
Robots and their variability – A societal challenge
and a potential solution

Thomas Buchmann, Johannes Baumgartl, Dominik Henrich and Bernhard Westfechtel
Computer Science Department

University of Bayreuth
Bayreuth, Germany

firstname.lastname@uni-bayreuth.de

Abstract—A robot is essentially a real-time, distributed embed-
ded system operating in a physical environment. Often, control
and communication paths within the system are tightly coupled
to the actual hardware configuration of the robot. Furthermore,
the domain contains a high amount of variability on different
levels, ranging from hardware, over software to the environment
in which the robot is operated. Today, special robots are used
in households to perform monotonous and recurring tasks like
vacuuming or mowing the lawn. In the future there may be robots
that can be configured and programmed for more complicated
tasks, like washing dishes or cleaning up or to assist elderly
people. Nowadays, programming a robot is a highly complex and
challenging task, which can be carried out only by programmers
with dedicated background in robotics. Societal acceptance of
robots can only be achieved, if they are easy to program. In this
paper we present our approach to provide customized program-
ming environments enabling programmers without background
knowledge in robotics to specify robot programs. Our solution
was realized using product line techniques.

Index Terms—software product line; model-driven develop-
ment; dsl; code generation; robot;

I. INTRODUCTION

A robot is essentially a real-time, distributed embedded
system operating in a real environment. Often, control and
communication paths within the system are tightly coupled to
the actual physical configuration of the robot. Furthermore,
the domain contains a high amount of variability on different
levels. Variability in hardware comprises, e.g., robot arms with
many degrees of freedom, sensors with different resolution
(e.g. a simple camera, a color camera or a depth-camera),
different types of grippers which may be attached to the robot’s
arms, etc. On the software side there is also a high degree of
variability, ranging from algorithms which take into account
the hardware variability, but also which contain variability
concerning different requirements like energy consumption,
accuracy or execution performance. Last but not least, the
actual environment in which the robot is operated may vary
as well.

Nowadays, special robots are used in households to perform
monotonous and recurring tasks like vacuuming or mowing
the lawn. Currently we observe an increasing number of
such devices. In the future there may be robots that can be
configured and programmed for more complicated tasks, like
washing dishes or cleaning up or to assist elderly people.

Currently, programming a robot is a highly complex and
challenging task, which can be carried out only by pro-
grammers with dedicated background in robotics. Societal
acceptance of robots can only be achieved, if they are easy to
program. Nowadays, robots need to be programmed because
they do not show the required autonomy to understand when
and how certain tasks have to be performed. In this paper
we present our approach to provide customized program-
ming environments enabling programmers without background
knowledge in robotics to specify robot programs. The solution
we propose in this paper is based on model-driven software
development and software product line engineering.

Software product line engineering [1] deals with the system-
atic development of products belonging to a common system
family. Rather than developing each instance of a product line
from scratch, reusable software artefacts are created such that
each product may be composed from a collection of reusable
artefacts – the platform. Commonalities and differences among
different prodcuts may be captured in a variability model.
Commonly, feature models [2] are used for this purpose.
Binding variability (by selecting or deselecting the respective
features) in feature configurations describes the characteristics
of particular products.

Model-driven Software Engineering (MDSE) [3] puts strong
emphasis on the development of high-level models rather
than on the source code. Models are not considered as doc-
umentation or as informal guidelines how to program that
actual system. In contrast, models have a well-defined syntax
and semantics. Moreover, MDSE aims at the development of
executable models. The Eclipse Modeling Framework (EMF)
[4] has been established as an extensible platform for the
development of MDSE applications. It is based on the Ecore
metamodel which is compatible with the OMG Meta Object
Facility (MOF) specification [5]. Ideally, software engineers
operate only on the level of models such that there is no need
to inspect or edit the actual source code, which is generated
automatically from the models.

II. CONTRIBUTION

In this section we present our contribution. We sketch, how
product line technology and model-driven software engineer-
ing is used to create a family of configurable development
environments for easy robot programming.



A. Overview

As stated in the previous section, the robotics domain
includes a large amount of variability, ranging from variability
in hardware over variability in software to variability within
the environment the robot is operating in. Furthermore, pro-
gramming a robot is a very challenging task, which can not
be achieved without a dedicated background in robotics. To
reduce the complexity and make programming robots easier
and even possible for non-programmers, end users will only
interact with a domain-specific language (DSL), which ab-
stracts from all underlying tasks like scene detection, planning
algorithms, etc.

DSL
program

writes

End user

Middleware
(Algorithms + 

Hardware access)

Product Line

map

map

Feature Model Feature Configuration

mapmapmap
map

Fig. 1: Conceptual overview of our contribution.

Figure 1 depicts the main building blocks of our con-
tribution. The end user writes programs in a special DSL.
The code generated from the DSL programs uses a special
middleware. It contains all neccessary algorithms for envi-
ronment perception, planning, execution, and communication
with the hardware. The high amount of variability which is
contained in all of the aforementioned artefacts is managed
with the help of product line technology. Feature models
are used to capture commonalities and differences. E.g. a
certain algorithm implementation may differ with respect to
accuracy, safety constraints, or energy consumption. Varying
hardware, like absence or presence of certain sensors may also
affect the actual algorithm implementation. Furthermore, the
language the end user is interacting with should not contain
any fragments, that could lead to code which can not be
performed on the attached hardware [6].

B. Technical realization

In this subsection we provide insights into the current
technical realization of our approach.

From the software product line perspective, the main chal-
lenge is the fact that we have to address variability on different
layers of abstraction and even on different meta layers. As we

want to provide a development environment which is tailored
to the used hardware (i.e. the robot), the programming lan-
guage, i.e. the textual DSL has to be configured accordingly.
This is achieved, by using FAMILE on the DSL’s artefacts,
like the Xtext1 grammar file, the underlying Ecore model
describing the language’s abstract syntax tree (AST) and the
Acceleo2 code generation template files. Please note that these
artefacts are heterogeneous, i.e. each of them is based on
a different metamodel. The only thing which is common to
all of them is that the respective metamodels are based on
Ecore. FAMILE provides support for managing heterogeneous
product lines [7].

Figure 2 depicts on the right-hand side a cut-out of the
Xtext grammar file for the DSL. In the middle, the mapping
model is shown, while the corresponding feature configuration
is located on the left-hand side. In case of a simple path
planning algorithm, the DSL parser rule for the place operation
should not contain any parameters, while with an advanced
planning algorithm the parameter should be present. The
specified feature configuration only uses the simple one, thus
the assignment in the Xtext grammar is suppressed.

Access to the hardware is provided by a C++ library which
also encapsulates the implementation of different algorithms
used for path planning, grasp planning, collision detection,
scene perception, etc. The library implementation also con-
stitutes a superimposition of all variants. In its current state,
we generate specific cmake makefiles before we invoke the
C++ compiler. Currently, we are working on providing a
C++ discoverer for the MoDisco framework. Like the already
existing Java discoverer, it will allow to parse arbitrary C++
source code files into a corresponding Ecore-based model rep-
resentation. Once the new discoverer is completed, FAMILE is
able to map features to C++ source code fragments directly.
Figure 3 gives an overview about the different models and
tools involved in this project.

Currently the project is still under development, but the
experiences with FAMILE in terms of addressing and man-
aging variability of the different software artefacts at different
meta levels and levels of abstraction are very promising. We
are planning to test the resulting DSLs with undergraduate
students in order to get results on their usability for standard
robotic tasks (e.g. sort, pick and place, peg in hole, etc.).

III. EXAMPLE

In this section we outline a prototype Personal Robot that
operates based on the proposed DSL [8]. The used hardware
is a common small industrial robot with a multi degree of
freedom gripper and a depth camera mounted on the robot’s
wrist. The program loads the static environment and initializes
two sensors that observe a certain volume of the robot’s
workspace and the robot itself.

The program’s task is to pick all objects detected inside of
the first sensing volume and place them on the tray located

1http://www.eclipse.org/Xtext
2http://www.eclipse.org/acceleo



Fig. 2: Cut-out of the mapped Xtext grammar file.

DOMAIN MODELINGCONSISTENCYMAPPINGFEATURE MODELING

SDIRL Documents Multi-variant
Domain Models

F2D Mapping Models

Xtext Grammar
Xtext Grammar 
Mapping Model

Xtend 
Specifications

Acceleo Code 
Generation 
Templates

C++ Framework

Xtext 
Consistency 

Rules

Xtend 
Consistency 

Rules

Acceleo 
Consistency 

Rules

Xtend 
Specification 

Mapping Model

Acceleo 
Mapping Model

M2T 
Transformation

C++
Mapping Model

(Work in 
Progress)

C++ 
Consistency 
Rules (Work 
in Progress)

Customized cmake makefiles

(work in progress)

Fig. 3: Conceptual overview about the usage of FAMILE in the product line for DSLs for robot programming.

inside the second sensing volume. The task includes a lot of
challenging problems that relate to each other. First the objects
that should be manipulated must be reconstructed using the
physical depth sensor. Considering that a solution for the next
best view problem has to be found. A feasible task-constrained
grasp has to be planed for every reconstructed object and the
corresponding placement pose [9]. Furthermore, the program
has to plan a collision-free path in-between the grasp and
placement pose.

Regarding the variability of hardware, the inputs and out-
puts of all building blocks have to match, especially after
a hardware change. For example the object representation
reconstructed by the sensor has to match with the other
algorithms. The grasp planner has to correspond with the
gripper and object representation. Those constraints and de-
pendencies are covered by the product-line approach. Hence, a
hardware configuration change affects the middle-ware and the
configured DSL. The configured DSL only contains language

elements which describe operations that can be performed on
the attached hardware.

Going into the internals of a robotic program a crucial
question is: What is about the order of execution? The program
has to ascertain this order. Additionally, all exceptions during
the execution have to be considered and resolved. At the
DSL tier a selection of an object by a certain property has
to regarded. The order of execution of the algorithm is also
to decide considering for example reachability, task and time
constraints. In our example (igure 4) the order of execution
is large objects first, since small objects can be placed on the
tray between the larger ones more easily.

Our proposed DSL covers the mentioned problems, enabling
the programmer to focus on the task itself. Considering
that, the DSL has functionalities for loading the environment
and known objects, sensors that observe a certain volume
(Figure 4a), a robot and methods to instruct the robot to
grasp (Figure 4b), place (Ffigure 4c), and drop an object.



(a) (b) (c) (d)

Fig. 4: Snapshots of the example program: (a) sensor based reconstruction, (b),(c) automatic order of execution, evaluation of
the object, picking and placing, and (d) the result of the completed program.

Additionally, some easy to use conditions to select objects
according to their properties like color, volume or size and
loops are included.

IV. RELATED WORK

Only recently model-driven software development tech-
niques have been applied to the robotics domain. While most
approaches [10], [11], [12] aim at supporting developers of
robotics algorithms, only a few address higher level DSLs [13],
[14]. So far, there is no approach, that aims at supporting non-
programmers in specifying programs for robot tasks. In his
PhD thesis [15] Gherardi presents an approach for variability
modeling and resolution in component-based robotics systems.
It differs from our approach in terms of the different layers of
abstraction and also meta-layers where variability is addressed.
Furthermore, the toolchain we use for software product line
development follows an established development process.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented an approach that is dedicated
to provide customized programming environments enabling
programmers without background knowledge in robotics to
specify robot programs. To cope with the high amount of
variability which is present in the robotics domain, we employ
a software product line approach. Using our sophisticated tool
FAMILE, we are able to map features to the heterogeneous
artefacts of our product line, like language grammars, models,
validation constraints, code generation templates and source
code and derive concrete products from it. We showed an
example configuration for a robot with a gripper and a
corresponding DSL that empowers the end user to specify
programs for pick and place tasks.

We showed that our concept provides a significant improve-
ment in developing robot programs. Since programming robots
nowadays is very difficult, this problem needs to be solved if
robots should be used in future to assist people in their every-
day tasks. Future work on our solution comprises research on
DSLs which can also be used by non-programmers. Further-
more, a hardware protocol is needed which works similarly to
a plug-and-play mechanism. Pluggable hardware components
like sensors, cameras, grippers, etc. can then be used to bind
variability in feature configurations automatically.

REFERENCES

[1] P. Clements and L. Northrop, Software Product Lines: Practices and
Patterns, Boston, MA, 2001.

[2] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S.
Peterson, “Feature-oriented domain analysis (FODA) feasibility study,”
Carnegie-Mellon University, Software Engineering Institute, Tech. Rep.
CMU/SEI-90-TR-21, Nov. 1990.

[3] M. Völter, T. Stahl, J. Bettin, A. Haase, and S. Helsen, Model-Driven
Software Development: Technology, Engineering, Management. John
Wiley & Sons, 2006.

[4] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF Eclipse
Modeling Framework, 2nd ed., ser. The Eclipse Series. Boston, MA:
Addison-Wesley, 2009.

[5] OMG, Meta Object Facility (MOF) Core Specification, OMG, January
2006, version 2.0.

[6] J. Baumgartl, T. Buchmann, D. Henrich, and B. Westfechtel, “Towards
easy robot programming: Using dsls, code generators and software
product lines,” in Proceedings of the 8th International Conference on
Software Paradigm Trends (ICSOFT 2013), J. Cordeiro, D. Marca, and
M. van Sinderen, Eds. ScitePress, Jul. 2013, pp. 548–554.

[7] T. Buchmann and F. Schwägerl, “A Model-driven Approach to the De-
velopment of Heterogeneous Software Product Lines,” in Proceedings of
The Ninth International Conference on Software Engineering Advances
(ICSEA 2014), IARIA. IARIA XPS Press, October 2014, accepted for
publication.

[8] T. Buchmann, J. Baumgartl, D. Henrich, and B. Westfechtel, “To-
wards a domain-specific language for pick-and-place applications,” in
Proceedings of the Fourth International Workshop on Domain-Specific
Languages and Models for Robotic Systems (DSLRob 2013)., U. P. S.
Christian Schlegel and S. Stinckwich, Eds. arXiv.org, 2013.

[9] J. Baumgartl and D. Henrich, “Gpu-based power-grasp and placement
planners for unknown environments,” Joint 45th International Sympo-
sium on Robotics - ISR 2014 and 8th GERMAN Conference on Robotics
- ROBOTIK 2014, 2014.

[10] A. Steck, D. Stampfer, and C. Schlegel, “Modellgetriebene Softwareen-
twicklung für Robotiksysteme,” in AMS, 2009, pp. 241–248.

[11] S. Dhouib, S. Kchir, S. Stinckwich, T. Ziadi, and M. Ziane, “Robotml,
a domain-specific language to design, simulate and deploy robotic ap-
plications,” in Simulation, Modeling, and Programming for Autonomous
Robots, ser. Lecture Notes in Computer Science, I. Noda, N. Ando,
D. Brugali, and J. Kuffner, Eds. Springer Berlin Heidelberg, 2012, vol.
7628, pp. 149–160.

[12] A. Bubeck, F. Weisshardt, T. Sing, U. Reiser, M. Hagele, and A. Verl,
“Implementing best practices for systems integration and distributed
software development in service robotics - the care-o-bot robot family,”
in System Integration (SII), 2012 IEEE/SICE International Symposium
on, 2012, pp. 609–614.

[13] U. P. Schultz, D. J. Christensen, and K. Stoy, “A Domain-Specific
Language for Programming Self-Reconfigurable Robots,” in Workshop
on Automatic Program Generation for Embedded Systems (APGES),
2007, pp. 28–36.

[14] J. F. Inglés-Romero, A. Lotz, C. V. Chicote, and C. Schlegel, “Dealing
with Run-Time Variability in Service Robotics: Towards a DSL for
Non-Functional Properties,” in Proceedings of the 3rd International
Workshop on Domain-Specific Languages and models for ROBotic
systems, E. Menegatti, Ed., Tsukuba, Japan, 2012.

[15] L. Gherardi, “Variability modeling and resolution in component-based
robotics systems,” Ph.D. dissertation, University of Bergamo, 2013.


