
Proceedings of the RAAD 2008
17th International Workshop on Robotics in Alpe-Adria-Danube Region

September 15-17, 2008, Ancona, Italy

Workpiece Drift Recognition and Adaptation
for Robot Manipulation Tasks

Jan DEITERDING and Dominik HENRICH
a

a Lehrstuhl für Angewandte Informatik III, Universität Bayreuth, Bayreuth,
Germany

E-mail: {jan.deiterding, dominik.henrich}@uni-bayreuth.de –
URL: http://www.ai3.uni-bayreuth.de

Abstract. The aim of this paper is to enable a developer to easily employ external sensors for
flexible robot manipulation in industrial applications. We outline a general approach to
supervise robot tasks for workpiece drifts using external sensors. We describe two methods to
detect workpiece drift independent from the type of sensor. Based on this, we explain
strategies how a robot can adapt to or compensate a detected drift. These methods can be
integrated easily into robot programs without detailed knowledge provided by the developer.

Keywords. Industrial robots, robots & automation, intelligent manipulation

1 Introduction

Industrial robots are able to perform complex tasks
without symptoms of fatigue and can maintain
highest precision and speed. However, these tasks are
nearly always executed in a fixed environment, that is
the precision is gained by ensuring that all
workpieces are placed in exactly the same position in
each execution cycle. Additionally, all parts need to
have the same dimension, orientation, etc. Only by
employing external sensors, such as vision or
force/torque sensors, we can enable a robot to deal
with imprecisions and variations occurring in the
workpieces and the environment. One specific
problem, which arises when performing tasks in an
industrial environment, is a drift of a workpiece
position between two consecutive executions.

In (Deiterding, 2007) we have classified changes
that can occur between two executions of the same
robot program with two characteristics: The origin of
the change and the robot's reaction to it (see Table 1).

An indeterminacy is something we are not aware of
at this moment, but once we have learned about it, it
will remain constant for a prolonged period of time.
Variations on the other hand may occur every time
the robot performs the task at hand. Faults and errors
occur when a sudden change in the workspace
occurs. The drift is a problem caused by gradual
changes within the workspace, e.g. the settings of
machines and tools change over time.

In this paper, we address ways of dealing with
this drifts. The problem is that the drift is unintended
and not a desired property of the task. Because of that
it is hard - if not impossible - to model the drift in
order to adapt to it. The benefits of a suitable drift
recognition and adaptation are as follows: First, the
robot can present a warning to the supervisor of the
task if a drift occurs. Additionally, a prediction can
be made when the drift will have accumulated to an
error. Second, an adaptation may be performed to
adjust the robots motions to the changed
environment. Finally, the robot may be capable of
performing a corrective motion to counterbalance or
reset the drift.

Since we must employ external sensors in order to
detect a drift, we face the task of filtering the
information of the sensor signal for the existence of
drifts and transform the information into a physical
description in Cartesian space, so the robot can deal
with this drift.

The aim of this paper is to show how drift
recognition and adaptation can be encapsulated into a
sensor independent programming paradigm which
enables a developer to design an adaptive robot task

1

Table 1: Classification of changes that can occur between
two executions of the same program (Deiterding, 2007).

Origin of change

Caused by
the task

Caused by
abrasion

Reaction to
change

One-step
learning

Indeter-
minacies

Faults and
Errors

Continuous
learning

Variations Drifts

capable of dealing with workpiece drifts with
minimal knowledge and effort.

The rest of this paper is organized as follows: In
Section 2, we give a short overview of related work
in this area. In Section 3, we define workpiece drifts
and outline the fundamental requirements for its
recognition. In Section 4, we explain our
programming paradigm, which can be used to easily
create an adaptive robot program capable of dealing
with drifts. In Section 5, we describe two approaches
to generate a prediction based on the data provided
by the sensor. Section 6 describes how a typical task
involving a drift can be solved with our approach.

2 Related work

The task of monitoring a workpiece drift in industrial
applications over multiple executions is mainly
covered in engineering literature. (Chiang et al.,
2001) deal with general fault detection in industrial
applications and include drifts in their fault scheme.
(Kesavan and Lee, 1997) have given a classification
of faults in industrial systems. But there appears to be
no standard terminology for theses processes, one
possible example is the terminology given by (Raich
and Cinar, 1996).

Workpiece drift occurs only in industrial tasks
which are repeated multiple times. Nowadays, the use
of external sensors in these tasks is still limited to
applications where this is absolutely necessary. On
the other hand, autonomous robots rarely execute the
same task twice in an identical environment. Because
of this, drift recognition and compensation strategies
are usually programmed on a per-task basis and form
a detailed solution for a specific drift. (Sharma et al.,
1996) have presented an approach to optimize robot
motions for given stochastic models of an assembly
process, but focus on motions and do not specifically
deal with workpiece drifts. (LaValle, 1996) focuses
on robot motions as well, and takes external sensors
as input signals into account, but does not make use
of a drift model.

In summary, all of these articles are about finding
a specific solution for a given problem. None of the
articles use the knowledge gained in previous
executions to create an adaptive drift model. Here,
we are interested in outlining a general approach to
drift recognition independent from the type of task
and the sensors used for its supervision. Additionally,
we are interested in showing how a robot can deal
with a detected drift and how these strategies can be
integrated into a programming environment without
demanding detailed knowledge about the process
from the developer.

3 Properties of drifts

In this section, we specify the basic properties of
drifts. We focus on workpiece drifts, that is how a
specific workpiece may change its location over

multiple executions of the same task. We deal with
workpiece changes only, such as position, weight,
etc. We do not deal with drifts caused by the sensor
itself due to temperature or lighting changes, etc.

3.1 Properties of workpiece drifts
The term workpiece drift describes a geometrical
displacement dt of a workpieces position p0 between
multiple executions t of the same robot task, that is

pt1= p0d t (1)

The difference between a drift and a variation is
that the drift is characterized by a preferred direction.
Variations on the other hand fluctuate around a given
position. The preferred direction may not be constant
and can change over time. The extent of the drift is
small compared to the size of the workpiece, so a
drift is usually only recognizable after multiple
executions.

This definition holds for one dimension in
Cartesian space. Multiple drifts in different
dimensions can be combined to model more complex
drifts, but in this case we require that for all
dimensions the drift in each dimension is statistically
independent, that is

P d i∣d j=P d i∀ i≠ j (2)

where P(di) describes the probability of an
occuring drift in the current execution.

3.2 Drift recognition
In order to detect a workpiece drift during a
manipulation task, external sensors must be
employed.

The change of the workpiece position between
two executions is small and may not be detected by
the sensor after only one consecutive execution. So
the drift may be lower than the signal-to-noise ratio
(SNR) of the sensor s

d tSNR s (3)

In order to realize this drift recognition
independent from the type of sensor, we use so-called
change functions (Deiterding, 2008), which describe
the relation between a change in a sensor-signal and
the dislocation of a specific workpiece in Cartesian
space. These functions can be preset, but may as well
be computed by the robot during task execution. By
transferring the sensor signal into a Cartesian
description of the drift, we are capable of designing
sensor independent methods to detect and predict a
drift. To use a change function f, we must specify the
default position p0 and the corresponding sensor
value s0

d i= f s i− f  s0= f  s i− p0 (4)

From this point on, we will only deal with
Cartesian descriptions of drifts. By measuring the

2

workpieces position during each execution, we build
a time series d over n executions

d=d 0 ,... , d n (5)

where

d 0=0 (6)

because no drift has occurred yet or the sensor has
just been calibrated in the very beginning. Then, drift
recognition is done by checking d after every
execution and comparing the values against a
threshold chosen depending on the SNR of the
sensor. It is necessary to use a time series d
because otherwise we cannot distinguish between a
drift and a variation. We can only determine a drift
by checking for a pattern in the workpieces locations.
Otherwise every drift would be considered to be a
variation.

Using d , we can determine if a drift has
occured. But, for successful adaptation to the drift,
we need to make a prediction about the future motion
of the workpiece. We will show how this can be
achieved in Section 5.

4 Integration into the programming
environment

In this section, we will show how workpiece drifts
can be detected during execution of a robot task.
Based on this we describe two ways of dealing with
such a drift: Drift adaptation and drift correction. We
explain how these ideas can be encapsulated into an
easy-to-use interface in order to minimize the time
required for the development of sensor-based robot
programs.

We will only describe how drift recognition and
adaptation can be set up for a drift occurring in one
Cartesian dimension. The process is similar for multi-
dimensional drifts.

During setup, the developer must determine
which sensor shall be used to monitor a workpiece
for drifts. In the next step, the default position do of
the workpiece in question is recorded. This includes
the corresponding default sensor value s0. Later on,
all sensor values will be compared against this value.
The last thing to do during setup is to specify a
change function for the given workpiece and the
sensor. Simple ways of doing this are described in
(Deiterding, 2008).

When this is done, the developer must decide in
which way the drift shall be modelled and set the
corresponding parameters for the model. We describe
two possible models usable for this task in Section 5.

In the robot program itself, the developer has
three options to deal with a drift: Supervision,
adaptation and correction.

4.1 Drift supervision
The purpose of drift supervision is just to check if a
workpiece is moving and inform the person
monitoring the automation process when the
workpiece is about to leave the workspace. In this
case the developer must specify the range of the
workspace rworkspace. The current drift is then
extrapolated and an estimate will be formed how
many more executions can be performed until the
drift must be corrected.

4.2 Drift adaptation
Under certain circumstances, it may be useful to alter
the motions of the robot to accommodate a detected
drift. We call this process drift adaptation. In general,
this will not be necessary because of the change
function. If the sensor is used preparatory, the robot
will know the current position of the workpiece
straight away and can act accordingly. If the sensor is
used concurrently, the robot can modify all
subsequent motions as soon as the workpiece is
localized. However, there are tasks where drift
adaptation is useful if concurrent sensors are used.
Usually this is the case, if the Cartesian range of the
change function is smaller than the allowed range of
the drift. An example for a task like this is given in
Section 6. To perform an adaptation in the i-th
execution, the default position is set to the current
position of the workpiece

d 0=d i (7)

so the robot will use the adapted position in all
subsequent executions.

After we have performed an adaptation, we can
still use the drift data stored in d for drift
supervision, but must accommodate the fact that
drifts are described in relation to the old default
position. A simple way to maintain a correct
description of all drifts up to now, is to subtract all
entries in d by the current total drift di

∀ d j∈
d : d j :=d j−di (8)

4.3 Drift correction
Another option when dealing with a drift is to try to
correct the environment or the workpiece somehow
by performing an unscheduled task, which is not
performed during the normal execution of the task.
We call this drift correction. This should happen only
when the workpiece is about to leave the workspace.
This corrective motion can be trivial, e.g. the
workpiece is grasped and moved back to d0, but can
be quite complex as well, e.g. an adjustment of a
machine involved in the task. Because of this no
general corrective motion can be described. This
motion must be designed by the developer instead.
When this motion is performed, we must reset d
because we have altered the environment, so our
current time series no longer represents the actual
state of the environment.

3

4.4 Integration into the programming
environment
In the cases of drift adaptation and drift correction,
the decision when to perform an adaptation or
correction will be triggered by thresholds dadaption and
dcorrection which are set by the developer.

All three options can be integrated into one
general algorithm update_Drift_Position() as
described above. Now, the developer only has to set
the specific parameters rworkspace, dadaptation, dcorrection and
define a corrective motion mcorrection. In the robot
program itself, this algorithm must be called, as soon
as the workpiece can be measured by the sensor. This
may be before or after the robot has moved to the
default position, depending on wether the sensor is
used preparatory or concurrently. The pseudocode of
update_Drift_Position() then looks like this:

function update_Drift_Position()
{
 dmom = predict_Drift();

 // drift supervision
 nexecutions = calc_Remaining_executions();
 notify_supervisor(nexecutions);

 // drift adaptation
 if(dmom > dadaptation)
 {
 d0 = apply_drift(d0, dmom);
 modify_drift_data();
 update_prediction_model();
 }

 // drift correction
 if(dmom > dcorrection)
 {
 correction_motion();
 reset_drift_data();
 }
}

5 Drift prediction

In this section, we describe two approaches to
automatically build a model which can be used to
detect the current and predict the future drift. First,
we describe how Kalman filter can be used for this
problem and a more general approach involving
ARIMA models without the need for a movement
model afterwards.

5.1 Drift prediction using Kalman filters
Kalman filters are mainly used for object tracking in
mobile robots (Brookner, 1998). The task here is
similar, so we will use a similar approach.

Because we are only dealing with Cartesian drifts,
we can construct a Kalman filter, which is capable of
predicting the future drift independent from the type
of sensor used for supervision. Here, we will use the
nomenclature of (Kalman, 1960):

The input-vector x t is made up from the
current position of the workpiece dt in regard to its
default position d0 as well as the current drift between

two executions, which can be regarded as the current
speed of the workpiece vd t

. So

xt= d t

vd t
 (9)

We assume that the current drift is statistically
independent from the current position. Then, the
covariance matrix Σt is defined as

 t= d td t
0

0  vd t
vd t

 (10)

where  d td t
and  vd t

vd t

describe the accuracy
of the estimates.

The transition matrix At describes the alteration
from x t to x t1 and can be computed as follows:
We assume that the transition is determined by the
current speed vd t

, the acceleration a and the time
 t elapsed between the two measurements:

d t

vd t
=d t−1vd t−1

 t
1
2

at 2

vd t−1
a t  (11)

We can rewrite this to

xt=1  t
0 1  xt−1

1
2

at 2

a t  (12)

Then

At=1  t
0 1  (13)

and

t=
1
2

a t 2

at  (14)

Using t we can compute the gain matrix
Rt as

Rt=
d t

da
 a

2 d t
T

da
=

1
4
t 4

a
2 1

2
 t 3

a
2

1
2
 t3

a
2

 t 2
 a

2  (15)

where a
2 is the variance of a. Here, Δt can be

set to 1 as the time between two consecutive
executions is constant, as long as the drift only occurs
while executing the task.

Finally, we need a vector zt which describes how
we perceive a drift from one position to the next.
This is achieved by using the external sensor. But, if

4

we would use the sensor signal directly, the
developer would have to specify this vector for every
type of sensor. By employing a change function
which maps the sensor signal to Cartesian space, we
can compute a general form of zt, which is applicable
for all types of sensors. In this case the perceived
position is exactly the current position blurred by the
SNR δt of the sensor, so

zt=C t x tt=1 0  x tt (16)

These are all the vectors and matrices necessary
for a Kalman filter to compute a prediction of the
next drift. The exact calculations are described in
(Kalman, 1960) and will not be repeated here.

This Kalman filter is parametrized by  t ,
a

2 and δt, which must be set by the developer. It
is possible to set basic values for these, which work
adequately well, but for optimization purposes, these
should be tuned by the developer.

Using this Kalman filter we get an estimation of
the current drift of the workpiece. This estimate
describes how the workpiece will change its current
position in the very next execution.

There are two drawbacks when this Kalman filter
is used for drift prediction: First, we can only predict
the very next drift, but no drifts in the further future.
Second, if the drift between two executions is lower
than the noise of the sensor, we cannot predict any
drift at all, because the Kalman filter only uses the
most recent values to update its internal state.

5.2 Drift prediction using ARIMA models
An alternative to Kalman filters is to use an auto-
regressive integrated moving-average (ARIMA)
model. These models make use of bigger parts of

d allowing for predictions of more than the very
next execution. An ARIMA model is actually a
combination of three models, which can be described
by one parameter each: An auto-regressive (par), an
integrated (pi) and a moving-average (pma) model.

First, d is differentiated pi times, resulting in a
time series d ' . The calculation for the next
prediction is then

d n1=t∑ j=1

par

par j

d 'n− j∑k=1

pma

pmak

d ' n−k (17)

Note, that - unlike the Kalman filter - no
assumption about the movement of the drift (that is
its velocity and acceleration) are made.

A good choice of the parameters par, pi and pma is
usually difficult, but in this case, we can make some
basic assumptions which will help us choosing
suitable parameters. The weighting parameters

par j
and pma k

can be fitted automatically for
given methods (Box et al., 1994).

The auto-regressive parameter par must be zero,
because the current drift is independent from the
prediction of the last drift; otherwise the act of
making a prediction would already alter the
environment.

We need to differentiate d exactly once, so pi

can be set to one. This is because we store the total
drift from d0 up to the current execution di in d .
To predict the next drift(s), we are interested in the
alteration from one execution to the next. So, we
must differentiate our time series exactly once.

The moving-average parameter pma describes how
many drifts from the immediate past are used to
approximate the current drift. This parameter can be
chosen by the developer. The choice of pma is
dependant from the SNR of the sensor and the
stability of the drift. If pma is chosen too low, the
noise of the sensor will corrupt the prediction of the
current drift. If the drift changes its preferred
direction relatively often, a high value for pma will
take drifts into account which are no longer
adequate .

Note that, if we set

pma=s  d  (18)

and

pmai
=

1

s  d 
∀ i (19)

where s d  gives us the size of d , the
ARIMA model is a simple linear extrapolation using
the whole time series d .

6 Experiments

In this section we will show how all three methods of
dealing with drifts from Section 4 can be integrated
easily into a robot task using Kalman filters and
ARIMA models.

6.1 Experimental setup
Consider the following task: A robot places a
workpiece on the entry side of a conveyor belt. The
workpiece is then processed by some kind of
machine. When the workpiece leaves the machine,
the robot picks it up again and performs some task
with it, without releasing it. Afterwards this
workpiece is placed onto the conveyor belt once
more (see Figure 2). In this experiment, we will use a
round disk with a size of 150 mm in diameter.

The robot program for this task looks like this:

1 repeat
2 {
3 MOVE pdropoff

4 RELEASE
5 // wait for machine to finish processing
6 WAIT
7 MOVE TRANSy(lbelt):pdropoff

8 GRASP
9 // perform some other task with workpiece
10 }

We place the center of the robots coordinate
system into its base and the center of the conveyor

5

belts coordinate system into the position where the
robot places the disk (see Figure 3). The problem
with this implementation is, that if the x-axes of both
coordinate systems are not exactly parallel, a drift dy

along the conveyor belts y-axis will occur. In theory
the resulting drift is calculated as

d y=tan • lbelt (20)

where α is the angle by which the coordinate
systems are rotated in relation to each other and lbelt is
the distance between the dropoff and the pickup
position.

To supervise this drift, we use two different
sensors, one force/torque sensor (FTS) and one
distance sensor (DS) which are positioned in the wrist
of the robot and at the pickup position, respectively
(see Figure 2). We will try to adapt to this drift by
measuring the torque of the disk around the x-axis
and by measuring the distance of the disk when it is
to be picked up. So, the FTS is used in a concurrent
way, while the DS is used preparatory.

To allow for a flexible execution of the given
program, we add a line calling
update_Drift_Position() directly before moving the
robot to the pickup position in line 7.

6.2 Parametrization during setup
During setup, we record the position and the
corresponding sensor values of the disk when it
leaves the machine for the very first time. This
defines our default position d0 with the sensor values
fts0 and ds0.We use the approaches described in
(Deiterding, 2008) to determine appropriate change
functions ffts and fds for both sensors and the SNR of
the sensors SNRfts and SNRds. These are the
parameters of the Kalman filters. For ARIMA
prediction, we set

pma=
1
10

• s d  (21)

assuming that the drift will remain constant.
To parametrize the recognition and adaptation

process, we measure the width of the conveyor belt
wbelt and divide it by two, because the ideal position
of the disk will be in the middle of the belt. This
value will be used for drift supervision.

To adapt to the drift, we set dadaptation to the half of
the disks width. So when the drift exceeds this value,
the robot will modify the pickup position
accordingly.

Finally, when we get to close to the edge of the
conveyor belt, the robot shall pickup the disk and
perform a corrective motion to position it in the
middle of the belt once more. So, we set

d correction=
2
3
•

wbelt

2
(22)

and define a corresponding correction motion
mcorrection.

6.3 Drift recognition
We have executed the task 20 times and recorded the
sensor values during each execution (see Figure 4),
describing the total drift of the disk. The resolution of
the DS is relatively low, so we can only measure
distances in sizes of 1 cm.

In Figures 5 a and b we have plotted the predicted
drift for the next execution, the actual drift as
measured by the sensor and the accuracy of the
prediction for each combination of sensor and
prediction method. We can see that after 20
executions, the combination of a Kalman filter and a
FTS provides the most accurate predictions. But, in
general the Kalman filter tends to oscillate while
ARIMA models take longer to adapt to changes in
the drift.

If a distance sensor is used to monitor the task,
the predictions of the Kalman filter are worse than
those of the ARIMA method. This is because the
Kalman filter starts to oscillate when measurable
drifts occur rarely. The ARIMA method on the other
hand adapts relatively fast to this type of drifts.

If a force/torque sensor is used, it is the other way
round. Here, the sensor is more accurate, recognizing
drifts in every execution. Because of this, the Kalman
filter adapts faster, but the difference to the ARIMA
prediction is less significant.

We have summarized the results in Table 2
showing the mean and standard deviation of the drift
as measured by the sensors and as predicted by a

6

Figure 3: Coordinate systems of the robot and the
conveyor belt in relation to the world coordinate system
for the task described in Section 6.1

xr
xb

l
belt

yr

xw

yw xr

yr

yb

α

Figure 2: Experimental setup of the task with sensors DS
and FTS described in Section 6.1

FTS
DS

Kalman filter and an ARIMA interpolation
respectively.

In general we can say that the SNR of the sensor
is more important than the method chosen for the
prediction.

6.4 Drift adaptation and correction
After setting up the prediction models and evaluating
the drift, we have set the thresholds dadaptation and
dcorrection to 20 mm and 50 mm, respectively. Now, we
have executed the task 100 times, measured the real
drift using a Kalman filter and the force/torque sensor
and logged all adaptations and corrections (see Figure
6). We can see that the robot is now capable to keep
the current drift below the adaptation threshold by
modifying the pickup position according to the
prediction approximately every 10 executions. To
prevent the disk from falling of the edge of the
conveyor belt, the robot automatically re-centers it in
the middle of the belt approximately every 20
iterations.

In summary, although there is a significant drift
inherent in this task, in theory we can execute this
task infinitely. The robot automatically detects the
drift and adapts its motion to the shifting position of
the disk, as well as performing a corrective motion
from time to time to reset the disk to the center of the
conveyor belt.

7 Conclusion

Our goal is to enable a programmer to easily employ
external sensors for flexible robot programs. The
focus of this work is to show that workpieces can be
monitored automatically for drifts which occur due to
an imprecise setup of the workspace or abrasion
without the need for intricate calculations by the

7

Figure 6: Current (red) and absolute (yellow) drift for 100
executions of the task. When the prediction of the drift
exceeds the set thresholds for adaptation (pink) or
correction (light blue), the robot either modifies the pickup
position (green dots) or re-centers the disk (blue dots).

a)

b)

Figures 5:Actual and predicted drift with estimation error
for Kalman and Arima models using a (a) FTS sensor, (b)
DS sensor.

Figure 4: Recorded drift (absolute and current) during 20
executions of the task.

Table 2: Mean and standard deviation of occuring and
predicted drift for both types of sensor

Mean Standard
deviation

Real drift
KMS 2.35 0.65

DS 2.5 4.44

Kalman
prediction

KMS 2.35 3.23

DS 1.97 17.48

ARIMA
prediction

KMS 2.32 1.52

DS 0.05 10.17

developer. We have defined the term workpiece drift
and have described two methods to detect and predict
a drift for a specific workpiece and given sensor by
examining a time series describing the workpiece
position over multiple executions. The presented
requirements and methods are independent from the
type of sensor. We have shown that these methods
can be integrated into a programming environment,
so that the developer only has to specify basic
parameters and modify an existing robot program by
a minimal amount. Finally, we have presented an
experiment to validate our findings. We have shown
that it is possible to employ the proposed methods to
successfully detect and adapt to a workpiece drift
during an automation task.

Further work needs to be done in finding ways to
automatically determine reasonable parameters for
the Kalman filter and the ARIMA model. Simple
estimates work well, but by tuning these parameters
the prediction process might be optimized.

If an ARIMA model is used, the choice of pma can
be optimized along the following idea: We increment
pma until a significant change in the current drift is
encountered. This can be done using the methods
described in (Schlechter, 2006). If this happens, pma is
set back to a default size. So the ARIMA model will
only use values of d which are significant for the
next prediction.

8 References

Box, George, Jenkins, Gwilym M., and Reinsel,
Gregory C.. Time Series Analysis:
Forecasting and Control, third edition.
Prentice-Hall, 1994.

Brookner, Eli. 1998. Tracking and Kalman Filtering
made easy, Wiley Interscience, ISBN
0-471-18407-1

Chiang, L.H. Russell, E.H. And Bratz, R. D., 2001,
Fault Detection and Diagnosis in Industrial
Systems, Springer Verlag, ISBN
1-85233-327-8

Deiterding, Jan and Henrich Dominik. 2007.
Automatic optimization of adaptive robot
manipulators, 2007 IEEE International
Conference on Intelligent Robots and Systems,
San Diego / USA

Deiterding, Jan and Henrich Dominik. 2008.
Acquiring change models for sensor-based
robot manipulation, 2008 IEEE International
Conference on Robotics and Automation,
Pasadena / USA

Kalman, Rudolph Emil. 1960. A New Approach to
Linear Filtering and Prediction Problems,
Transactions of the ASME--Journal of Basic
Engineering, Vol. 82-D, pp.35-45

Kesavan, P. and Lee, J. H. 1997, Diagnostic tools for
multivariable model-based control systems.
Ind. Eng. Chem. Res. 36:2725-2738

LaValle, Steven , 1996, Robot Motion Planning: A
Game Theoretic Foundation, Algorithmica
 ISSN 0178-4617 , 2000, vol. 26, pp. 430-465

Raich, A.C. and Cinar, A. 1996, Statistical process
monitoring and disturbance diagnosis in
multivariate continous processes, AIChE J.
42:995-1009

Schlechter, Antoine and Henrich, Dominik. 2006.
Discontinuity detection for force-based
manipulation, 2006 IEEE International
Conference on Robotics and Automation

Sharma, Rajeev, LaValle, Steven and Hutchinson,
Seth, 1996, Optimizing Robot Motion
Strategies for Assembly with Stochastic
Models of the Assembly Process, IEEE
Transactions on Robotics and Automation,
12:160-174

8

