functionality of the class Extension must be toggled and parametrized. The
sensor is used preparatoryly in this task.

E3 - Place

The goal of this task is to pick up a round disk and place it as accurately as possible on a
table. The disk is taken off the conveyor belt. Given the accuracy of the distance sensor and
the delay when stopping the belt triggered by the light barrier, the actual grasp position
may vary by 1 cm from the disk’s center along the x- and y-dimension. The desired accuracy

135

of the placement shall be 1 mm in both dimensions (see Figure 7.7, right). We want to
use the force/torque sensor to measure the offsets when the disk is held and calculate the
necessary offset to place the disk accurately.
It should be noted that this problem cannot be overcome by simply using a two fingered
gripper instead of a vacuum gripper. While this would compensate the disk’s variation
in the x-coordinate, there would still be a variation in the y-coordinate. In addition, this
solution would constitute a mechanical modification of the workspace which we have ruled
out.
Key aspects of this task are to identity the fact that the moments along the x- and y-axis
of the force/torque sensor can be used to compute the variation. There are a series of
important features that must be identified to solve this task:

• In order to get an exact measurement, the disk must be held freely and perpendicular
to the ground so the measurements are correct.

• The measured moment along the x-axis describes the variation along the y-axis and
vice versa.

• The measured moments are linearly independent from each other.

• The change function to convert a moment into a Cartesian description is linear.

To solve this task, we can either use two instances of PositionExtension, each of them
calculating the variation in one dimension using the existing class LinearTransformation,
or we must derive a new class from the ChangeFunction calculating both variations in one
pass. In this case, one extension is sufficient. The sensor is used concurrently in this task.

E4 - Classifying Objects

The goal of this task is to pick up an object from the conveyor belt, determine its shape
and then place it in a corresponding container on the table. There are four different shapes:
A circle, a square, a parallelogram and a pentagram (see Figure 7.8). For this task, we do
not care about possible variations in the offset of the disk’s center or the disk’s rotation.
Typically, this task would be solved by using a camera. But, as outlined above, solving this
by creating a change function to analyze an image for the shape would be too complex for
this series of experiments. Because of this, a different approach is used here. The disks are
all made of the same material but each disk differs in weight. So the disks can be classified
using the force/torque sensor as well.
Key aspects of this task are to use the ClassifierExtension and create four different
conditions to determine if the held disk is of a specific shape. These conditions must then
be mapped to the four possible boxes. The sensor is used concurrently in this task.

E5 - One-Dimensional Search

The goal of this task is to place an object on another object on the table. The position
of the object on the table is known, but not its height (see Figure 7.8). Because of this a

136

Figure 7.8: Left: Setup for experiment E4. The disks shall be placed in the appropriate boxes
according to their weight. Right: Setup for experiment E5. The robot shall perform a guarded
move to place the grey block on top of the red block.

guarded move must be performed where the robot stops when the held object touches the
other object.
Key aspects of this task are to realize that a blind search must be performed to solve
this task using the force/torque sensor to stop the search when a significant contact force
is measured. The search space is one-dimensional and lies along the z-axis of the table’s
coordinate system. A suitable search range must be defined and a terminating condition
must be created. The sensor is used concurrently in this task.
It should be noted that normally this task would be solved using the guarded move functio-
nality of the robot programming language. Here, the robot would evaluate the force/torque
sensor automatically when performing the motion and trigger a stop signal. This realizati-
on will cause the robot to move more smoothly and achieve its goal much faster than with
our system. But an implementation with the Adept extension to the V+ robot language
takes about 14 lines of code. The parametrization of these is by no means trivial. Unskilled
developers will solve this task faster by creating a simple step-by-step search which eva-
luates the terminating condition by itself. The disadvantage of a longer execution time will
be compensated by the faster development time if the number of repetitions is sufficiently
small.

E6 - Two-Dimensional Search

The goal of this task is to locate a hole in a plate on the table in order to start an insertion
process for a peg. No cameras are available, so the localization with a PositionExtension

is impossible. Instead the force/torques sensor must be employed by conducting a blind
search across the plate (see Figure 7.9). The actual insertion of the peg will be done in the
next experiment.
Key aspects of this task are to create a two-dimensional search with an efficient search
path in terms of development time. We do not care if the path is generated adaptively or
if a standard path is used. The terminating condition is of less impact here (but must be

137

Figure 7.9: Left: Setup for experiment E6. The robot must locate the hole in the plate using a
two-dimensional blind search. Right Setup for experiment E7. The robot shall insert the round
disk into the corresponding hole.

created nonetheless). The sensor is used concurrently in this task.
It should be noted that unlike in experiment E5, a realization of the search with guarded
moves quickly becomes very complex.

E7 - Insertion

The goal of this task is to insert a peg into a hole using a force/torque sensor. Firstly, we
use the small peg shown in Figure 7.9 on the left but come to realize that it is too small
to allow for a sufficiently easy solution for our probands. A feasible solution would involve
a tilting strategy and a four-dimensional change function, processing not only moments
but also forces. The problem gets significantly easier if a larger peg is used (see Figure 7.9,
right). In this case a solution can be found that only needs to evaluate the moments of
the sensor. As the focus of the experiments is to measure the improvement compared to
classical programming and not to create algorithms for efficient insertion, we have opted
for the bigger peg.1

Key aspects of this task are to set up an informed search in a two-dimensional space using
the class InformedSearch. In addition to the terminating condition a change function must
be created to compute the next position in the search. Because of the size of the peg and
the type of gripper two linear correction change function may be used for a very simple
insertion strategy. But other approaches were allowed as well.

1But this shows one of the big problems with informed searches. These quickly become very difficult. So
the difficult part is to come up with a clever solution for the change function to compute the next position.
At this point insertion skill libraries may become an interesting extension. This aspect will be discussed
in Chapter 8.3.2.

138

7.5.2 Probands

We have five students as probands for the experiments. Each student solved every task
twice; with the built-in programming language V+ and with our implementation of the new
framework. The order of the experiments changed randomly for every student. Exceptions
were E1 and E2, which were always solved in that order, and E5 was always solved before
E6 and E7.
Two students were bachelor students in computer science, two were master students in
computer science and one student was a master student in physics. The computer science
students aiming for the master’s degree had heard lectures about sensor data processing
and robotics. The other three students only had general knowledge in programming using
object oriented languages like C++. None of the students had ever worked with a robot
before.
In a first step all probands were taught to program the robot using V+. This included
moving the robot using the teach panel and the command line. All students learned how
to create static robot programs, including if-, for- and while-constructs. This also included
setting the robot’s speed during execution of a task. With this knowledge all students were
capable of working with the robot in a basic way.
There was a supervisor present during the whole time the probands worked on a task. Apart
from ensuring that the robot was used safely, the supervisor answered questions regarding
the programming syntax and structure of both languages, V+ and our implementation.
There were no hints in terms of algorithmic solutions to any of the tasks. But data files
with sensor calibration data were provided when the proband had explained correctly in
which way he would create these files. This mainly concerns the distance sensor, as the
change function is not linear for this sensor.
For each task, the probands were given a static robot program that solved the task correctly,
provided the objects were not subject to any kind of variation or drift. This included the
basic positions. The proband then had to modify the program to incorporate sensors and
modify the given positions accordingly.
We have recorded the time it took the proband to create a correct solution to the task
and the lines of code of the solution. When measuring the lines of code, we only counted
new lines added to either the program or the position database not including comments,
empty lines and lines containing only brackets. After the probands had created solutions
to all tasks, they had to fill out a questionnaire asking about their experience with the new
framework.

7.5.3 Results

The results of the experiments are depicted in Tables 7.1 and 7.2. Table 7.1 shows the
average time required to create a solution for a specific task in minutes (columns two and
four). In addition, we have given the standard deviation s (columns three and five). The
gain is computed as the percentage of development time saved when using our framework
instead of pure textual programming (column five).

139

Experiment
Textual A-Bot
m s m s Gain

E1 - Pick 187.0 75.9 70.6 10.8 62%
E2 - Pick with drift recognition 31.7 24.6 10.0 6.5 68%
E3 - Place 63.8 43.8 50.5 33.3 21%
E4 - Classify object by weight 52.8 34.4 20.5 11.3 61%
E5 - 1-dimensional blind search 18.2 4.3 9.4 4.4 48%
E6 - 2-dimensional blind search 84.2 42.0 16.4 13.8 81%
E7 - Insertion of round disk 105.4 79.7 25.0 19.1 76%
Average of all experiments 77.6 43.5 28.9 14.2 63%

Table 7.1: Mean time m and standard deviation s in minutes required to solve the experiments

Experiment
Textual A-Bot
m s m s Gain

E1 - Pick 185.2 7.6 40.0 2.1 78%
E2 - Pick with drift recognition 23.7 13.6 13.0 7.2 45%
E3 - Place 20.3 9.1 10.5 4.8 48%
E4 - Classify object by weight 25.0 11.8 12.0 5.9 53%
E5 - 1-dimensional blind search 19.4 2.1 5.2 1.1 73%
E6 - 2-dimensional blind search 54.0 8.0 10.8 3.9 80%
E7 - Insertion of round disk 27.0 4.7 7.4 1.3 73%
Average of all experiments 50.7 8.1 14.1 3.8 72%

Table 7.2: Mean m and standard deviation s lines of code required to solve the experiments

Table 7.2 shows the average number of lines of code for a solution for a specific task
(columns two and four). Again, we have also given the standard deviation s (columns
three and five). The gain is computed as the percentage of lines of code required less when
using our framework instead of pure textual programming. (column five). For experiment 2,
we have only counted the lines of code related to drift recognition and correction. Graphical
plots of these results are shown in Figure 7.10.
We can see that the new framework allows for significant savings both in time required and
lines of code. The new framework with pre-set extensions simplifies the creation of solutions
in experiments where either elaborate change functions (E1) or complex mechanisms had
to be realized (E2, E6, E7). In experiments with simpler operations (E3, E5) this is of less
impact. This is because here the algorithm itself is straightforward with little room for
variations in terms of programming.
The long time required and high number of lines of code for experiment E1 is caused by
the complex change function of the distance sensor. Here the probands had to create a
lookup table to convert the sensor value into a Cartesian description. This takes time and

140

100,00

120,00

140,00

160,00

180,00

200,00

Development time

E1
E2

E3
E4

E5
E6

E7
Average

0,00

20,00

40,00

60,00

80,00

100,00

Position oriented Textual

100,00

120,00

140,00

160,00

180,00

200,00

Lines of code

E1
E2

E3
E4

E5
E6

E7
Average

0,00

20,00

40,00

60,00

80,00

100,00

Position oriented Textual

Figure 7.10: Results of the experiments conducted. Top: Average time required by the probands
to create a valid solution. Bottom: Average number of lines of code of the solutions.

141

needs a lot of lines of code.
The biggest gain could be achieved for the two-dimensional search in experiment E6. This
is because the algorithm for path generation requires the developer to check for a series of
exceptions. This results in longer programming time and more lines of code. As the path
generation for blind searches is completely encapsulated in our framework, the developer
saves a lot of time and lines of code.
In summary, the results of the measurements are promising, as we can see a significant
decrease in both measures with an average of more than 50 percent. But these results
must be interpreted carefully. For one, all students solved the task twice. This means that
experiences made in the first attempt (textual programming in V+) could be re-used in
the solution with the new framework. Another fact is that a lot of time was required to
measure the data curve of the distance sensor and learn to interpret its values. But this
is done only once and does not need to be repeated in the second implementation. So the
measured time to solve a task should only be taken as an indicator.
To get more realistic values, more thorough experiments must be made. This includes using
probands and tasks from industrial settings as well as control groups. In addition, every
proband should solve a task with only one style of programming. But this requires a much
larger number of probands.

Questionnaire

We asked all probands about their impressions on the new framework. The questions were
split into two categories.
In the first category we asked the probands to self-assess their programming knowledge,
the practicality of the tasks given and their rating of the A-Bot system. This included
general programming, robot programming, sensor data processing and practicality of the
tasks. The probands could give answers in a range from 0 to 10. A zero indicated he had
no knowledge at all or the task is totally unrealistic, while a ten indicated that the student
considered himself to be an expert or that the task will be the same in actual industrial
environments. The averaged results as well as the standard deviation are given in Table
7.3.
All probands considered themselves to be experienced in general programming, but only
had limited knowledge in robot programming. The master students thought themselves to
be reasonably skilled in sensor data processing, but the other students were a lot more
sceptical. All tasks were considered to be fairly easy yet realistic in a general industrial
usability. In general, the students thought the idea of position oriented programming to
be a sensible approach allowing easier and faster programming of sensor based robots. In
a final rating the students considered the new framework to be helpful and prefered it to
textual programming.
In the second category we asked the probands to compare the new framework to purely
textual programming. Here, the probands could give answers in the range from -3 to 3,
where a -3 indicated the new framework to be a lot worse than textual programming and
3 to be a lot better. If the two approaches compared similarly a value of 0 should be given.

142

Experience Experiments Practical use

G
en

er
al

R
ob

ot
p
ro

gr
am

m
in

g

S
en

so
r

d
at

a
p
ro

ce
ss

in
g

D
iffi

cu
lt

y

R
ea

li
sm

P
os

it
io

n
or

ie
n
ta

ti
on

E
as

e
of

p
ro

gr
am

m
in

g

P
re

fe
re

n
ce

of
A

-B
ot

m 7.0 3.9 4.8 4.5 7.3 8.8 7.5 8.5
s 0.0 1.3 2.2 1.0 1.7 1.0 0.6 1.0

Table 7.3: Mean (m) and standard deviation (s) of the probands self assessment regrading their
knowledge in robot programming, the realism of the tasks and their rating of the A-Bot system.
The values may be within a range from 0 to 10.

The averaged results as well as the standard deviation are given in Table 7.4.
To sum up the results: All probands considered the new framework to be an improvement to
textual programming in all categories. Especially, the development speed and the comfort
were rated high. The views on reusability and amount of code required differed, but were
positive nonetheless. The solutions were considered to have been intuitive and clearly laid
out. Some probands considered the understandability to be difficult at some points. When
asked for details, they explained that some of the terms used were ambiguous to them.

7.6 Conclusions

In this chapter we have presented an implementation of the concept developed in the
previous chapters. We argued that, due to hardware limitations of the robot controller,
the implementation must be realized in form of a distributed system with all sensors and
the database on separate computers. This allows for a highly modular system and new
sensors can be added dynamically. A new robot command vmove is introduced to access
the database. Its syntax is similar to existing move commands.
We have outlined that the basic functionality of the database is contained in abstract
classes that can be used by the developer to create new change functions and conditions
tailored to the task. The general algorithm to process the different types of variations is
encapsulated into extension classes that only need to be parametrized. Because of this, the
developer does not have to create new algorithms to compensate variations.
We have added a graphical user interface to manage the database and add, modify and
delete positions. This is done with a series of dialogs enabling the developer to create
positions with multiple extensions easily. The downside is, that with this user interface no
new change functions and conditions can be created. This must still be achieved by textual

143

In
tu

it
iv

it
y

C
om

fo
rt

R
eu

sa
b
il
it

y

C
la

ri
ty

of
st

y
le

U
n
d
er

st
an

d
ab

il
it

y

D
ev

el
op

m
en

t
sp

ee
d

A
m

ou
n
t

of
co

d
e

re
q
u
ir

ed

m 1.8 2.3 1.5 1.5 1.0 2.0 1.5
s 0.5 0.5 1.3 0.6 0.8 0.8 1.0

Table 7.4: Mean (m) and standard deviation (s) of the probands rating of the A-Bot system
compared to pure textual programming with a range of values from -3 to 3.

programming.
To evaluate our system, we have created a series of example tasks focusing on different
aspects of flexible and adaptive robot programming. We have tested our framework and
compared it to pure textual programming by having five probands solving these tasks. We
show that with our framework these tasks can be solved faster and with fewer lines of code.
In addition, we have conducted interviews with the probands and found the acceptance of
the new framework very high.

144

Chapter 8

Conclusion

In this chapter, we give a complete overview of the work presented here and consider its
limitations as well as possible additions. In Section 8.1, we summarize our work. In Section
8.2, we discuss the possible limitations of the approach presented here. In Section 8.3, we
outline possible additions to our work to further increase the usability of the presented
concept.

8.1 Summary

The purpose of this work was to find a new approach to intuitive sensor based robot pro-
gramming for non-experts. To alleviate the apllication of robots in industrial applications
we have researched this area and created a new way of programming for non-experts requi-
ring only minimal knowledge in robotics. First considering the downsides of already existing
systems we saw that they are either geared towards experts in both robot programming
and sensor data processing or tailored to specific task domains or types of sensors.
In this work, we focussed on industrial handling tasks, that place a large emphasis on
positions and orientations whereas trajectories are of minor importance. We have assumed
that a basic robot program is given that is capable of solving the task in a static workspace.
Our goal was to find intuitive ways to integrate external sensors into the program to enable
the robot to react flexibly and adaptively to changes in the workspace.
In a first step, we have shown that sensor information can be classified into two categories
for our purpose: Geometric properties and conditional properties. Geometric properties de-
scribe some features of a workspace change that can be expressed in Cartesian coordinates.
Conditional properties are used to determine features of objects that are either present or
not and can thus be expressed as a binary value. We have introduced the concept of sensor
transformation functions to transform sensor information into one of these two abstract
descriptions. This allows us to employ universal approaches for flexibility and adaptivity
algorithms.
Based on these abstract transformations we have created the concept of position oriented
robot programming. This concept differs from existing approaches in the sense that modi-

145

fications of the robot’s behaviour based on sensor information are not integrated into the
robot program but added to specific positions using the concept of extensions. When a
position is approached within the program, the position database evaluates all extensions
attached to the position and modifies it accordingly. This approach yields the advantage
that there is a strict separation between sensor data processing and robot commands. This
allows for increased maintainability as well as the re-use and modification of the program
at later points.
There are different ways in which an extension can modify a position. These are closely
related to the type of sensor transformation available for that sensor and if the robot can
compensate the workspace alteration directly or needs to perform multiple corrections. We
have presented four types of extensions for these different cases. Change and classifier ex-
tensions are used for direct compensations based on geometric sensor transformations and
conditional properties respectively. Blind and informed searches are used to compensate al-
terations that require multiple corrections by the robot. The advantage of these extensions
is, that the correction algorithm is fixed and does not need to be modified by the developer.
The developer only needs to set suitable sensor transformations and other parameters to
fit the extension to the task.
In addition to the flexibility that can be integrated into the robot program, we have also
explored approaches for adaptive behaviour of the robot. This included implicit learning of
geometric sensor transformations, the automated creation of adaptive search paths based
on probability distributions and online drift adaptation and correction. All of these fea-
tures are integrated into the framework and can be enabled by the developer without the
need to design intricate algorithms. The purpose of these adaptive features is to further
decrease the time needed for development and execution of the program as well as to allow
the robot to compensate minor errors when executing the task.
We have shown the feasibility of our concept by creating a C++ application realizing the
robot position database. We have extended the robot programming language V+ to access
this database. We have created a series of example tasks representing typical handling
problems in industrial contexts and had five probands solve these twice. One using only
the standard version of the V+ language; the second time using the new position database
and our extension to V+. We showed that the new concept allows for significant savings in
development time and lines of code required to solve the task. We saw that the probands
prefer the new system to the standard programming language in terms of usability, intui-
tivity and comfort, by using a questionnaire.
In summary, we can say that the approach presented here allows a developer who is un-
skilled in sensor data processing to extend static robot programs with external sensors
easily and in an intuitive way. The approach is geared towards industrial handling tasks
and focusses on the manipulations of positions and orientations of objects. Trajectories are
explicitly not covered with this approach. Regarding the type sensors that can be used with
this approach, we can say that there are no limitations provided the sensor is capable of
measuring an alteration in the workspace and expressing this in terms of either a Cartesian
description or a Boolean condition.

146

8.2 Discussion

In this section we discuss some aspects of the approach presented in the previous chapters.
This includes evaluating the benefits of the proposed concept and the required knowledge
in robot programming and sensor data processing by the developer. We will also discuss
the need for new types of extension that are not covered in this work and the general
applicability of the presented concept.

8.2.1 Types of Extensions

The four different extensions presented in this work cover the complete range of applica-
tions for handling tasks in this area. There is no need for more types of extensions. For
clarification we can demonstrate this along the following argumentation:
In case of a direct compensation, a change extension (Section 4.4.3) is used if the sen-
sor information can be transformed into a Cartesian description of the alteration. If the
information is present in terms of conditional properties, a classifier extension (Section
4.4.4) is used instead. The final option for direct compensation is to employ both types of
information, a Cartesian description and a conditional property. There is no need for an
extension that requires both types of information for direct compensation, because multi-
ple extensions can be attached to a position, which are all processed before the position is
approached. So this type of extension can be simulated using multiple change and classifier
extensions.
In case of iterative compensation, we must employ some kind of search motion. A condi-
tional property is mandatory, otherwise we cannot determine the end of the compensation.
If there is only a geometric sensor transformation function available, we cannot employ a
search because we would not know when to terminate. The only option here is to create a
conditional performing a subtraction of the result of this function from a target position
and check if the result is below a given threshold. But then this is a conditional property.
If we only use this conditional property, a blind search (Section 5.3) is sufficient. If we also
use the geometric sensor transformation as well, an informed search (Section 5.4) takes
place. So there can be no extension for iterative compensation that only uses a geometric
sensor transformation.

8.2.2 Non-Sequential Processing of Extensions

In Section 4.4.2 we have explained that extensions attached to a position are evaluated in
sequential order when that position is accessed in the database. At this point we discuss if
there are alternatives to this approach.
One idea is to allow if- and while-constructs when adding extensions to a position. The
developer could instruct the database to evaluate an extension only if a condition holds or
to repeat the evaluation for a couple of times. But no extra functionality is gained with
this upgrade.
A repetition of an extension is already realized within a search extension. There is no need

147

to execute a search multiple times, since either the goal position will be found during the
first execution of the search or the search will fail completely. It does not make sense to
repeatedly evaluate a change or a classifier extension. These two extensions are used for
direct compensation. This implies, that the sensor information can be applied directly to
the default position. Since the robot does not move during evaluation, the sensor signal
will not change. Because of that the result of the evaluation will always be the same1.
An if-construct would represent a conditional execution of an extension. This can be si-
mulated using a classifier extension and a virtual positions. The condition to evaluate an
extension is linked to a virtual position. The extension itself is then attached to this po-
sition, but not to the original position. So if this condition holds, the virtual position is
selected and the extension is evaluated. The difference between a classifier extension and
are real if-construct is that the extension allows us to maintain the strict separation bet-
ween the robot program and the sensor data processing. If we used if- and while-constructs,
we would create a second programming language in the position database to evaluate the
extensions in a specific order.
Because while-loops are unnecessary and if-constructs can be realized using classifier ex-
tensions, the sequential processing of extensions attached to a position is sufficient.

8.2.3 Required Knowledge of the Developer

To use this framework, the developer must possess basic robot programming skills, that is
he should know the basic commands to move the robot, set its speed and so on. The main
part of this is that he knows how positions are described in relation to task frames and
how a robot will move to a defined position.
Based on this foundation, the developer must have understood the basic principle of positi-
on oriented programming as outlined in Chapter 4. He must know what types of extensions
there are and how they are processed. Since the algorithmic processing of all extensions is
fixed, there is no need to learn new commands or modify these extensions.
The difficult part is to parametrize these extensions. In a first step, the developer must
decide which sensor shall be used to compensate the variation and where it is to be placed
in the workspace. This depends completely on the task and cannot be alleviated by our
system. In the next step, suitable sensor transformation functions must be created. Once
again, this is highly dependent on the task. We have outlined general approaches to create
these transformation functions in Sections 3.4, 3.5 and 5.4. With these approaches, the
developer can create ’simple’ transformation functions. The biggest problem is creating
geometric sensor transformations for informed searches. Here, the function serves to de-
termine the next position in the search. The underlying search algorithm itself is simple.
For complex operations, e.g. insertion of irregular shaped objects with low tolerances, the
’magic’ lies within this function. The definition of an insertion strategy is a complex task
requiring lots of experience.

1If the object that is supervised by the robot is moving, we are working in a dynamic workspace. The
applicability of our framework in such environments is discussed in Section 4.5.

148

It would be helpful if sensor manufacturers provided libraries containing at least basic
transformation functions for their sensor. In addition, there are professional software libra-
ries for special classes of sensors, such as cameras. These will help the developer to a large
extent, but cannot free him completely from this task.

8.2.4 Benefits of Position Oriented Programming

The advantages of the concept presented in this work are as follows:

• The concept of position oriented programming is neither geared towards specific types
of tasks nor specific types of sensors. In principle, all industrial handling tasks can
be solved with this approach using any type of external sensor. This concept can be
used for any industrial robot and is not limited by physical capabilities of the robot
e.g. the number of joints.

• This concept realizes an expansion for a textual robot programming language. Unlike
other approaches, e.g. the task frame formalism (see Section 2.3) a given static robot
program can be extended easily by adding extensions to the positions in the database.
There is no need to either modify the program or transfer the program to a new
programming language.

• The strict separation of robot commands and sensor data processing ensures improved
readability and maintainability of the robot program. Sensors may be replaced by
other types of sensor without the need to modify the program. The only thing to be
done is to set the parameters of the extensions accordingly.

• Adaptivity algorithms are integrated into the system. This allows for an internal
optimization in terms of execution time and stability without the need for elaborate
modifications by the developer.

• Insofar a sensor is provided with a library containing sensor transformation functions,
the developer must only set parameters for these functions but does not need to deal
with the development of these functions.

8.2.5 Limits of Position Oriented Programming

This work only deals with the interpretation of sensor information in order to modify po-
sitions during the execution of a robot program. Specifically not covered are the problems
of choosing the right sensor and placing it in the workspace.
While the framework developed in this work allows the user to add flexibility and adapti-
vity measures to a static robot program, one problem remains that cannot be alleviated:
With this generic approach, the developer must create sensor transformation functions by
himself. Because the framework was designed to remain abstract from the specific type of
handling task and sensor used, we described some general approaches to create this sensor

149

transformations. Unfortunately, these functions quickly can become complex, especially
for informed searches. Here, the developer must have a precise understanding of how the
sensor information shall be used within a sensor transformation function.
This also implies that the developer must use some kind of programming language to create
these functions. The graphic user interface created in Section 7.4 is only sufficient if known
methods are used for creation of sensor transformation functions. This problem may be
overcome at some point by using rule based systems when sensor transformation functions
must be created from scratch. Here, the developer may be able to create such functions by
designing sets of rules which compute the transformation. We have not pursued this idea,
as it exceeds the scope of this work.
As shown in Section 4.5, the developed framework can be used to solve all types of in-
dustrial handling tasks, provided that the alteration of the workspace happens at such a
speed that the robot has enough time to observe, compute and react to the alteration. But
this requirement holds for all robot programs that are modified by external sensors during
execution. Successful execution cannot be guaranteed if the analysis of the sensor signal
takes too long.
Tasks that require the modification of trajectories, like painting and spot welding, can be
solved by our framework only when workarounds are used. Since trajectories are computed
within the robot program and altered during runtime based on external sensor informati-
on, our approach cannot be used directly. A workaround is to define the trajectory as a
position with an attached search extension. The default position is the starting position
of the trajectory. The search extension computes the next intermediate point along the
trajectory and the terminating condition evaluates to true, when the end of the trajectory
is reached. An example of this workaround was given in experiment E5 in Section 7.5. In
general, we can say that robot tasks which require the alteration of trajectories can be
solved better using other approaches such as the task frame formalism (see Section 2.3).

8.3 Outlook

In this work we have outlined a first approach to extend a given static robot program with
external sensors. The presented methods are by no means exhaustive. Additional concepts
and expansions can be added to this framework at multiple points. To summarize this work,
we outline possible approaches to extend the applicability of this framework for intuitive
robot programming with external sensors.

8.3.1 Minor Modifications and Additions to the Framework

Here we discuss some minor additions that can be made to this framework. These are
geared towards specific problems occurring in certain cases and may help to further decrease
development time. The only reason they were not incorporated into our framework is that
no new functionality is added to the system. Instead these modifications only allow for
easier solutions for some kinds of task.

150

Retrieve the Last Position

When performing tasks where objects are to be palletized, we might use a command
getLastPosition(name). The purpose of this command is to simply return the final coor-
dinates of the position after processing all extensions when it was approached the last
time. The purpose of this command is to allow to define other positions in relation to this
position. The advantage will be that the position is evaluated only once. All other positions
depending on this position need not be evaluated using sensors again.
A typical example would be a palletizing task where objects are to be stacked next to
each other. The position of the first object in the box is determined using sensors. At
this point we can calculate the positions of all other objects if the dimensions of the ob-
jects are known. These positions are computed using the getLastPosition command in
conjunction with the TRANS command.

Transmitting Multiple Positions

Up to now, the robot always moves to the next position in a search and checks if the
terminating condition holds. But for some searches it may be necessary to perform some
kind of detach motion before moving to the next position in the search. An example would
be a blind search where the robot shall not move along the surface of the object in order
to avoid scratches on the surface. Here, the robot shall only move to specific points on the
surface to check the terminating condition.
This results in a specific trajectory from one position in the search to the next. To allow
for this feature, the position database should be able to transmit a whole array of positions
describing this trajectory. The robot then moves along this array and only informs the
database when the final position has been approached.

8.3.2 Complex Sensor Transformations

Due to the abstract nature of this framework the developer must at least parametrize exi-
sting sensor transformation functions to his needs. In the worst case, he must design these
functions completely on his own. To encounter this problem, two approaches are conceiva-
ble:
Firstly, special libraries with sensor transformation functions for certain tasks or sensors
can be created by robot and sensor manufacturers. These are tailored to specific problems
and alleviate the developer from the task of creating these functions himself. So one option
for future work would be to investigate if there are domains of tasks or sensors for which
special sets of sensor transformation functions can be encapsulated into libraries that only
need to be parametrized. This includes the integration of skills and skill primitives, since
these represent geometric change functions on a very abstract level. Another option is to
explore if and how abstract skills can be integrated into this framework.
Secondly, learning algorithms may be employed and tailored to the task at hand. The idea
here is to let the robot learn complex sensor transformations by himself (maybe with super-

151

vision by the developer) instead of falling back on existing libraries and functions. While
this approach will allow the robot to become even more flexible and adaptive, the downside
is that it is hard to employ universal learning algorithms without detailed knowledge of
their working. Nonetheless, we believe that this approach is worth some thought as well,
since it will provide the developer with a more intuitive way of programming the robot
than resorting to a library, as this has to be created by someone as well.

8.3.3 Trajectory Centered Tasks

As discussed in the Section 8.2, tasks that require the robot to modify trajectories based
on sensor information can only be solved using workarounds with our approach. In order
to increase the range of applications, it should be examined how our framework can be
combined with approaches focussing on trajectory centered tasks. There are two problems
here:
Firstly, trajectories that are modified by external sensors will require sensor data processing
within the robot program since this cannot be done in the position database. Not only will
this weaken the desired separation of robot instructions and sensor data processing, but
there will be two areas where sensor information is processed: In the robot program (for
trajectories) and in the position database (for positions).
Secondly, it must be evaluated if existing approaches to such tasks, like the task frame
formalism, can be integrated into our framework without modifications.
The main issue here is to maintain intuitivity for non-experts. In order to allow for the
modifications of trajectories in addition to positions, this aspect must have the highest
priority.

152

Bibliography

[1] Abb robotics. http://www.abb.de/robotics.

[2] Adept technologies. http://www.adept.de.

[3] Camelia. http://camellia.sourceforge.net.

[4] Halcon. http://www.mvtec.com/halcon/.

[5] Icra09 workshop: Formal methods in robotics and automation.
http://web.mae.cornell.edu/hadaskg/icra09/.

[6] Kuka robotics. http://www.kuka-robotics.com/.

[7] Microsoft robotics studio. http://msdn.microsoft.com/de-de/library/bb483065.aspx.

[8] Qt. http://qt.nokia.com/products.

[9] Smerobot. http://www.smerobot.org/02 overview.

[10] Stäubli robotics. www.staubli.com/de/robotik/.

[11] Lego mindstorms nxt, 2009. http://www.nxt-in-der-schule.de/lego-mindstorms-
education-nxt-system/nxt-software/nxt-education-software/nxt-education-software.

[12] Kriesten A. and M. Rößler. Generalisierte plattform zur sensordatenverar-
beitung. In Dresdner Arbeitstagung Schaltungs- und Systementwurf, 2006.
http://www.eas.iis.fhg.de/events/workshops/dass/2006/dassprog/pdf12 kriesten.pdf.

[13] S. Calinon S. Schaal A. Billard, Y. Epars and G. Cheng. Discovering optimal imi-
tation strategies. In Robotics and Autonomous Systems, volume 47, pages 65–185,
2004.

[14] Jürgen Acker. Handhabung deformierbarer linearer Objekte basierend auf Kontakt-
zuständen und optischer Sensorik. Shaker Verlag, 2008.

[15] M. Adams. Sensor Modelling, Design and Data Processing for Autonomous Naviga-
tion. World Scientific Publishing, 1998. ISBN 9810234961.

153

[16] Martin Anthony and Peter L. Bartlett. Function learning from interpolation, 1994.

[17] D. Bara. Issues in computing contact forces for non-penetrating rigid bodies. In
Algorithmica, volume 10, pages 292–352, 1993.

[18] Michael Beetz, Alexandra Kirsch, and Armin Müller. RPL-LEARN: Extending an
autonomous robot control language to perform experience-based learning. In 3rd
International Joint Conference on Autonomous Agents & Multi Agent Systems (AA-
MAS), 2004.

[19] Robert Bicker, Zhongxu Hu, and Kevin Burn. A self-tuning fuzzy robotic force
controller. 2002.

[20] Geoffrey Biggs and Bruce Macdonald. A survey of robot programming systems. In
in Proceedings of the Australasian Conference on Robotics and Automation, CSIRO,
page 27, 2003.

[21] R. Bischoff, A. Kazi, and M. Seyfarth. The morpha style guide for icon-based pro-
gramming. In Proceedings 11th IEEE International Workshop on Volume Robot and
Human Interactive Communication, pages 482 – 487, 2002.

[22] Christopher M. Bishop. Neural Networks for Pattern Recognition. Oxford University
Press, 1995. ISBN 0-19-853849-9.

[23] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2007.

[24] George Box, Gwilym M. Jenkins, and Gregory Reinsel. Time Series Analysis: Fore-
casting and Control. Prentice Hall, 1994.

[25] A. Breckweg, C. Meyer, K. Drechsler, and O. Rüger. Fast and intuitive robot pro-
gramming for mandrel guiding of braiding machines for textile preforming. 2007.

[26] Eli Brookner and Joseph J. Cynamon. Book review : Tracking and kalman filtering
made easy. Simulation, 75(3):170, 2000.

[27] C.G. Broyden. A class of methods for solving nonlinear simultaneous equations. In
Mathematics of Computation, volume 19, pages 577–593, 10 1965.

[28] Herman Bruyninckx and Joris De Schutter. Specification of force-controlled actions
in the task frame formalism: A synthesis. 1999.

[29] Horst Bunke, Takeo Kanade, and Hartmut Noltemeier, editors. Modelling and Plan-
ning for Sensor Based Intelligent Robot Systems [Dagstuhl Workshop, October 24-28,
1994]. World Scientific, 1995.

[30] S. Calinon and A. Billard. A probabilistic programming by demonstration framework
handling constraints in joint space and task space. In International Conference on
Intelligent Robots and Systems, 09 2008.

154

[31] John Canny and Eric Paulos. Informed peg-in-hole insertion using optical sensors.
In SPIE Conference on Sensor Fusion VI, 1993.

[32] P. Cheng, D. Cappelleri, B. Gavrea, and V. Kumar. Planning and control of meso-
scale manipulation tasks with uncertainties. In Robotics: Science and Systems, 2007.

[33] Siddharth R. Chhatpar. Localization for Robotic Assemblies with Position Uncer-
tainty. Case Western Reserve University, 2005.

[34] L.H. Chiang, E.L. Russell, and R.D. Braatz. Fault Detection and Diagnosis in In-
dustrial Systems. Advanced Textbooks in Control and Signal Processing. Springer
Verlag, 2001.

[35] Christopher Parlitz Martin Hägele Christian Meyer, Rebecca Hollmann. Program-
ming by demonstration for assistive systems - intuitive programming of welding and
gluing trajectories. In it - Information Technology, volume 49, pages 238 – 245, 2007.

[36] Katja. Dauster. Prozessangepasste, lernende Roboterregelung für Montageprozesse /.
Düsseldorf : VDI-Verl.,, 2002.

[37] Vasek Chvátal David L. Applegate, Robert E. Bixby and William J. Cook. The
Traveling Salesman Problem. A Computational Study. Princeton University Press,
2007.

[38] J. De Schutter and H. van Brussel. Compliant robot motion: I. a formalism for
specifying compliant motion tasks. Int. J. Rob. Res., 7(4):3–17, 1988.

[39] J. Deiterding and D. Henrich. Automatic optimization of adaptive robot manipula-
tors. In Proceedings of the 2007 IEEE International Conference on Intelligent Robots
and Systems, San Diego/USA, 2007.

[40] J. Deiterding and D. Henrich. Acquiring change models for sensor-based robot ma-
nipulation. In Proceedings of the 2008 IEEE International Conference on Robotics
and Automation, Pasadena/USA, 2008.

[41] J. Deiterding and D. Henrich. Workpiece drift recognition and adaptation for robot
manipulation tasks. In Proceedings of the 17th International Workshop on Robotics
in Alpe-Adria-Danube Region, Ancona/Italy, 2008.

[42] J. Deiterding and D. Henrich. Online calibration of one-dimensional sensors for robot
manipulation tasks. In Icinco - 6th international conference on informatics in control,
automation and robotics 2009, Milan/Italy, 2009.

[43] J. Deiterding and D. Henrich. Probability based robot search paths. In German
Workshop on Robotics, Braunschweig/Germany, 2009.

155

[44] Rüdiger Dillmann. Building elementary robot skills from human demonstration.
In Proceedings of the IEEE International Conference on Robotics and Automation,
volume 3, pages 2700–2705, 2003.

[45] Kevin R. Dixon, Martin Strand, and Pradeep K. Khosla. Predictive robot program-
ming. In In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2002.

[46] M. Dong, L. Tong, and B.M. Sadler. Information retrieval and processing in sensor
networks: deterministic scheduling vs. random access. In Proc. o.t. Int. Symp. on
Information Theory, 2004.

[47] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification (2nd
Edition). Wiley-Interscience, 2 edition, November 2000.

[48] G. Dudek and C. Zhang. Vision-based robot localization without explicit object
models. 1996.

[49] Bernd Finkemeyer. Robotersteuerungsarchitektur auf der Basis von Aktionsprimiti-
ven. Shaker Verlag, 2004.

[50] R.J. Firby. Adaptive execution in complex dynamic worlds. Yale university, 1989.

[51] Rudolf Fleischer, Tom Kamphans, Rolf Klein, Elmar Langetepe, and Gerhard Trip-
pen. Competitive online approximation of the optimal search ratio. SIAM J. Com-
put., 38(3):881–898, 2008.

[52] United Nations Economic Commission for Europe (UNECE). Solid recovery of sales
and production of industrial robots in germany - the world’s second largest user and
producer of industrial robots. In World Robotics 2004, 2004.

[53] Douglas W. Gage. Randomized search strategies with imperfect sensors. In In
Proceedings of SPIE Mobile Robots VIII, pages 270–279, 1993.

[54] Ken Goldberg. Icra 2008 workshop on algorithmic automation, 2008.

[55] J.A. Benbrahim H. Gullapalli, V. Franklin. Acquiring robot skills via reinforcement
learning. In IEEE Control Systems Magazine, volume 14, pages 13–24, 1994.

[56] G.D. Hager. Task-Directed Sensor Fusion and Planning: A Computational Approach.
Kluwer, May 1990.

[57] T. Hasegawa, T. Suehiro, and K. Takase. A model-based manipulation system with
skill-based execution in unstructured environments. In Fifth International Conference
on Advanced Robotics (ICAR91), pages 970 – 975, 1991.

[58] M. H. Hassoun. Fundamentals of Artificial Neural Networks. MIT Press, Cambridge,
Mass., 1995.

156

[59] R. Hollmann, E. Westkämper, and A. Verl. Industrieroboter schneller und einfacher
programmieren : Auch ohne brain-to-robot-interface. Fraunhofer IPA Workshop F
157, 1:93–103, 2007.

[60] Alston S. Householder. Unitary triangularization of a nonsymmetric matrix. J. ACM,
5:339–342, 1958.

[61] Yanrong Hu and Simon X. Yang. A knowledge based genetic algorithm for path
planning of a mobile robot. In ICRA, pages 4350–4355, 2004.

[62] Paul Hudak, Antony Courtney, Henrik Nilsson, and John Peterson. Arrows, robots,
and functional reactive programming. In Advanced Functional Programming, 4th
International School, volume 2638 of LNCS, pages 159–187. Springer Verlag, 2002.

[63] S.A. Hutchinson, R.L. Cromwell, and A.C. Kak. Planning sensing strategies in a
robot work cell with multi-sensor capabilities. In Proc. IEEE Int. Conf. On Robotics
and Automation, pages 1068–1075, 1988.

[64] Verein Deutscher Ingenieure. Vdi 2860: Assembly and handling; handling functions,
handling units; terminology, definitions and symbols. pages 1–16, 1990.

[65] H. Kirnura J. Takamatsu and K. Ikeuchi. Classifying contact states for recognizing
human assembly task. In Proceedings IEEE/SICE/RSJ International Conference on
Multisensor Fusion and Integration for Intelligent Systems, pages 177 – 182, 1999.

[66] Stefano Caselli Jacopo Aleotti and Monica Reggiani. Toward programming of assem-
bly tasks by demonstration in virtual environments. In 12th IEEE Workshop Robot
and Human Interactive Communication, 11 2003.

[67] J. W. Jeon, S. Park, and S. Kim. Compensation for servo drift in industrial robots.
In Industrial Electronics, Control, Instrumentation, and Automation - IECON, vo-
lume 2, pages 589–594, 1992.

[68] Soller K. and Henrich D. Intuitive robot programming of spatial control loops with
linear movements. In Friedrich M. Wahl Torsten Kröger, editor, GWR09 German
Workshop on Robotics, 2009.

[69] Björn Kahl. Virtuelle Roboterprogrammierung basierend auf einer Any-time fähigen
Simulation deformierbarer linearer Objekte. Shaker Verlag, 2007.

[70] Rudolph Emil Kalman. A new approach to linear filtering and prediction problems.
Transactions of the ASME Journal of Basic Engineering, 82(Series D):35–45, 1960.

[71] P. Kesavan and J. H Lee. Diagnostic tools for multivariable model-based control
systems. In Ind. Eng. Chem. Res, volume 36, pages 2725–2738, 1997.

[72] M. Khatib. Sensor-based motion control for mobile robots. 1996.

157

[73] Alexandra Kirsch. Towards high-performance robot plans with grounded action mo-
dels: Integrating learning mechanisms into robot control languages. In ICAPS Doc-
toral Consortium, 2005.

[74] Alexandra Kirsch. Integration of Programming and Learning in a Control Language
for Autonomous Robots Performing Everyday Activities. PhD thesis, Technische
Universität München, 2008.

[75] T. Kröger, B. Finkemeyer, and F. Wahl. Compliance and force control for computer-
controlled manipulators. Proceedings of the IEEE-RSJ International Conference on
Robotics and Automation, 1:3011–3016, 2006.

[76] T. Kröger, B. Finkemyer, and F. Wahl. Compliant robot motion: The task frame
formalism revisited. In Journal of Robotics and Mechatronics, volume 3, pages 1029–
1034, 2004.

[77] Steven M. LaValle. Robot motion planning: A game-theoretic foundation. Algorith-
mica, 26(3-4):430–465, 2000.

[78] Tine Lefebvre, Herman Bruyninckx, and Joris De Schutter. Autonomous execution
of force-controlled robot tasks. 2007.

[79] Ulf Leonhardt and Jeff Magee. Multi-sensor location tracking. In MobiCom ’98: Pro-
ceedings of the 4th annual ACM/IEEE international conference on Mobile computing
and networking, pages 203–214, New York, NY, USA, 1998. ACM.

[80] K. Levenberg. A method for the solution of certain non-linear problems in least
squares. Quarterly Journal of Applied Mathmatics, II(2):164–168, 1944.

[81] F.J. Lopes. Optimizing and automatic deburring system for the glass industry. In
Master Thesis, University of Coimbra, 2008.

[82] T. Lozano-Perez. Robot programming. In Proceedings of the IEEE, volume 71, pages
821–841, 07 1983.

[83] Reyes Rios-Cabrera Jorge Corona-Castuera Mario Pena-Cabrera, Ismael Lopez-
Juarez. Machine vision approach for robotic assembly. In Assembly Automation,
volume 25, pages 204 – 216. Emerald Group Publishing Limited, 2005.

[84] Donald W. Marquardt. An algorithm for least-squares estimation of nonlinear para-
meters. Journal of the Society for Industrial and Applied Mathematics, 11(2):431–441,
1963.

[85] K. Marti. Path planning for robots by stochastic optimization methods. In Journal
of Intelligent and Robotic Systems, volume 22, pages 117 – 127, 1998.

158

[86] Matthew Mason. Compliance and force control for computer-controlled manipula-
tors. IEEE Trans on Systems, Man, and Cybernetics, 11(1):418–432, 1981.

[87] David D. Morrison. Remarks on the unitary triangularization of a nonsymmetric
matrix. J. ACM, 7(2):185–186, 1960.

[88] James Morrow and Pradeep Khosla. Manipulation task primitives for composing
robot skills. In IEEE International Conference on Robotics and Automation (ICRA
’97), volume 4, pages 3354–3359, 04 1997.

[89] H. Mosemann. Beiträge zur Planung, Dekomposition und Ausführung von automa-
tisch generierten Roboteraufgaben. Shaker Verlag, 2000. ISBN 3-8265-7710-8.

[90] W. Neubauer, M. Moller, S. Bocionek, and W. Rencken. Learning systems behaviour
for automatic correction and optimization of off-line robot programs. In Proceedings
of the 1992 lEEE/RSJ International Conference on Intelligent Robots and Systems,
1992, volume 2, page 1355 ? 1362, 07 1992.

[91] D. Orin and W. Schrader. Efficient jacobian determination for robot manipulators.
In M. Brady and P. R.P. Paul, editors, Rob. Research: The 1st int. symposium. MIT
Press, Cambridge, 1984.

[92] Giuseppe De Nicolao Paolo Magni, Riccardo Bellazzi. Bayesian function learning
using mcmc methods. In IEEE Transactions on Pattern Analysis and Machine In-
telligence, volume 20, pages 1319–1331, Dec 1998.

[93] N. Paragios and G. Tziritas. Adaptive detection and localization of moving objects
in image sequences. Signal Processing: Image Communication, 14:277–296, 1999.

[94] M. Pardowitz, R. Zöllner, and R. Dillmann. Incremental acquisition of task know-
ledge applying heuristic relevance estimation. IEEE Trans on Systems, Man, and
Cybernetics, 11(1):418–432, 2006.

[95] Parzen and Fabian Hoti. On estimation of a probability density function and mode.
volume 33, 1962.

[96] John Peterson, Gregory D. Hager, and Paul Hudak. A language for declarative
robotic programming. In In International Conference on Robotics and Automation,
pages 1144–1151, 1999.

[97] Rolf Pfeifer and Christian Scheier. From perception to action: The right direction? In
Proc. “From Perception to Action“ Conference, pages 1–11. IEEE Computer Society
Press, Los Alamitos, 1994.

[98] J.N. Pires. New challenges for industrial robotic cell programming. In Industrial
Robot, volume 36, 2009.

159

[99] W.H. Press, B.P. Flannery, S.A. Teukolsky, and Vetterling W.T. Secant method, false
position method, and ridders’ method. In Numerical Recipes in FORTRAN: The Art
of Scientific Computing, 2nd ed., pages 347–352. Cambridge University Press, 1992.

[100] M. Ehrenmann O. Rogalla R. Dillmann, R. Zöllner. Interactive natural programming
of robots: Introductory overview. In Proc. of DREH 2002, 2002.

[101] Raul Rojas. Neural Networks: A Systematic Introduction. Springer, 1 edition, July
1996.

[102] K. Rui, M. Yoshifumi, and M. Satoshi. Information retrieval platform on sensor
network environment. In IPSJ SIG Technical Reports, number 26, pages 37–42,
2006. ISSN 0919-6072.

[103] F. Guenter S. Calinon and A. Billard. On learning, representing, and generalizing a
task in a humanoid robot. In IEEE Trans. Syst., Man, Cybernetics, volume 37 of B,
pages 286–298, 2007.

[104] Antoine Schlechter. Einhändige kraftbasierte Handhabung deformierbarer linearer
Objekte. Shaker Verlag, 2007.

[105] Antoine Schlechter and Dominik Henrich. Manipulating deformable linear objects:
Manipulation skill for active damping of oscillations. In Proceedings of the 2002 IEEE
International Conference on Intelligent Robots and Systems, Lausanne/Switzerland,
2002.

[106] Antoine Schlechter and Dominik Henrich. Discontinuity detection for force-based
manipulation. In Proceedings of the 2006 IEEE International Conference on Robotics
and Automation, Orlando/Florida, 2006.

[107] M. Schlemmer and G. Grübel. Real-time collision- free trajectory optimization of
robot manipulators via semi-infinite parameter optimization. In The International
Journal of Robotics Research, volume 17, pages 1013–1021, 1998.

[108] R. D. Schraft and Christian Meyer. The need for an intuitive teaching method for
small and medium enterprises. In ISR 2006 - ROBOTIK 2006 : Proceedings of the
Joint Conference on Robotics, May 2006.

[109] Rajeev Sharma, Steven M. Lavalle, and Seth Hutchinson. Optimizing robot motion
strategies for assembly with stochastic models of the assembly process. IEEE Trans.
on Robotics and Automation, 12:145 – 157, 1996.

[110] Bruno Siciliano and Oussama Khatib, editors. Springer Handbook of Robotics. Sprin-
ger, Berlin, Heidelberg, 2008.

160

[111] David Simon, Lee Weiss, and Arthur C Sanderson. Self-tuning of robot program
primitives. In Proceedings of the 1990 IEEE International Conference on Robotics
and Automation (ICRA ’90), volume 1, pages 708 – 713, May 1990.

[112] R. Suarez, L. Basanez, and J. Rosell. Using configuration and force sensing in assem-
bly task planning and execution. Assembly and Task Planning, IEEE International
Symposium on, 0:0273, 1995.

[113] Phillip D. Summers and David D. Grossman. Xprobe: An experimental system for
programming robots by example. In International Journal of Robotics Research,
volume 3, 1984.

[114] Aaron Tenenbein and Jay-Louise Weldon. Probability distributions and search sche-
mes. Information Storage and Retrieval, 10(7-8):237–242, 1974.

[115] Ulrike Thomas. Automatisierte Programmierung von Robotern für Montageaufgaben.
Shaker Verlag, 2005.

[116] Ulrike Thomas, Bernd Finkemeyer, Torsten Kröger, and Friedrich M. Wahl. Error-
tolerant execution of complex robot tasks based on skill primitives. In In IEEE
International Conference on Robotics and Automation, pages 3069–3075, 2003.

[117] Ulrike Thomas, Aanton Movshyn, and Friedrich Wahl. Autonomous execution of
robot tasks based on force torque maps. In Proceedings of the Joint Conference on
Robotics. International Symposium on Robotics / Robotik 2006, 2006.

[118] Sebastian Thrun. Towards programming tools for robots that integrate pro-
babilistic computation and learning. In Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation (ICRA, pages 306–312. IEEE.
http://robots.stanford.edu/papers/thrun.ces-icra.html, 2000.

[119] Robert Tilove. Smart assembly: Industrial needs and r&d challenges. 2008.
http://www.give.nl/events/ICRA AA/index.html.

[120] Bertrand Tondu. The three-cubic method: An optimal online robot joint trajectory
generator under velocity, acceleration, and wandering constraints. In The Interna-
tional Journal of Robotics Research, volume 18, pages 893–901, 1999.

[121] Christian Meyer und Olaf Rüger. Intuitive programmierung von ro-
botern beim flechten von kohlefasern. In Maschinenmarkt, 2007.
http://www.maschinenmarkt.vogel.de/index.cfm?pid=1576&pk=95219.

[122] Naumann M. Verl, A. Plug and produce-steuerungsarchitektur für roboterzel-
len: Automatische code-generierung für roboterzellen aus prozess- und geräte-
beschreibungen. In Wt Werkstattstechnik, volume 98, pages 384–390, 2008.

161

[123] VDI Nachrichten vom 19.11.2004. Die automatisierungsbranche befindet sich im
wandel - studie ’automatisierung 2010’. VDI Nachrichten, 19.11. 2004.

[124] P. Werbos. The Roots of Backpropagation: From Ordered Derivatives to Neural Net-
works and Political Forecasting. John Wiley & Sons, New York, 1994.

[125] M.D. Wheeler. Automatic modeling and localization for object recognition. 1996.

[126] Alexander Winkler. Ein Beitrag zur kraftbasierten Mensch-Roboter-Interaktion. 2006.
Dissertation.

[127] Jing Xiao. Automatic determination of topological contacts in the presence of sen-
sing uncertainties. In Proc. 1993 IEEE International Conference on Robotics and
Automation, volume 1, pages 65–70, 05 1993.

[128] Jing Xiao and Lianzhong Liu. Contact states: Representation and recognizability in
the presence of uncertainties. In in the Presence of Uncertainties ", IEEE/RSJ
Int. Conf. Intell. Robots and Sys, 1998.

[129] T. Yoshikawa and K. Yoshimoto. Haptic simulation of assembly operation in virtual
environment. In Proceedings of the ASME Dynamic Systems and Control Division,
volume 69, pages 1191–1198, 2000.

[130] Shigang Yue and Dominik Henrich. Manipulating deformable linear objects: Sensor-
based skills of adjustment motions for vibration reduction. In Journal of Robotic
Systems 22(2), 67-85 (2005), 2005.

[131] Shigang Yue and Dominik Henrich. Manipulating deformable linear objects: Fuzzy-
based active vibration damping skill. In Journal of Intelligent Robot Systems
46/2006, pp. 201-219, 2006.

[132] A. Zelinsky, R.A. Jarvis, J. C. Byrne, and S. Yuta. Planning paths of complete
coverage of an unstructured environment by a mobile robot. In In Proceedings of
International Conference on Advanced Robotics, pages 533–538, 1993.

162

