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Abstract The aim of this work is to show that robots can be improved using 
knowledge present or gained in previous executions of the task. Here, this knowl-
edge is used to create search paths tailored to the problem at hand. We describe 
two approaches to create such paths automatically which enable robots to find an 
unknown position faster than standard paths. The solution presented here is not 
limited to the robotic domain, but can also be used for other purposes such as 
searching for injured persons after accidents. Our approach is evaluated through 
simulations and we show that these paths perform adequately well or even better 
than standard paths. 

Introduction 

Industrial robots are able to perform complex tasks without symptoms of fatigue, 
exhibiting highest precision and speed. However, these tasks are nearly always 
executed in a fixed environment; that is the precision is gained by ensuring that all 
objects are placed in exactly the same position every time. All parts need to have 
the same dimension, position, orientation, etc. Only by employing external sensors 
such as vision or force/torque sensors, we can enable a robot to deal with impreci-
sions and variations occurring in the objects and the environment. The price for 
this flexibility is that sensor based motions are slow compared to pre-computed 
motions. Especially when searching objects, the time required is significant. 

In [4] we have classified changes that can occur between two executions of the 
same robot program by two characteristics: The origin of the change and the ro-
bot’s reaction to it (Table 1). Here we differentiate four types of change: (a) An 
indeterminacy is something we are not aware of at this moment, but once we have 
learned about it, it will remain constant for a prolonged period of time. (b) Varia-
tions on the other hand occur every time the robot performs the task at hand. (c) 
Faults and errors happen when a sudden, unforeseen change in the workspace oc-
curs. (d) A drift is similar to variations but not caused by the task itself, but by 
gradual changes within the workspace, e.g. the settings of machines and tools 
change over time. 



2  

In this paper, we are interested in ways of dealing with variations. A search 
motion must be performed to determine the variation in the current execution of 
the task. The central idea of this paper is to re-use knowledge gained in previous 
searches to create search paths tailored to the task and thus shorten the time span 
required for the search. 

The rest of this paper is organized as follows: In the next section, we give a 
short overview of related work concerning this topic. Based on this, we describe 
how a search path can be optimized with regard to a given probability density. 
Additionally, we introduce a modification to our sorting algorithm to further opti-
mize the path for probability densities with multiple maxima. Then we show the 
validity of our approach in simulations and compare the results with standard 
search paths in a two-dimensional environment. 

Origin of change  

Caused by the task Caused by abrasion 

One-step learning Indeterminacies Faults and errors 
Reaction to change 

Continuous learning Variations Drifts 

Table 1: Classification of changes that can occur between multiple executions of the same pro-
gram. [4] 

Related work 

The topic of robots performing some kind of search is very broad, so we will only 
refer to work dealing with searches in industrial environments and results which 
can be transferred to this domain. 

A good overview is given in [8]. Despite the fact that sensor data processing 
has made significant progress allowing for relatively fast processing capabilities, 
standard search motions which only use minimal sensory information are still 
commonly used in industrial applications. A reason for this is that especially small 
and medium companies lack experts skilled in sensor data processing. Also of in-
terest are the works of [10] and [6] which cover robot motion planning based on 
sensor data and probability densities. 

If a search cannot be avoided, usually cameras are used that supervise the 
search area for the given variation. While this approach is straightforward and has 
the advantage that the localization can be made while the robot performs some 
other task, this is only applicable if the search area can be monitored at all. A typi-
cal example for a task where this is impossible is the assembly of a gear box in a 
car. Tolerances are extremely small and the search area is occluded by other parts 
of the vehicle so camera supervision is impossible and local sensors must be used. 

Sharma [7] incorporates stochastic models into gross motion planning and de-
fines a stochastic assembly process that yields increased performance. 

An important area of research outside the industrial domain is complete cover-
age paths in mobile robotics. Here a robot must cover an area e.g. to search for in-
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jured people after an accident. A good overview of this area of research is given 
by [12]. Also of interest is [11], which uses a genetic algorithm approach and 
knowledge gained in previous executions to optimize the path of a mobile robot.  

In summary, efficient search strategies are one of the central problems of robot-
ics. While there are many specific solutions, e.g. [1] and [5], these are nearly al-
ways tailored towards specific tasks and the results can rarely be transferred to 
other areas. Here, we take a more general approach to search motions for indus-
trial applications and outline the requirements for optimized search strategies. In 
industrial applications, the search area is precisely defined and does not change 
over multiple executions. The ideas presented in this paper are independent from 
the type of sensor used, the only requirement is that it provides a binary decision 
whether the goal of the search has been found or not. We only deal with the search 
itself, not with any actions that have to be taken by the robot afterwards, e.g., ac-
tually inserting a peg into a hole. Examples how this can be achieved using sen-
sors are given in [2] and [3]. 

Search paths based on probability densities 

In this section, we present the concept of a search path generated along a given 
probability density. The idea is that the robot stores successful positions from pre-
vious executions and creates a probability density from this knowledge. This can 
be achieved by employing the methods described in [9]. The path is not fixed and 
may change with every update of the probability density. 

Robot search paths 

A search is a motion that covers a specified area in order to locate an object whose 
exact position pg is unknown. Exactly one object is searched for at a time. Here, 
we set the following preconditions: 

1. The search area can be m-dimensional, but its boundary in every dimension 
must be a straight line. The area can be divided into a set S of cells describing 
discrete (hyper) cubes with fixed edge length ∆c. When the robot moves to a 
cell, the whole area covered by that cube is probed. The decision whether pg is 
found is binary, so there are no hints guiding us towards the goal. We assume 
that it takes a constant time span to check if the goal is located in a cell. 

2. Any movement between two cells is allowed. There is no need for a neighbour-
ing connection between two cells. No cell lying between the current and the 
next is tested when moving there. 
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3. A valid search path P = (p0,…,p|S|) must visit each cell of the whole area at least 
once. We include the possibility that the search fails: Spg ∉ . A search path is 

then an ordered sequence of all cells in S. 
4. The distance between two cells Scc ji ∈, is relevant when planning the path. 

There is a positive cost function d(ci,cj) describing the time and effort to move 
from cell ci to cj. Two neighbouring cells have unit distance. 

5. There is a probability density φ describing the chance that the object lies within 
any given cell. This density may be continuous. 

Additionally, a change of direction in the search path may slow down the mo-
tion in order to perform the turn along the path. We disregard this factor here. 

Conditions 1 to 4 describe the general requirements imposed on a search path. 
Condition 5 is a new addition describing the knowledge we have about the loca-
tion of the object that we are searching. This allows us to begin the search in the 
most probable cell and descend along the density instead of employing a pre-
determined path. 

There are three criteria along which we compare different search paths to each 
other: Their total (maximum) length l and the expected number of cells visited 
EC(P) as well as the expected length of the path EL(P) for the given probability 
density φ(pi) and path P: 
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A developer faced with the task of designing a search path should consider two 
aspects. On one hand, it may be useful to limit the total length to its minimal 
value, so the path is not exceedingly long. On the other hand, if the (average) 
search time is crucial, it may make more sense to create a search path with higher 
total length but lower expected values. The decision, which of the two expected 
values is more important, depends on the type of search: If the movement between 
two cells is relatively fast compared to the time it takes to check a cell, the number 
of cells visited is significant. In case of slow motions, e.g. controlled movements 
along surfaces, the expected length is of more importance. 

There are two de facto standard search paths for searches in two-dimensional 
environments: A zigzag path and a spiral path. Both paths can be easily extended 
to more than two dimensions. The zigzag path is usually chosen if the probability 
density is uniform, so there is no need to start in a specific cell. The spiral path is 
usually chosen when φ is unimodal, e.g. Gaussian, with mean in the middle of S. 
In this case the search starts in the most likely position and gradually descends 
along φ. Note, that both paths are optimal regarding their length; no cell is visited 
twice.  
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Optimizing search paths 

Now, we are interested in finding search paths that optimize the expected values 
for a given probability density. A search path which is minimal in this sense will 
find pg as soon as possible. 

To create a search path P with lower expected values than a standard path for 
the given dimension of S, one has to approach cells with high probability first 
while neglecting cells with low probability until the end of the search. In case the 
expected length of the path is of importance, it should be attempted to minimize 
huge jumps across S as much as possible. The downside is that the distance of two 
consecutive cells in P now may be much higher than 1. So this search path may 
not be minimal with respect to the total length. 

In a sorting strategy to generate an optimized search path, the cells of S are or-
dered like this: The beginning of the path is the most probable cell, so 
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The remaining cells of the path are chosen by a recursive definition: We always 
choose the next cell according to its probability in relation to its distance d to the 
current cell, so 
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The impact of the distance when choosing the next cell is controlled by the ex-
ponent n, which must not be negative. The choice of this parameter depends on the 
type of application and must be chosen by the developer. The lower the value of n, 
the lesser the impact on the distance in the selection process. So cells with a high 
distance to the current cell may be selected as well. The higher n is, the more the 
selection process favours cells which lie close to the current cell. Note, that if n is 
set to zero, the cells are simply ordered along their respective probability. This 
will minimize the expected number of cells visited, but result in an extremely long 
total path, as it will cover great distances to move from one cell to the next (Figure 
1, left). Vice versa, if n is set to infinity, the path always moves to neighbouring 
cells (Figure 1, right). Technically, we cannot get stuck in dead ends, because of 
Condition 2. But it is possible that we must move to a cell far away from the cur-
rent one, because there are no neighbouring cells left. This strategy is not heuristic 
but always computes the best path for the given probability density and choice of 
n. It may be possible that more than one path exists with the same expected value. 
An example is shown in Figure 1 on the right for a Gaussian distribution. All spi-
ral paths that start in the center will have the same expected value regardless of the 
fact which neighbouring cell is visited first. The strategy presented here only 
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computes one of these paths. Which one this will be depends on the ordering of 
cells with the same probability and relative distance to the current cell. 

 

Fig. 1: Impact of the distance when sorting cells. Both paths start at the center. Left: The relative 
distance between the cells has no impact at all. Right: The relative distance between the cells is 
of infinite impact. 

Search space subdivision 

This ordering works very well if φ has only one maximum or if the impact of the 
distance is chosen so that only cells close to the current cell are selected. But, if 
there are two or more maxima with a significant distance relative to each other 
(Figure 2, left), the path generated by this approach will oscillate between these 
maxima. Because of this, we extend our approach and introduce a divide-and-
conquer strategy to split S into separate regions. We will repeat this process until 
the generated regions only contain one or zero maxima and then generate separate, 
optimized paths for each region with the sorting strategy. Finally, we connect all 
subpaths once more with the sorting strategy.  

The algorithm in pseudo code looks like this: 
(00) createSmartPath(bool top, list<path> paths) { 

(01)  if(findMaxima() == 0) { 

(02)   createZigZagPath(); 

(03)   addThisPathToList(paths);} 

(04)  else if(findMaxima() == 1) { 

(05)   orderCellsByProbability(); 

(06)   addThisPathToList(paths);} 

(07)  else { 

(08)   subspaces = splitSearchSpace(); 

(09)   foreach(subspace) 

(10)    createSmartPath(false, paths);} 

(11)  if(top) 

(12)   finalpath = orderPathsByProbability(paths)} 
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The function call in Line 0 takes two parameters: The Boolean parameter top 
describes if this is the topmost function call and the list paths is empty initially. 
Successive calls of this function will add subpaths to this list. In Lines 1 to 6, ei-
ther a standard zigzag path or a probability ordered path is fitted into the given re-
gion, if there is none or only one maximum in that area. The result is added to 

paths. Otherwise the area is split into separate regions (Line 8). A simple ap-
proach is to perform a horizontal and a vertical cut through the geometric center of 
S. Other approaches would be to employ Voronoi diagrams between the maxima 
for a more fitting split. If the area is divided into separate regions, the same func-
tion is called to determine a path for this region (Lines 9 and 10). As a result, we 
have calculated a subpath for every region of the whole area. Now these paths are 
connected to each other by using the sorting strategy (Lines 11 and 12). 

This extension yields the advantage that the path will not oscillate between two 
or more maxima, but remains in the immediate surrounding of one maximum. The 
downside is that – regardless of the value of n – there will always be a significant 
distance we have to bridge between two regions. This will worsen the total length 
of the path.  

Experimental results 

In this section, we describe simulation results to show how optimized search paths 
compare to standard search paths for various probability densities. We have lim-
ited the simulations to a two-dimensional workspace. In this case, the paths are al-
ready complex compared to a one-dimensional search, but can still be visualized. 

Simulation setup 

We have set up a two-dimensional squared workspace with an edge length of 15 
cm. The position we are trying to find is a hole with a diameter of 1.5 cm. We 
have set the size of the cells in S to ∆c = 1 cm2. This gives us 225 cells in the 
search area. So, there are 225! possible search paths, which is already too much 
for a brute-force computation. 

We have created three probability densities:  

1. A Gaussian density φg with mean pm = (7,7) cm in the middle of S and σ = 1 
cm. 

2. A mixed Gaussian density φm consisting of four maxima at p1 = (3, 3) cm, p2 = 
(11, 3) cm, p3 = (3, 11) cm, p4 = (11, 11) cm and σ =1 cm each (Figure 2, left). 
A typical example for such a density is a peg-in-hole task on a square plate 
where the hole is not centered and the plate may be rotated by 90°, 180° or 
270°. 
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3. An off-centered density φc with a maximum along the third quadrant in a circle 
around pm with radius r = 5 cm (Figure 2, right). A typical example for such a 
density is a peg-in-hole task where the plate may be rotated by any value be-
tween 0° and 90°. 

We have not used a uniform density, because no knowledge is present in such a 
density. To that effect, the expected value of all search paths is identical. The only 
difference will be in the total length. Because of that it is sufficient to use a stan-
dard search path. 

 

Fig. 2: Multi-modal probability density (left) and density where the maximum is along a quarter 
circle in the third quadrant of S (right) used in the simulations.  

Comparison to a standard search path 

In two experiments, we used these three densities and generated search paths for 
each one. The first time, we only used the sorting strategy and the second time the 
divide-and-conquer strategy. For each density, we generated paths with varying 
values for n in the range [0;10] with increments of 0.1. We then compared the 
generated paths to a standard spiral path starting in the center and measured the ra-
tio by which the total length and the expected values differ from this standard 
path. Figure 1 shows two paths for the Gaussian probability density with a low 
and a high value for n. Since there is only one maximum present, both strategies 
generate the same paths. Figures 3 and 4 show generated paths for a value of n = 
5.6 for the second and the third probability density. 

We can see that the sorting strategy generates paths that follow the underlying 
density and prefer neighbouring cells. Nevertheless, these paths can lead to dead 
ends. In this case substantial jumps have to be made to reach unvisited cells. The 
divide-and-conquer strategy reduces these jumps by separating S into distinct re-
gions. Although here jumps may be necessary as well, these are limited to some 
extent. 
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Fig. 3: Generated paths for the multi modal probability density outlined in Fig.2, left. Left: The 
path generated with the sorting strategy starts at (11,11). Right: The path generated with the di-
vide-and-conquer strategy starts at (3,3). 

 

Fig. 4: Generated paths for the quarter circle probability density outlined in Fig. 2, right. Both 
paths start at (13,4). Left: Path generated with the sorting strategy. Right: Path generated with the 
divide-and-conquer strategy. 

Now we compare both strategies to a spiral path. Figure 5 shows the ratio by 
how much the generated paths relate to the spiral path for different values of n. 
We compare all paths by the expected number of cells visited before pg is found, 
the length of this expected path and the total path length. All results are set into re-
lation to a spiral path starting at the center of S. A value larger than one means, 
that the generated path performs superior to the spiral path. Vice versa, a value be-
low one means that the path performs worse than the spiral path. 

Once more, the results of the divide-and-conquer strategy for the Gaussian den-
sity are not shown, because this strategy generates the same paths as the sorting 
strategy. In all cases, the total path length (blue and brown lines) is worse than that 
of the spiral path, which is already optimal. But, with higher values of n, the paths 
draw near the optimal length. For low values of n, the divide-and-conquer strategy 
produces slightly better results, because in this case, all jumps are limited to the 
current region. 
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For low values of n, the sorting strategy generates paths that test significantly 
fewer cells than the spiral path (red line). But, because these cells are far apart, the 
expected length covered (green line) can be worse than that of the spiral path. 
With higher values for n, the two lines converge, because now neighbouring cells 
are preferred, similar to the spiral path. The higher n gets, the lower the advantage 
of the sorting strategy, because of the dominance of neighbouring cells in the se-
lection process. 

The divide-and-conquer strategy showed no significant improvement in com-
parison to the sorting strategy. In case of the off-centered density, the expected 
number of cells and the expected length of the path (purple and turquoise lines) 
are higher than the spiral path but lower than the sorting strategy. The overall path 
length is only slightly better than the sorting strategy and only for low values of n. 
In case of the mixed Gaussian density, the expected number of cells and the ex-
pected path length are even worse than for the spiral path, because the splitting al-
gorithm cuts the area and only moves to the next subsection, when the current 
subsection is completely covered. Because there are many cells with very low 
probability in every subsection, this lowers the expected values significantly. It 
may be possible to achieve better results with a more sophisticated splitting algo-
rithm, but this exceeds the scope of this paper. 

  

Fig. 5: Comparison of the generated paths to a standard spiral path. Top left: For a Gaussian den-
sity φg. Bottom left: For a mixed Gaussian density φm. Top right: For an off-centered density φc. 
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Random probability distributions 

In the next step, we have generated random probability densities in order to 
evaluate our strategies for a broader set of probability densities. We have created 
these densities by randomly placing k Gaussians uniformly in the search area. For 
every value of k, we have created 100 different probability densities. Then, the 
sorting strategy was applied to each density with various settings for n. We com-
pared the generated paths to the standard spiral path and computed the average for 
each combination of k and n. The results are shown in Figure 6. 

 

Fig. 6: Expected length of path (left) and total length of path (right) in relation to a standard spi-
ral path for a varying values of k and n. 

We can see that the generated paths perform better than the spiral path for low 
values of k regardless of the choice of n in terms of the expected length of the path 
(Figure 6, left). The more Gaussians are combined the more the overall probability 
density converges to a uniform density. In this case neither the optimized paths 
nor the spiral paths are superior because there is no information present in the 
probability density at all. When we take a look at the overall length of the search 
path (Figure 6, right), once more we can see that paths generated with a low im-
pact of the relative distance between two cells are significantly longer than the spi-
ral path. With increasing n, the optimized paths are nearly as short as the spiral 
path. There are two noteworthy aspects: The ratio increases faster for high values 
of k. This is because the Gaussians lie closer to each other. But for high values of 
k and n, the ratio decreases. This is because now there are so many Gaussians in 
the overall density that the path tends to get stuck in corners and large jumps have 
to be made to approach the next free cell increasing the total length. 

Conclusion 

The aim of this work is to show that search paths based on probability densities 
are capable of locating the position in question faster than standard search paths. 
The central idea is to search in areas with high probability of success first in order 
to maximize the expected value. 
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We have described the general requirements for path planning and three ways 
to rate search paths. While standard paths are optimal with respect to the total 
length, optimized paths can improve these in terms of the average time the search 
takes. We have shown in simulations that, for Gaussian probability densities, the 
optimized paths perform almost as well as standard paths and better if there is 
more information present about the search area. The strategies presented in this 
paper are no heuristics, but always compute the best path for a given probability 
density and choice of the impact of the distance between two consecutive cells. 

The advantage of our approach is that standard search paths can be seen as spe-
cial solutions to the more general approach taken here. The algorithms to create 
optimized paths can be incorporated into the programming environment and no 
additional knowledge is required by the developer. The update of the probability 
density describing the search area and the path planner itself can be completely 
hidden from the developer. 

The next step is to test reasonable splitting algorithms for the divide-and-
conquer strategy to further improve the expected values. Various approaches to 
subdivide the search area, such as Voronoi diagrams, can be taken and compared 
to each other. So far, we have separated the search area into hypercubes. An inter-
esting approach may be to use a hexagonal grid, providing us with more 
neighbours for a local path planner. 
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