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Abstract The aim of this work is to show that robots canitm@roved using
knowledge present or gained in previous executidribe task. Here, this knowl-
edge is used to create search paths tailored tprtiidem at hand. We describe
two approaches to create such paths automaticélighmenable robots to find an
unknown position faster than standard paths. Thetiso presented here is not
limited to the robotic domain, but can also be ugadother purposes such as
searching for injured persons after accidents. &proach is evaluated through
simulations and we show that these paths perforequetely well or even better
than standard paths.

I ntroduction

Industrial robots are able to perform complex taskbout symptoms of fatigue,
exhibiting highest precision and speed. Howevegs¢htasks are nearly always
executed in a fixed environment; that is the pieniss gained by ensuring that all
objects are placed in exactly the same positiomyetmme. All parts need to have
the same dimension, position, orientation, etcy®my employing external sensors
such as vision or force/torque sensors, we canlematobot to deal with impreci-
sions and variations occurring in the objects dmdnvironment. The price for
this flexibility is that sensor based motions al@vscompared to pre-computed
motions. Especially when searching objects, the tieguired is significant.

In [4] we have classified changes that can occtwéen two executions of the
same robot program by two characteristics: Theimmg the change and the ro-
bot's reaction to it (Table 1). Here we differetgidour types of change: (a) An
indeterminacy is something we are not aware of at this momaritphce we have
learned about it, it will remain constant for alprged period of time. (bYaria-
tions on the other hand occur every time the robot per$othe task at hand. (c)
Faults and errors happen when a sudden, unforeseen change in thepame oc-
curs. (d) Adrift is similar to variations but not caused by thek tiiself, but by
gradual changes within the workspace, e.g. théngettof machines and tools
change over time.



In this paper, we are interested in ways of dealiifp variations. A search
motion must be performed to determine the variatiothe current execution of
the task. The central idea of this paper is tos@-knowledge gained in previous
searches to create search paths tailored to theatasthus shorten the time span
required for the search.

The rest of this paper is organized as followsth@ next section, we give a
short overview of related work concerning this tofased on this, we describe
how a search path can be optimized with regard ¢iven probability density.
Additionally, we introduce a modification to ourrng algorithm to further opti-
mize the path for probability densities with muléipnaxima. Then we show the
validity of our approach in simulations and compémne results with standard
search paths in a two-dimensional environment.

Origin of change
Caused by thetask ~ Caused by abrasion
. One-step learning Indeterminacies Faults and errors
Reaction to change . . _ .
Continuous learning  Variations Drifts

Table 1: Classification of changes that can ocetwben multiple executions of the same pro-
gram. [4]

Related wor k

The topic of robots performing some kind of seaschery broad, so we will only
refer to work dealing with searches in industriaVieonments and results which
can be transferred to this domain.

A good overview is given in [8]. Despite the fabat sensor data processing
has made significant progress allowing for reldyiviast processing capabilities,
standard search motions which only use minimal agnsmformation are still
commonly used in industrial applications. A reafanthis is that especially small
and medium companies lack experts skilled in sedata processing. Also of in-
terest are the works of [10] and [6] which covelbabmotion planning based on
sensor data and probability densities.

If a search cannot be avoided, usually camerasusee that supervise the
search area for the given variation. While thisrapph is straightforward and has
the advantage that the localization can be madéeviheé robot performs some
other task, this is only applicable if the searmaacan be monitored at all. A typi-
cal example for a task where this is impossibldhésassembly of a gear box in a
car. Tolerances are extremely small and the semeznis occluded by other parts
of the vehicle so camera supervision is impossiblke local sensors must be used.

Sharma [7] incorporates stochastic models intogrostion planning and de-
fines a stochastic assembly process that yieldsased performance.

An important area of research outside the industioanain iscomplete cover-
age paths in mobile robotics. Here a robot must cover armarg. to search for in-
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jured people after an accident. A good overviewhis area of research is given
by [12]. Also of interest is [11], which uses a g8a algorithm approach and
knowledge gained in previous executions to optinttisepath of a mobile robot.

In summary, efficient search strategies are orte@tentral problems of robot-
ics. While there are many specific solutions, §ly.and [5], these are nearly al-
ways tailored towards specific tasks and the restdin rarely be transferred to
other areas. Here, we take a more general apptoaséarch motions for indus-
trial applications and outline the requirements dptimized search strategies. In
industrial applications, the search area is précidefined and does not change
over multiple executions. The ideas presented imfhper are independent from
the type of sensor used, the only requirementasithprovides a binary decision
whether the goal of the search has been foundto® only deal with the search
itself, not with any actions that have to be takgrthe robot afterwards, e.g., ac-
tually inserting a peg into a hole. Examples hoig ttan be achieved using sen-
sors are given in [2] and [3].

Sear ch paths based on probability densities

In this section, we present the concept of a sepath generated along a given
probability density. The idea is that the robotesosuccessful positions from pre-
vious executions and creates a probability derfeity this knowledge. This can
be achieved by employing the methods describe8]inThe path is not fixed and
may change with every update of the probabilitysityn

Robot search paths

A search is a motion that covers a specified areader to locate an object whose
exact positiorpg is unknown. Exactly one object is searched foa &tne. Here,
we set the following preconditions:

1. The search area can bedimensional, but its boundary in every dimension
must be a straight line. The area can be dividemansetS of cells describing
discrete (hyper) cubes with fixed edge length When the robot moves to a
cell, the whole area covered by that cube is probed decision whetheg, is
found is binary, so there are no hints guidingawatrds the goal. We assume
that it takes a constant time span to check ifhed is located in a cell.

2. Any movement between two cells is allowed. Thenmsoisieed for a neighbour-
ing connection between two cells. No cell lyingvieeen the current and the
next is tested when moving there.



3. A valid search patPR = (py,...,pg) must visit each cell of the whole area at least
once. We include the possibility that the seardls:fgp; JS. A search path is

then an ordered sequence of all cellS.in
4. The distance between two celts,c; [l Sis relevant when planning the path.

There is a positive cost functialfc;,c;) describing the time and effort to move
from cellc to ¢;. Two neighbouring cells have unit distance.

5. There is a probability density describing the chance that the object lies within
any given cell. This density may be continuous.

Additionally, a change of direction in the sear@thpmay slow down the mo-
tion in order to perform the turn along the patte Wsregard this factor here.

Conditions 1 to 4 describe the general requirememg®sed on a search path.
Condition 5 is a new addition describing the knalgle we have about the loca-
tion of the object that we are searching. Thisvedlaus to begin the search in the
most probable cell and descend along the densditead of employing a pre-
determined path.

There are three criteria along which we comparteifit search paths to each
other: Their total (maximum) lengthand the expected number of cells visited
Ec(P) as well as the expected length of the gat{P) for the given probability
densityp(p) and pathP:

P P
Ec(PEY. " 4(p) E(P)=), . #(p) [(p_y, P)

A developer faced with the task of designing adeaath should consider two
aspects. On one hand, it may be useful to limittttal length to its minimal
value, so the path is not exceedingly long. Ondtieer hand, if the (average)
search time is crucial, it may make more sensedate a search path with higher
total length but lower expected values. The denijsighich of the two expected
values is more important, depends on the typeafe If the movement between
two cells is relatively fast compared to the timtakes to check a cell, the number
of cells visited is significant. In case of slow tions, e.g. controlled movements
along surfaces, the expected length is of more itapoe.

There are two de facto standard search paths &clses in two-dimensional
environments: A zigzag path and a spiral path. Batths can be easily extended
to more than two dimensions. The zigzag path islisghosen if the probability
density is uniform, so there is no need to stad Bpecific cell. The spiral path is
usually chosen whep is unimodal, e.g. Gaussian, with mean in the neiddIS.

In this case the search starts in the most likelsiton and gradually descends

alongg. Note, that both paths are optimal regarding tlegigth; no cell is visited
twice.



Optimizing search paths

Now, we are interested in finding search paths tiptitmize the expected values
for a given probability density. A search path vhis minimal in this sense will
find pgy as soon as possible.

To create a search pathwith lower expected values than a standard path fo
the given dimension 0%, one has to approach cells with high probabilitgt f
while neglecting cells with low probability untihé end of the search. In case the
expected length of the path is of importance, duith be attempted to minimize
huge jumps acrosSas much as possible. The downside is that thardistof two
consecutive cells i? now may be much higher than 1. So this search ipatp
not be minimal with respect to the total length.

In asorting strategy to generate an optimized search patlcele of S are or-
dered like this: The beginning of the path is thestrprobable cell, so

po ={c |6 0SOOc; 0S:4(c) 2 4(c))}

The remaining cells of the path are chosen by arsae definition: We always
choose the next cell according to its probabilityélation to its distance to the
current cell, so

#(c) #(c;)
>
d(p.c)"  d(py.cp)"”

pk+1:{ci|ci OS\{pg,....p} Bc; DS\ {pg,.. Py}

The impact of the distance when choosing the netkis controlled by the ex-
ponentn, which must not be negative. The choice of thimpeeter depends on the
type of application and must be chosen by the dgezl The lower the value of
the lesser the impact on the distance in the seteprocess. So cells with a high
distance to the current cell may be selected ak Weé highem is, the more the
selection process favours cells which lie clostheocurrent cell. Note, that if is
set to zero, the cells are simply ordered alongr ttespective probability. This
will minimize the expected number of cells visitddit result in an extremely long
total path, as it will cover great distances to mfrom one cell to the next (Figure
1, left). Vice versa, ifh is set to infinity, the path always moves to néigiring
cells (Figure 1, right). Technically, we cannot gaick in dead ends, because of
Condition 2. But it is possible that we must mowoetcell far away from the cur-
rent one, because there are no neighbouring edlsThis strategy is not heuristic
but always computes the best path for the givebaiility density and choice of
n. It may be possible that more than one path ewigtsthe same expected value.
An example is shown in Figure 1 on the right faBaussian distribution. All spi-
ral paths that start in the center will have thms@xpected value regardless of the
fact which neighbouring cell is visited first. Tisrategy presented here only
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computes one of these paths. Which one this wildéeends on the ordering of

p((x.y)
p(xy)

Fig. 1: Impact of the distance when sorting cells. Botthpatart at the center. Left: The relative
distance between the cells has no impact at ajhtRiThe relative distance between the cells is
of infinite impact.

Search space subdivision

This ordering works very well ip has only one maximum or if the impact of the
distance is chosen so that only cells close tocthreent cell are selected. But, if
there are two or more maxima with a significanttatise relative to each other
(Figure 2, left), the path generated by this apgmoaill oscillate between these
maxima. Because of this, we extend our approachimtndduce adivide-and-
conquer strategy to spli§into separate regions. We will repeat this procsgs
the generated regions only contain one or zero mesnd then generate separate,
optimized paths for each region with the sortimatsgy. Finally, we connect all
subpaths once more with the sorting strategy.

The algorithm in pseudo code looks like this:

(00) createSmart Pat h(bool top, |ist<path> paths) {

(01) i f(findvaxi ma() == 0) {

(02) creat eZi gZagPat h() ;

(03) addThi sPat hToLi st (pat hs); }

(04) else if(findMaxima() == 1) {

(05) order Cel | sByProbability();

(06) addThi sPat hToLi st (pat hs); }

(07) el se {

(08) subspaces = split SearchSpace();
(09) f or each(subspace)

(10) createSmart Pat h(fal se, paths);}
(11) if(top)

(12) final path = orderPat hsByProbability(paths)}
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The function call in Line 0 takes two parameterse Boolean parametebp
describes if this is the topmost function call dhd listpat hs is empty initially.
Successive calls of this function will add subpathshis list. In Lines 1 to 6, ei-
ther a standard zigzag path or a probability odigath is fitted into the given re-
gion, if there is none or only one maximum in tha¢a. The result is added to
pat hs. Otherwise the area is split into separate regimse 8). A simple ap-
proach is to perform a horizontal and a verticdltbtcough the geometric center of
S. Other approaches would be to employ Voronoi diagr between the maxima
for a more fitting split. If the area is divideddnseparate regions, the same func-
tion is called to determine a path for this regibmes 9 and 10). As a result, we
have calculated a subpath for every region of thelevarea. Now these paths are
connected to each other by using the sorting sfyatieines 11 and 12).

This extension yields the advantage that the pdtmet oscillate between two
or more maxima, but remains in the immediate sumiig of one maximum. The
downside is that — regardless of the valua efthere will always be a significant
distance we have to bridge between two regionss Wil worsen the total length
of the path.

Experimental results

In this section, we describe simulation resultshow how optimized search paths
compare to standard search paths for various pildgatensities. We have lim-
ited the simulations to a two-dimensional workspaweehis case, the paths are al-
ready complex compared to a one-dimensional sebutttan still be visualized.

Simulation setup

We have set up a two-dimensional squared workspétean edge length of 15
cm. The position we are trying to find is a holehnva diameter of 1.5 cm. We
have set the size of the cells$to Ac = 1 cnf. This gives us 225 cells in the
search area. So, there are 225! possible searbh, palhich is already too much
for a brute-force computation.

We have created three probability densities:

1. A Gaussian densityy with meanp, = (7,7) cm in the middle d ando = 1
cm.

2. A mixed Gaussian density, consisting of four maxima at = (3, 3) cmp, =
(11, 3) cmps = (3, 11) cmp, = (11, 11) cm and =1 cm each (Figure 2, left).
A typical example for such a density is a peg-itehiask on a square plate
where the hole is not centered and the plate masotag¢ed by 90°, 180° or
270°.
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3. An off-centered density. with a maximum along the third quadrant in a @rcl
aroundp,, with radiusr = 5 cm (Figure 2, right). A typical example for bua
density is a peg-in-hole task where the plate maydbtated by any value be-
tween 0° and 90°.

We have not used a uniform density, because no legig® is present in such a

density. To that effect, the expected value ofalirch paths is identical. The only

difference will be in the total length. Becausetlwdt it is sufficient to use a stan-
dard search path.
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Fig. 2: Multi-modal probability density (left) and densityhere the maximum is along a quarter
circle in the third quadrant &(right) used in the simulations.
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Comparison to a standard search path

In two experiments, we used these three densitidsganerated search paths for
each one. The first time, we only used the sorsingtegy and the second time the
divide-and-conquer strategy. For each density, eeepated paths with varying
values forn in the range [0;10] with increments of 0.1. Wentlmmpared the
generated paths to a standard spiral path startitige center and measured the ra-
tio by which the total length and the expected ®saldiffer from this standard
path. Figure 1 shows two paths for the Gaussiabalitity density with a low
and a high value fon. Since there is only one maximum present, botitesgies
generate the same paths. Figures 3 and 4 showagetgraths for a value aof=
5.6 for the second and the third probability degnsit

We can see that the sorting strategy generates gahfollow the underlying
density and prefer neighbouring cells. Nevertheltéssse paths can lead to dead
ends. In this case substantial jumps have to beertmdeach unvisited cells. The
divide-and-conquer strategy reduces these jumpsepwgratings into distinct re-
gions. Although here jumps may be necessary as thelse are limited to some
extent.
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Fig. 3: Generated paths for the multi modal probabilitysiignoutlined in Fig.2, left. Left: The
path generated with the sorting strategy star{§@tl1). Right: The path generated with the di-

vide-and-conquer strategy starts at (3,3).
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Fig. 4: Generated paths for the quarter circle probabdlegpsity outlined in Fig. 2, right. Both

paths start at (13,4). Left: Path generated wighstbrting strategy. Right: Path generated with the
divide-and-conquer strategy.

Now we compare both strategies to a spiral pathurei 5 shows the ratio by
how much the generated paths relate to the spathl for different values an.
We compare all paths by the expected number of eédited beforg, is found,
the length of this expected path and the total fatgth. All results are set into re-
lation to a spiral path starting at the centeSoA value larger than one means,
that the generated path performs superior to thalggath. Vice versa, a value be-
low one means that the path performs worse thasgial path.

Once more, the results of the divide-and-conquatesyy for the Gaussian den-
sity are not shown, because this strategy genetladesame paths as the sorting
strategy. In all cases, the total path length (lloé brown lines) is worse than that
of the spiral path, which is already optimal. Buith higher values of, the paths
draw near the optimal length. For low valuesmpthe divide-and-conquer strategy

produces slightly better results, because in thsegcall jumps are limited to the
current region.
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For low values oh, the sorting strategy generates paths that tgsifisiantly
fewer cells than the spiral path (red line). Bécdéuse these cells are far apart, the
expected length covered (green line) can be wdrar that of the spiral path.
With higher values fon, the two lines converge, because now neighbowélig
are preferred, similar to the spiral path. The bighgets, the lower the advantage
of the sorting strategy, because of the dominarfaeighbouring cells in the se-
lection process.

The divide-and-conquer strategy showed no signifiéeprovement in com-
parison to the sorting strategy. In case of thecefitered density, the expected
number of cells and the expected length of the fatinple and turquoise lines)
are higher than the spiral path but lower thansthiting strategy. The overall path
length is only slightly better than the sortingasdgy and only for low values af
In case of the mixed Gaussian density, the expeuti@sber of cells and the ex-
pected path length are even worse than for thalgméth, because the splitting al-
gorithm cuts the area and only moves to the nelssesttion, when the current
subsection is completely covered. Because theremamgy cells with very low
probability in every subsection, this lowers theoeoted values significantly. It
may be possible to achieve better results with eersophisticated splitting algo-

rithm, but this exceeds the scope of this paper.
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sity pg. Bottom left: For a mixed Gaussian dengity Top right: For an off-centered density
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Random probability distributions

In the next step, we have generated random pratyatignsities in order to
evaluate our strategies for a broader set of pibtyatensities. We have created
these densities by randomly placik@aussians uniformly in the search area. For
every value ofk, we have created 100 different probability deasitiThen, the
sorting strategy was applied to each density withous settings fon. We com-
pared the generated paths to the standard spitabpd computed the average for
each combination d andn. The results are shown in Figure 6.

990000000
SNWAOONRO=

Fig. 6: Expected length of path (left) and total lengttpath (right) in relation to a standard spi-
ral path for a varying values &fandn.

We can see that the generated paths perform lletterthe spiral path for low
values ofk regardless of the choice win terms of the expected length of the path
(Figure 6, left). The more Gaussians are combihedriore the overall probability
density converges to a uniform density. In thisecasither the optimized paths
nor the spiral paths are superior because then® imformation present in the
probability density at all. When we take a lookls overall length of the search
path (Figure 6, right), once more we can see th#tigpgenerated with a low im-
pact of the relative distance between two cellssagrificantly longer than the spi-
ral path. With increasing, the optimized paths are nearly as short as thalsp
path. There are two noteworthy aspects: The ratioeases faster for high values
of k. This is because the Gaussians lie closer to e, But for high values of
k andn, the ratio decreases. This is because now therescamany Gaussians in
the overall density that the path tends to getksincorners and large jumps have
to be made to approach the next free cell incregasia total length.

Conclusion

The aim of this work is to show that search pathseld on probability densities
are capable of locating the position in questicstefiathan standard search paths.
The central idea is to search in areas with higibability of success first in order
to maximize the expected value.
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We have described the general requirements for glatining and three ways
to rate search paths. While standard paths arenaptiith respect to the total
length, optimized paths can improve these in tesfrthe average time the search
takes. We have shown in simulations that, for Gansgrobability densities, the
optimized paths perform almost as well as stangetths and better if there is
more information present about the search area.sTa¢egies presented in this
paper are no heuristics, but always compute thegath for a given probability
density and choice of the impact of the distandesben two consecutive cells.

The advantage of our approach is that standardtsgaths can be seen as spe-
cial solutions to the more general approach taleme.hThe algorithms to create
optimized paths can be incorporated into the prognang environment and no
additional knowledge is required by the develoddre update of the probability
density describing the search area and the patinglatself can be completely
hidden from the developer.

The next step is to test reasonable splitting d@lyms for the divide-and-
conquer strategy to further improve the expectddes Various approaches to
subdivide the search area, such as Voronoi diagreamsbe taken and compared
to each other. So far, we have separated the saeahinto hypercubes. An inter-
esting approach may be to use a hexagonal gridviding us with more
neighbours for a local path planner.
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