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Abstract. The aim of this paper is to enable a developer to easily employ external sensors for 
flexible  robot  manipulation  in  industrial  applications.  We  outline  a  general  approach  to 
supervise robot tasks for workpiece drifts using external sensors. We describe two methods to 
detect  workpiece  drift  independent  from  the  type  of  sensor.  Based  on  this,  we  explain 
strategies how a robot can adapt to or compensate a detected drift.  These methods can be 
integrated easily into robot programs without detailed knowledge provided by the developer.
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1 Introduction

Industrial  robots are able to perform complex tasks 
without  symptoms  of  fatigue  and  can  maintain 
highest precision and speed. However, these tasks are 
nearly always executed in a fixed environment, that is 
the  precision  is  gained  by  ensuring  that  all 
workpieces are placed in exactly the same position in 
each execution cycle. Additionally, all parts need to 
have the same dimension, orientation,  etc.  Only by 
employing  external  sensors,  such  as  vision  or 
force/torque sensors, we can enable a robot to deal 
with  imprecisions  and  variations  occurring  in  the 
workpieces  and  the  environment.  One  specific 
problem, which arises when performing tasks in an 
industrial  environment,  is  a  drift  of  a  workpiece 
position between two consecutive executions.

In (Deiterding, 2007) we have classified changes 
that can occur between two executions of the same 
robot program with two characteristics: The origin of 
the change and the robot's reaction to it (see Table 1). 

An  indeterminacy is something we are not aware of 
at this moment, but once we have learned about it, it 
will remain constant for a prolonged period of time. 
Variations on the other hand may occur every time 
the robot performs the task at hand. Faults and errors 
occur  when  a  sudden  change  in  the  workspace 
occurs.  The  drift is  a  problem  caused  by  gradual 
changes  within  the  workspace,  e.g.  the  settings  of 
machines and tools change over time. 

In  this  paper,  we address  ways  of  dealing with 
this drifts. The problem is that the drift is unintended 
and not a desired property of the task. Because of that 
it is hard - if not impossible - to model the drift in 
order to adapt to it.  The benefits  of a suitable drift 
recognition and adaptation are as follows: First, the 
robot can present a warning to the supervisor of the 
task if a drift occurs. Additionally,  a prediction can 
be made when the drift will have accumulated to an 
error.  Second,  an  adaptation  may  be  performed  to 
adjust  the  robots  motions  to  the  changed 
environment.  Finally,  the  robot  may be  capable  of 
performing a corrective motion to counterbalance or 
reset the drift.

Since we must employ external sensors in order to 
detect  a  drift,  we  face  the  task  of  filtering  the 
information of the sensor signal for the existence of 
drifts and transform the information into a physical 
description in Cartesian space, so the robot can deal 
with this drift.

The  aim  of  this  paper  is  to  show  how  drift 
recognition and adaptation can be encapsulated into a 
sensor  independent  programming  paradigm  which 
enables a developer to design an adaptive robot task 
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Table 1: Classification of changes that can occur between 
two executions of the same program (Deiterding, 2007). 

Origin of change

Caused by 
the task

Caused by 
abrasion

Reaction to 
change

One-step 
learning

Indeter-
minacies

Faults and 
Errors

Continuous 
learning

Variations Drifts



capable  of  dealing  with  workpiece  drifts  with 
minimal knowledge and effort. 

The rest of this paper is organized as follows: In 
Section 2, we give a short overview of related work 
in this area. In Section 3, we define workpiece drifts 
and  outline  the  fundamental  requirements  for  its 
recognition.  In  Section  4,  we  explain  our 
programming paradigm, which can be used to easily 
create an adaptive robot program capable of dealing 
with drifts. In Section 5, we describe two approaches 
to generate a prediction based on the data provided 
by the sensor. Section 6 describes how a typical task 
involving a drift can be solved with our approach.

2 Related work 

The task of monitoring a workpiece drift in industrial 
applications  over  multiple  executions  is  mainly 
covered  in  engineering  literature.  (Chiang  et  al., 
2001) deal with general  fault detection in industrial 
applications and include drifts in their fault scheme. 
(Kesavan and Lee, 1997)  have given a classification 
of faults in industrial systems. But there appears to be 
no  standard  terminology  for  theses  processes,  one 
possible example is the terminology given by (Raich 
and Cinar, 1996).

Workpiece  drift  occurs  only  in  industrial  tasks 
which are repeated multiple times. Nowadays, the use 
of  external  sensors  in these tasks  is  still  limited to 
applications  where  this  is  absolutely necessary.  On 
the other hand, autonomous robots rarely execute the 
same task twice in an identical environment. Because 
of this, drift recognition and compensation strategies 
are usually programmed on a per-task basis and form 
a detailed solution for a specific drift. (Sharma et al., 
1996) have presented an approach to optimize robot 
motions for given stochastic models of an assembly 
process, but focus on motions and do not specifically 
deal  with workpiece drifts. (LaValle,  1996) focuses 
on robot motions as well, and takes external sensors 
as input signals into account, but does not make use 
of a drift model.

In summary, all of these articles are about finding 
a specific solution for a given problem. None of the 
articles  use  the  knowledge  gained  in  previous 
executions  to  create  an  adaptive  drift  model.  Here, 
we are interested in outlining a general approach to 
drift  recognition independent  from the type  of task 
and the sensors used for its supervision. Additionally, 
we are interested in showing how a robot can deal 
with a detected drift and how these strategies can be 
integrated into a programming environment without 
demanding  detailed  knowledge  about  the  process 
from the developer.

3 Properties of drifts

In  this  section,  we  specify  the  basic  properties  of 
drifts.  We focus on workpiece drifts,  that  is how a 
specific  workpiece  may  change  its  location  over 

multiple executions of the same task. We deal with 
workpiece  changes  only,  such  as  position,  weight, 
etc. We do not deal with drifts caused by the sensor 
itself due to temperature or lighting changes, etc.

3.1 Properties of workpiece drifts
The  term  workpiece  drift describes  a  geometrical 
displacement  dt of a workpieces position  p0 between 
multiple executions t of the same robot task, that is

pt1= p0d t (1)

The difference between a drift and a variation is 
that the drift is characterized by a preferred direction. 
Variations on the other hand fluctuate around a given 
position. The preferred direction may not be constant 
and can change over time. The extent of the drift is 
small  compared  to  the size of  the  workpiece,  so a 
drift  is  usually  only  recognizable  after  multiple 
executions.

This  definition  holds  for  one  dimension  in 
Cartesian  space.  Multiple  drifts  in  different 
dimensions can be combined to model more complex 
drifts,  but  in  this  case  we  require  that  for  all 
dimensions the drift in each dimension is statistically 
independent, that is

P d i∣d j=P d i∀ i≠ j (2)

where  P(di) describes  the  probability  of  an 
occuring drift in the current execution.

3.2 Drift recognition
In  order  to  detect  a  workpiece  drift  during  a 
manipulation  task,  external  sensors  must  be 
employed.

The  change  of  the  workpiece  position  between 
two executions is small and may not be detected by 
the sensor after only one consecutive execution. So 
the drift may be lower than the signal-to-noise ratio 
(SNR) of the sensor s

d tSNR s (3)

In  order  to  realize  this  drift  recognition 
independent from the type of sensor, we use so-called 
change functions (Deiterding, 2008), which describe 
the relation between a change in a sensor-signal and 
the dislocation of a specific workpiece in Cartesian 
space. These functions can be preset, but may as well 
be computed by the robot during task execution. By 
transferring  the  sensor  signal  into  a  Cartesian 
description of the drift, we are capable of designing 
sensor independent  methods to detect  and predict  a 
drift. To use a change function f, we must specify the 
default  position  p0 and  the  corresponding  sensor 
value s0

d i= f s i− f  s0= f  s i− p0 (4)

From  this  point  on,  we  will  only  deal  with 
Cartesian  descriptions  of  drifts.  By  measuring  the 
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workpieces position during each execution, we build 
a time series d over n executions

d=d 0 ,... , d n (5)

where

d 0=0 (6)

because no drift has occurred yet or the sensor has 
just been calibrated in the very beginning. Then, drift 
recognition  is  done  by  checking d after  every 
execution  and  comparing  the  values  against  a 
threshold  chosen  depending  on  the  SNR  of  the 
sensor.  It  is  necessary  to  use  a  time  series d
because otherwise we cannot distinguish between a 
drift and a variation. We can only determine a drift 
by checking for a pattern in the workpieces locations. 
Otherwise  every  drift  would be considered  to  be  a 
variation.

Using d ,  we  can  determine  if  a  drift  has 
occured.  But,  for  successful  adaptation to the drift, 
we need to make a prediction about the future motion 
of  the  workpiece.  We will  show  how  this  can  be 
achieved in Section 5.

4 Integration into the programming 
environment

In  this section, we will  show how workpiece drifts 
can  be  detected  during  execution  of  a  robot  task. 
Based on this we describe two ways of dealing with 
such a drift: Drift adaptation and drift correction. We 
explain how these ideas can be encapsulated into an 
easy-to-use interface  in order  to  minimize the time 
required  for the development  of sensor-based robot 
programs.

We will only describe how drift recognition and 
adaptation can be set up for a drift occurring in one 
Cartesian dimension. The process is similar for multi-
dimensional drifts.

During  setup,  the  developer  must  determine 
which sensor shall  be used to monitor a workpiece 
for drifts. In the next step, the default position do of 
the workpiece in question is recorded. This includes 
the corresponding default sensor value  s0.  Later on, 
all sensor values will be compared against this value. 
The  last  thing  to  do  during  setup  is  to  specify  a 
change  function  for  the  given  workpiece  and  the 
sensor.  Simple ways  of  doing this are  described in 
(Deiterding, 2008).

When this is done, the developer must decide in 
which  way the  drift  shall  be  modelled  and  set  the 
corresponding parameters for the model. We describe 
two possible models usable for this task in Section 5.

In  the  robot  program  itself,  the  developer  has 
three  options  to  deal  with  a  drift:  Supervision, 
adaptation and correction. 

4.1 Drift supervision
The purpose of drift supervision is just to check if a 
workpiece  is  moving  and  inform  the  person 
monitoring  the  automation  process  when  the 
workpiece  is  about  to  leave  the workspace.  In  this 
case  the  developer  must  specify  the  range  of  the 
workspace  rworkspace.  The  current  drift  is  then 
extrapolated  and  an  estimate  will  be  formed  how 
many  more  executions  can  be  performed  until  the 
drift must be corrected.

4.2 Drift adaptation
Under certain circumstances, it may be useful to alter 
the motions of the robot to accommodate a detected 
drift. We call this process drift adaptation. In general, 
this  will  not  be  necessary  because  of  the  change 
function. If the sensor is used preparatory, the robot 
will  know  the  current  position  of  the  workpiece 
straight away and can act accordingly. If the sensor is 
used  concurrently,  the  robot  can  modify  all 
subsequent  motions  as  soon  as  the  workpiece  is 
localized.  However,  there  are  tasks  where  drift 
adaptation is  useful  if  concurrent  sensors  are  used. 
Usually this is the case, if the Cartesian range of the 
change function is smaller than the allowed range of 
the drift. An example for a task like this is given in 
Section  6.  To  perform  an  adaptation  in  the  i-th 
execution,  the default  position is  set  to  the  current 
position of the workpiece 

d 0=d i (7)

so the robot will use the adapted position in all 
subsequent executions.

After we have performed an adaptation, we can 
still  use  the  drift  data  stored  in d for  drift 
supervision,  but  must  accommodate  the  fact  that 
drifts  are  described  in  relation  to  the  old  default 
position.  A  simple  way  to  maintain  a  correct 
description of all drifts up to now, is to subtract all 
entries in d by the current total drift di

∀ d j∈
d : d j :=d j−di (8)

4.3 Drift correction
Another option when dealing with a drift is to try to 
correct  the environment or the workpiece somehow 
by  performing  an  unscheduled  task,  which  is  not 
performed during the normal execution of the task. 
We call this drift correction. This should happen only 
when the workpiece is about to leave the workspace. 
This  corrective  motion  can  be  trivial,  e.g.  the 
workpiece is grasped and moved back to  d0, but can 
be  quite  complex  as  well,  e.g.  an  adjustment  of  a 
machine  involved  in  the  task.  Because  of  this  no 
general  corrective  motion  can  be  described.  This 
motion must  be designed  by the developer  instead. 
When this motion is performed, we must reset d
because  we  have  altered  the  environment,  so  our 
current  time  series  no  longer  represents  the  actual 
state of the environment.
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4.4 Integration into the programming 
environment
In the cases of drift  adaptation and drift correction, 
the  decision  when  to  perform  an  adaptation  or 
correction will be triggered by thresholds dadaption and 
dcorrection which are set by the developer.

All  three  options  can  be  integrated  into  one 
general  algorithm  update_Drift_Position()  as 
described above. Now, the developer only has to set 
the specific parameters  rworkspace,  dadaptation,  dcorrection and 
define  a  corrective  motion  mcorrection.  In  the  robot 
program itself, this algorithm must be called, as soon 
as the workpiece can be measured by the sensor. This 
may be before  or after  the robot has  moved to the 
default  position,  depending on wether  the sensor  is 
used preparatory or concurrently.  The pseudocode of 
update_Drift_Position() then looks like this:

function update_Drift_Position()
{
   dmom = predict_Drift();
   
   // drift supervision
   nexecutions = calc_Remaining_executions();
   notify_supervisor(nexecutions);

   // drift adaptation
   if(dmom > dadaptation)
   {
      d0 = apply_drift(d0, dmom);
      modify_drift_data();
      update_prediction_model();
   }

   // drift correction
   if(dmom > dcorrection)
   {
      correction_motion();
      reset_drift_data();
   }
}

5 Drift prediction

In  this  section,  we  describe  two  approaches  to 
automatically  build  a  model  which  can  be  used  to 
detect  the current  and predict the future drift.  First, 
we describe how Kalman filter can be used for this 
problem  and  a  more  general  approach  involving 
ARIMA  models  without  the  need  for  a  movement 
model  afterwards.

5.1 Drift prediction using Kalman filters
Kalman filters are mainly used for object tracking in 
mobile  robots  (Brookner,  1998).  The  task  here  is 
similar, so we will use a similar approach.

Because we are only dealing with Cartesian drifts, 
we can construct a Kalman filter, which is capable of 
predicting the future drift independent from the type 
of sensor used for supervision. Here, we will use the 
nomenclature of (Kalman, 1960):

The  input-vector x t is  made  up  from  the 
current  position of the workpiece dt  in regard to its 
default position d0 as well as the current drift between 

two executions, which can be regarded as the current 
speed of the workpiece vd t

. So 

xt= d t

vd t
 (9)

We assume  that  the  current  drift  is  statistically 
independent  from  the  current  position.  Then,  the 
covariance matrix Σt is defined as

 t= d td t
0

0  vd t
vd t

 (10)

where  d td t
and  vd t

vd t

describe  the  accuracy 
of the estimates.

The transition matrix  At describes  the  alteration 
from x t to x t1 and can be computed as follows: 
We assume that the transition is  determined by the 
current speed vd t

, the acceleration  a and the time
 t elapsed between the two measurements:

d t

vd t
=d t−1vd t−1

 t
1
2

at 2

vd t−1
a t  (11)

We can rewrite this to

xt=1  t
0 1  xt−1

1
2

at 2

a t  (12)

Then 

At=1  t
0 1  (13)

and

t=
1
2

a t 2

at  (14)

Using t we  can  compute  the  gain  matrix 
Rt as

Rt=
d t

da
 a

2 d t
T

da
=

1
4
t 4

a
2 1

2
 t 3

a
2

1
2
 t3

a
2

 t 2
 a

2  (15)

where a
2 is the variance of a. Here,  Δt can be 

set  to  1  as  the  time  between  two  consecutive 
executions is constant, as long as the drift only occurs 
while executing the task.

Finally, we need a vector zt which describes how 
we perceive  a  drift  from one  position  to  the  next. 
This is achieved by using the external sensor. But, if 
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we  would  use  the  sensor  signal  directly,  the 
developer would have to specify this vector for every 
type  of  sensor.  By  employing  a  change  function 
which maps the sensor signal to Cartesian space, we 
can compute a general form of zt, which is applicable 
for  all  types  of  sensors.  In  this  case  the  perceived 
position is exactly the current position blurred by the 
SNR δt of the sensor, so

zt=C t x tt=1 0  x tt (16)

These are all the vectors and matrices necessary 
for  a  Kalman filter  to  compute  a  prediction  of  the 
next  drift.  The  exact  calculations  are  described  in 
(Kalman, 1960) and will not be repeated here.

This  Kalman  filter  is  parametrized  by  t ,
a

2 and δt, which must be set by the developer. It 
is possible to set basic values for these, which work 
adequately well, but for optimization purposes, these 
should be tuned by the developer. 

Using this Kalman filter we get an estimation of 
the  current  drift  of  the  workpiece.  This  estimate 
describes how the workpiece will change its current 
position in the very next execution.

There are two drawbacks when this Kalman filter 
is used for drift prediction: First, we can only predict 
the very next drift, but no drifts in the further future. 
Second, if the drift between two executions is lower 
than the noise of the sensor, we cannot predict any 
drift at all, because the Kalman filter only uses the 
most recent values to update its internal state.

5.2 Drift prediction using ARIMA models
An alternative  to  Kalman filters  is  to use an  auto-
regressive  integrated  moving-average (ARIMA) 
model.  These  models  make  use  of  bigger  parts  of

d allowing for predictions of more than the very 
next  execution.  An  ARIMA  model  is  actually  a 
combination of three models, which can be described 
by one parameter each: An auto-regressive (par), an 
integrated (pi) and a moving-average (pma) model.

First, d is differentiated pi times, resulting in a 
time  series  d ' .  The  calculation  for  the  next 
prediction is then 

d n1=t∑ j=1

par

par j

d 'n− j∑k=1

pma

pmak

d ' n−k (17)

Note,  that  -  unlike  the  Kalman  filter  -  no 
assumption about the movement of the drift (that is 
its velocity and acceleration) are made.

A good choice of the parameters par, pi and pma is 
usually difficult, but in this case, we can make some 
basic  assumptions  which  will  help  us  choosing 
suitable  parameters.  The  weighting  parameters

par j
and pma k

can  be  fitted  automatically  for 
given methods (Box et al., 1994).

The auto-regressive  parameter  par must  be zero, 
because  the  current  drift  is  independent  from  the 
prediction  of  the  last  drift;  otherwise  the  act  of 
making  a  prediction  would  already  alter  the 
environment.

We need to differentiate d exactly once, so  pi 

can be set to one. This is because we store the total 
drift from d0 up to the current execution di in  d . 
To predict the next drift(s), we are interested in the 
alteration  from  one  execution  to  the  next.  So,  we 
must differentiate our time series exactly once.

The moving-average parameter pma describes how 
many  drifts  from  the  immediate  past  are  used  to 
approximate the current drift. This parameter can be 
chosen  by  the  developer.  The  choice  of  pma is 
dependant  from  the  SNR  of  the  sensor  and  the 
stability  of  the  drift.  If  pma is  chosen  too  low,  the 
noise of the sensor will corrupt the prediction of the 
current  drift.  If  the  drift  changes  its  preferred 
direction relatively often,  a  high  value  for  pma will 
take  drifts  into  account  which  are  no  longer 
adequate . 

Note that, if we set 

pma=s  d  (18)

and

pmai
=

1

s  d 
∀ i (19)

where s d  gives  us  the  size  of d ,  the 
ARIMA model is a simple linear extrapolation using 
the whole time series d . 

6 Experiments

In this section we will show how all three methods of 
dealing with drifts from Section 4 can be integrated 
easily  into  a   robot  task  using  Kalman  filters  and 
ARIMA models.

6.1 Experimental setup
Consider  the  following  task:  A  robot  places  a 
workpiece on the entry side of a conveyor belt. The 
workpiece  is  then  processed  by  some  kind  of 
machine.  When the  workpiece  leaves  the  machine, 
the robot picks it  up again and performs some task 
with  it,  without  releasing  it.  Afterwards  this 
workpiece  is  placed  onto  the  conveyor  belt  once 
more (see Figure 2). In this experiment, we will use a 
round disk with a size of 150 mm in diameter.

The robot program for this task looks like this:

1  repeat
2  {
3   MOVE pdropoff

4   RELEASE
5   // wait for machine to finish processing
6   WAIT
7   MOVE TRANSy(lbelt):pdropoff

8   GRASP
9  // perform some other task with workpiece
10 }

We  place  the  center  of  the  robots  coordinate 
system into its base and the center of the conveyor 
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belts coordinate system into the position where the 
robot  places  the  disk  (see  Figure  3).  The  problem 
with this implementation is, that if the x-axes of both 
coordinate systems are not exactly parallel, a drift  dy 

along the conveyor belts  y-axis will occur. In theory 
the resulting drift is calculated as 

d y=tan • lbelt (20)

where  α is  the  angle  by  which  the  coordinate 
systems are rotated in relation to each other and lbelt is 
the  distance  between  the  dropoff  and  the  pickup 
position.

To  supervise  this drift,  we  use  two  different 
sensors,  one  force/torque  sensor  (FTS)  and  one 
distance sensor (DS) which are positioned in the wrist 
of the robot and at the pickup position, respectively 
(see Figure 2). We will try to adapt to this drift by 
measuring the torque of the disk around the x-axis 
and by measuring the distance of the disk when it is 
to be picked up. So, the FTS is used in a concurrent 
way, while the DS is used preparatory. 

To  allow  for  a  flexible  execution  of  the  given 
program,  we  add  a  line  calling 
update_Drift_Position() directly  before  moving  the 
robot to the pickup position in line 7.

6.2 Parametrization during setup
During  setup,  we  record  the  position  and  the 
corresponding  sensor  values  of  the  disk  when  it 
leaves  the  machine  for  the  very  first  time.  This 
defines our default position d0 with the sensor values 
fts0 and  ds0.We  use  the  approaches  described  in 
(Deiterding,  2008) to  determine appropriate  change 
functions  ffts and fds for both sensors and the SNR of 
the  sensors  SNRfts and  SNRds.  These  are  the 
parameters  of  the  Kalman  filters.  For  ARIMA 
prediction, we set 

pma=
1
10

• s d  (21)

assuming that the drift will remain constant.
To  parametrize  the  recognition  and  adaptation 

process, we measure the width of the conveyor belt 
wbelt and divide it by two, because the ideal position 
of  the disk will  be in  the middle of  the belt.  This 
value will be used for drift supervision. 

To adapt to the drift, we set dadaptation to the half of 
the disks width. So when the drift exceeds this value, 
the  robot  will  modify  the  pickup  position 
accordingly.

Finally,  when we get to close to the edge of the 
conveyor  belt,  the  robot  shall  pickup  the  disk  and 
perform  a  corrective  motion  to  position  it  in  the 
middle of the belt once more. So, we set 

d correction=
2
3
•

wbelt

2
(22)

and  define  a  corresponding  correction  motion 
mcorrection.

6.3 Drift recognition
We have executed the task 20 times and recorded the 
sensor values during each execution (see Figure 4), 
describing the total drift of the disk. The resolution of 
the  DS is  relatively  low,  so  we  can  only  measure 
distances in sizes of 1 cm.

In Figures 5 a and b we have plotted the predicted 
drift  for  the  next  execution,  the  actual  drift  as 
measured  by  the  sensor  and  the  accuracy  of  the 
prediction  for  each  combination  of  sensor  and 
prediction  method.  We  can  see  that  after  20 
executions, the combination of a Kalman filter and a 
FTS provides the most accurate predictions. But, in 
general  the  Kalman  filter  tends  to  oscillate  while 
ARIMA models take longer  to adapt to changes in 
the drift.

If  a distance sensor is used to monitor the task, 
the predictions of  the Kalman filter  are worse than 
those  of  the  ARIMA  method.  This  is  because  the 
Kalman  filter  starts  to  oscillate  when  measurable 
drifts occur rarely. The ARIMA method on the other 
hand adapts relatively fast to this type of drifts.

If a force/torque sensor is used, it is the other way 
round. Here, the sensor is more accurate, recognizing 
drifts in every execution. Because of this, the Kalman 
filter adapts faster, but the difference to the ARIMA 
prediction is less significant.

We  have  summarized  the  results  in  Table  2 
showing the mean and standard deviation of the drift 
as  measured  by  the  sensors  and  as  predicted  by  a 
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Figure 3: Coordinate systems of the robot and the 
conveyor belt in relation to the world coordinate system 
for the task described in Section 6.1
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Figure 2: Experimental setup of the task with sensors DS 
and FTS described in Section 6.1

FTS
DS



Kalman  filter  and  an  ARIMA  interpolation 
respectively. 

In general we can say that the SNR of the sensor 
is  more  important  than  the  method chosen  for  the 
prediction.

6.4 Drift adaptation and correction
After setting up the prediction models and evaluating 
the  drift,  we  have  set  the  thresholds  dadaptation and 
dcorrection to 20 mm and 50 mm, respectively. Now, we 
have executed the task 100 times, measured the real 
drift using a Kalman filter and the force/torque sensor 
and logged all adaptations and corrections (see Figure 
6). We can see that the robot is now capable to keep 
the  current  drift  below the  adaptation  threshold  by 
modifying  the  pickup  position  according  to  the 
prediction  approximately  every  10  executions.  To 
prevent  the  disk  from  falling  of  the  edge  of  the 
conveyor belt, the robot automatically re-centers it in 
the  middle  of  the  belt  approximately  every  20 
iterations. 

In summary,  although there is a significant drift 
inherent  in this task, in theory we can execute this 
task  infinitely.  The  robot  automatically  detects  the 
drift and adapts its motion to the shifting position of 
the disk, as well  as performing a corrective motion 
from time to time to reset the disk to the center of the 
conveyor belt.

7 Conclusion 

Our goal is to enable a programmer to easily employ 
external  sensors  for  flexible  robot  programs.  The 
focus of this work is to show that workpieces can be 
monitored automatically for drifts which occur due to 
an  imprecise  setup  of  the  workspace  or  abrasion 
without  the  need  for  intricate  calculations  by  the 
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Figure 6: Current (red) and absolute (yellow) drift for 100 
executions of the task. When the prediction of the drift 
exceeds the set thresholds for adaptation (pink) or 
correction (light blue), the robot either modifies the pickup 
position (green dots) or re-centers the disk (blue dots).

a)

b)

Figures 5:Actual and predicted drift with estimation error 
for Kalman and Arima models using a (a) FTS sensor, (b) 
DS sensor.

Figure 4: Recorded drift (absolute and current) during 20 
executions of the task.

Table 2: Mean and standard deviation of occuring and 
predicted drift for both types of sensor

Mean Standard 
deviation

Real drift
KMS 2.35 0.65

DS 2.5 4.44

Kalman 
prediction

KMS 2.35 3.23

DS 1.97 17.48

ARIMA 
prediction

KMS 2.32 1.52

DS 0.05 10.17



developer. We have defined the term workpiece drift 
and have described two methods to detect and predict 
a drift for a specific workpiece and given sensor by 
examining  a  time  series  describing  the  workpiece 
position  over  multiple  executions.  The  presented 
requirements and methods are independent from the 
type of sensor.  We have shown that  these methods 
can be integrated into a programming environment, 
so  that  the  developer  only  has  to  specify  basic 
parameters and modify an existing robot program by 
a  minimal  amount.  Finally,  we  have  presented  an 
experiment to validate our findings. We have shown 
that it is possible to employ the proposed methods to 
successfully  detect  and  adapt  to  a  workpiece  drift 
during an automation task.

Further work needs to be done in finding ways to 
automatically  determine  reasonable  parameters  for 
the  Kalman  filter  and  the  ARIMA  model.  Simple 
estimates work well, but by tuning these parameters 
the prediction process might be optimized. 

If an ARIMA model is used, the choice of pma can 
be optimized along the following idea: We increment 
pma until  a significant  change in the current  drift  is 
encountered.  This can  be  done  using  the  methods 
described in (Schlechter, 2006). If this happens, pma is 
set back to a default size. So the ARIMA model will 
only use values of d which are significant for the 
next prediction.
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