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Abstract
A Personal Robot should be able to handle unknown objects in unknown environments. For a manipulation task the
question of what to do with an object once it has been grasped, is one of the most essential ones besides the grasping
task itself. Moreover, the planning time should be at least as fast as the time the robot needs for its grasping/placing
motions. We propose a combination of a fast grasp and placement planner that deals with sensor-modelled objects.
They share novel pose computation steps that reduce the amount of computational intensive collision tests. By means
of experiments we evaluate the computation time for the pose computation. Furthermore, we present the qualitative
results of experiments showing accurate grasps and object placements.

1 Introduction

A flexible and skilled Personal Robot needs to perform
various pick-and-place tasks in different domains like
cleaning worktops in households, laboratories, or work-
places in general. Therefore, a Personal Robot should be
able to elaborate how and where to place objects.

However, there is a wide range of situations, objects, and
environments that affect this challenging task. Hence, the
robot must be able to handle unknown objects, whose sur-
face models are provided using sensor data. The resulting
models are typically incomplete and noisy. Furthermore,
we assume that a multi-finger gripper is sufficient to react
flexible on different situations.

When the robot has to place an object in an environment,
the robot should be able to plan how to grasp the object
using a multi-finger gripper and where to put it down.
Two algorithms calculating stable grasps and placements
help the robot to perform successfully.

What this paper offers, is a solution to plan accurate
power-grasps and object placements in the environment,
while having only the geometric information available,
gained by a depth camera. A special focus is put on
the question of how to compute candidate configurations
quickly and how to optimise them locally in case of static
instability. Furthermore, we set the grasp planning in
relation to placement planning.

The remainder of this paper is organized as follows: In
Section 2 we outline the related work. In Section 3 we in-
troduce two base algorithms used for the grasp and place-
ment planner in Section 4. Furthermore, we evaluate the
performance and quality of both planners in Section 5 and
discuss the results in Section 6. Section 7 concludes this
paper.

2 Related Work

The related work is composed of two main topics: grasp
planning and placement planning.
The field of object placement planning in the context of
pick-and-place applications [12] was not focused on as
such much as the grasp planning during the past years.
There are several related approaches targeting sub-
problems of the whole placement planning problem, like
computing the upright orientation of objects [5] or find-
ing good planar regions on the placement area [17]. Since
these works do not consider finding a stable pose for the
object on the placement area, they are not regarded any
further.
An approach that targets placement planning in the sense
of packing is [1]. Since this approach uses only base ar-
eas of the unknown objects and known planar placement
areas, it is not applicable for general placement areas and
3D objects, which we are interested in. Another approach
considering known objects with an unknown placement
area is introduced in [8]. Here, object placement consid-
ers the footprint of the contact area. The target location of
the object is given as input by a human. Both approaches
only consider planar placement areas. Contrary to that,
we generalise from planar to complex placement areas.
One of the first overall solutions for placing new objects
in complex placement areas is introduced by Jiang et al.
[10] and [11]. They outline a learning based framework
that requires an object database together with semantic
labels. Our work is different from that in so far as we
only use geometric information about the object and do
not use any kind of learning step.

A detailed overview of grasp synthesis in general is given
by [16] and [3]. Since it is sufficient for a service robot
to grasp an object stable enough for the given task, we
concentrate on approaches that consider a short computa-
tion time together with an exact grasp. To cope with these
challenges, related approaches apply different heuristics,
which differ a lot.



A common solution is to approximate the object by a
normal distribution [13], geometrical primitives [9], and
super quadrics [6]. These approximations are partly too
coarse for an exact grasp or their computation is too ex-
pensive. Likewise, approaches using the topology of ob-
jects [15] have a high computation time.
We focus on a local sampling approach to build a data-
parallel algorithm with a special focus on the positioning
of the gripper base. Hereby, we introduce the idea that
the positioning of the gripper base is strongly related to
the general problem of placement planning of objects in
non-planar environments.

3 Base Algorithms
Both algorithms rely on two base algorithms for two com-
plex object models (e.g. gripper fingers or household
objects): First, a computation for the translation along
a given direction and, second, a rotation angle computa-
tion around a given rotation axis. As an object model,
we use a 3D surface representation of convex polygonal
patches reconstructed from a captured point cloud. The
result of our computations is either a translation matrix or
a rotation matrix.
Different possibilities to implement these base algo-
rithms exist. Iterative approaches and physical simula-
tion frameworks move one object, step by step, towards
an other object including a collision check in every step.
The computational effort is comparatively high to our ap-
proach, caused by the amount of collision checks. Our
approach directly computes the translation and rotation,
so that the two objects are in contact with each other.
Hence, we only need to perform one collision check to
get the contact points.

3.1 Translation Computation
Our translation computation, along a given direction d,
uses the vertices vi of the first object and the polygonal
surface patches Sj of the second object. We use a ray
casting technique based on the kd-tree restart idea. We
locate the leaf of the tree containing vi and process all Sj

of this leaf. Afterwards, we trace the ray along d until it
intersects the bounding box of the current leaf. Now, we
compute the first intersection of the ray with this bound-
ing box and use the resulting point as the new starting
point v′i of our ray. Please note that vi and v′i are not lo-
cated in the same leaf. This procedure is continued until
the kd-tree has been completely traced. For an example
see Figures 1(a) and 1(b).
3.2 Rotation Computation
For the rotation computation between two objects around
a given axis resulting in a contact between the two
objects, we have to distinguish two contact situations:
point-surface contacts and edge-edge contacts.
For the point-surface contact, the points pi of the first ob-
ject are rotated around the axis a (computed using the

current set of contact points) and define circles C(pi, a)
in the 3D space. Rotation angles for point-surface con-
tacts ∠a(pi, p

C
ij) are between the pi’s and the intersec-

tion points pCij of C(pi, a) and all surface patches Sj

of the second object. The edge-edge rotation compu-
tation is more complex. All edges ei of the first ob-
ject are rotated around a. Therewith surfaces of rev-
olution H(ei, a) are constructed. Using the intersec-
tion points pHij := H(ei, a) ∩ ej we construct planes
P (pHij , a) through pHij and a as normal. The rotation an-
gle ∠a(p

P
ij , p

H
ij ) is between a intersection point pPij :=

P (pHij , a) ∩ ei and the previously computed intersection
point pHij . Finally, the over all rotation angle for the two
object is: minij{∠a(pi, p

C
ij),∠a(p

P
ij , p

H
ij )}. An example

rotation is from the pose in Figure 1(b) to the pose in Fig-
ure 1(c).

3.3 Implementation
In this section we outline our implementation of the
GPU-based and CPU-based implementation and go into
the selection of relevant edges and surface patches from
an object model.
As mentioned in Section 3.1, we use a kd-tree in combi-
nation with the restart idea for efficient selection of rel-
evant parts of an object. In particular, we trace a plain
ray during the translational computation and we trace a
circular arc during the rotational computation.
One challenge for the implementation1 is to achieve a
good occupation of a GPU. Hence, we batch the com-
putations by type (translation, rotation and collision) to
execute them concurrently. Since the data exchange be-
tween host and device requires some time, we launch sev-
eral CPU threads each with one Cuda steam. Our GPU
kernels act on a single vertex or edge dependent of the
computation.

4 Planner
Using the introduced base algorithms, we design a grasp
planner and a placement planner. Notably, the placement
planner can place objects on complex, non-planar envi-
ronments. Hence, it can also be used for online bin pack-
ing and dense online placement on planar surfaces. The
grasp planner is suitable for complex multi-finger grip-
pers.
In the following, we will introduce the basic steps of
our planners starting with the placement planner and fol-
lowed by the grasp planner.

Placement Planner Figure 1 outlines the main steps of
our geometrical placement planner. The algorithm’s in-
put is only the two sensor-modelled objects and the di-
rection of gravity. The output of our algorithm is a pose
(position and orientation) for the object and several inter-
mediate ones that describe constructive steps to reach a
stable goal pose.

1Programming languages: NVIDIA Cuda on the GPU and C++ on the CPU
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(a) Location of the pre-orientated
object above the selected and visible
floor point (orange).

q
(b) Established first contact (red)
between object and placement area.

�
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(c) A rotation computation based
on the contact points from (b)
around the red axis.

d

(d) A stable pose after the local op-
timization step.

Figure 1: Examples for the four main steps of the pose computation for the object (green) relative to the placement
area (blue) including contact points and rotation axis (red) as well as current translation direction d.

The algorithm has three pose computation steps and a
quality rating and optimization step: First, the object and
the placement area are provided. Furthermore, we com-
pute initial positions on the placement area. Second, we
position the object above those initial positions (Figure
1(a)) and translate the object along the direction of grav-
ity towards the placement area (Figure 1(b)). The result
is that object and placement area are in contact with each
other. Third, we compute the contact points and based on
these decide, whether a translation, rotation ,or quality
rating follows up. Furthermore, we compute the neces-
sary translation direction, rotation axis and rotation point
using the contact points (Figure 1(c)).
Our quality rating includes an optimization step in case
of an unstable pose (Figure 1(d)). Please note, since a
rotation can be applied clockwise or counter-clockwise,
a sequence of computations for one initial position eval-
uates to a binary tree. The computation ends, if the tree
has reached the maximum allowed depth or the current
pose is considered stable.
The quality rating in combination with the local optimiza-
tion step is based on a heuristic. Since, we deal with un-
known objects, we do not have the required input, espe-
cially no force values, to apply well known approaches
like the FEA analysis, mechanical equilibrium analysis
or stability measures from the field of grasp planning.
After every step of our algorithm we have the information
about the position and normal direction of every contact
point. Additionally, we estimate the center of mass of
the object as average value of the coordinates of the mesh
vertices.
Our heuristic is grounded on the planar case known form
the field of engineering mechanics. If all contact points
are located on a common plane, we project the center of
mass of the object onto this plane with respect to the di-
rection of gravity. In case this projection is inside of the
2D convex hull of the contact points the pose of the object
is stable. In case of instability, the failure direction is the
vector from the center of the convex hull to the projected
center of mass.
We extend this method, so that we are able to analyse
non-planar contact point arrangements. Therefore, we es-
timate the plane containing the largest convex hull, based
on contact points being located on that plane. These

points have to be lower than the center of mass of the ob-
ject. Now we apply the planar case on this set of contact
points. In case of instability we use the failure direction
as new direction of gravity and reapply the outlined con-
tact point selection.
If the current pose is still not considered as stable, we
compute a new translation direction and rotation axis, to
continue with our pose computation. The new translation
direction is the current failure direction. Hence, we com-
pute the length of the translation along this direction. In
case there is no significant translation possible we rotate
the object using a rotation axis normal to the failure di-
rection. We use the furthest collision point with respect
to the failure direction as rotation point.
Our quality rating is also based on the planar case as-
sumption. It is a sum of two quotients. The first one is
between the height of the object and the area of the con-
vex hull. The second one is a measure of the centricity
of the projected center of mass with respect to the convex
hull. A detailed description of the placement planner, in-
cluding our quality rating, can be found in [2].

Grasp Planner Besides finger closing using our base
algorithms, there are more steps to do during grasp plan-
ning. We focus on power grasps for under-actuated multi-
finger grippers. We distinguish between finger joints that
reposition the finger with respect to the gripper base, but
do not establish a clamp and joints that fasten the object.
Hence, the positioning of the gripper base relative to the
object is our first step. For stable power grasps, the base
has to be in contact with the object.
The positioning of the gripper base is strongly related to
a placement of an arbitrary object, since the degrees of
freedom of the fingers are not yet considered. Further-
more, for power grasps it is mandatory that the position
of the gripper base with respect to the object is stable
enough, so that the relative pose between gripper base
and object does not change during the finger closing.
During the positioning of the gripper base we assume,
that the gripper fingers are open. Furthermore, we use
not only the surface mesh of the gripper base, but also the
models of the open fingers. For the approach direction
of the gripper we use the centre of every surface patch



(a) Initial pose of the gripper (blue) and translated
pose of the gripper base (red) estabilshing the first
contact with the object.

(b) Fist contact between gripper (blue) and
object and rotated pose of the gripper base
(red)

(c) Final optimized gripper pose and finger
configurations.

Figure 2: Example for the three main steps of the grasp planning. The coordinate system represents the main axis of
the object (green).

and the main axis of the object to place and orientate the
gripper base.
We align the negative normal of the surface patch with the
approach axis of the gripper coordinate system, assuming
that the gripper model follows the NSA coordinate sys-
tem convention. Furthermore, we position the origin of
the NSA coordinate system on the ray defined by the cen-
ter of the surface patch and its normal. Hence, only one
degree of freedom is left for a well-defined start orienta-
tion, the rotation around the a-axis of the gripper. This
gives us the opportunity to align the rotation axis of the
first joint of a fixed finger (without a special joint) of the
gripper with the main axis of the object.
To establish contact between the gripper base and the ob-
ject we utilize the first steps of our placement planner. We
use the approach direction of the gripper coordinate sys-
tem as a first translation direction to establish the fist con-
tact. After the evaluation of the contact points, there are
two cases. The first one is that gripper and object share
more than three contact points not located on a common
line. The second cases is that there are less contact points.
In case all contact points share a common line, we rotate
the gripper around that line, so that the origin of the NSA
coordinate system gets closer to the object. In case there
is only one contact point, the rotation axis is the cross
product of the a-axis and the position vector of the con-
tact point in the NSA coordinate system. The rotation is
performed around the contact point, so that the origin of
the NSA coordinate system again gets closer to the ob-
ject.
Now it comes down to the joints of the finger that only
adjust the position and orientation of a finger relative to
the object, but do not close the finger to achieve a fix-
ture. These joints increase the available variants for fin-
ger configurations dramatically. Eigen grasps [7] or hand
taxonomies [4] can be used to overcome this issue.
The angles for the remaining finger joints are computed
iteratively, starting at the joint next to the gripper base,
using our rotation computation (Section 3.2).
We evaluate computed gripper configurations including
the gripper base pose and the angles for the finger joints
using the quality rating introduced in [14].

5 Experiments

In this section we introduce our object model, a quali-
tative evaluation of both planners, and computation time
measurements. All computations were performed on an
AMD Opteron CPU and a Nvidia GTX Titan GPU. Fur-
thermore, we use a friction coefficient of µ = 0.2 for the
quality measure. The initial positions of the placement
area are equally spaced with a distance of 0.09 m. Their
amount varies with respect to the size of the placement
area.

Object Model We now outline our object modelling
pipeline used for the experiments. As sensor we use a
hand-held depth camera. The relative registration be-
tween two camera images is accomplished by using the
Iterative Closest Point algorithm. Since we know the ini-
tial position of the camera we are able to register the re-
constructed object model to the robot’s coordinate sys-
tem.
Each point cloud of a depth image is integrated into a
regular grid using a signed distance function. We con-
vert this grid-based model into a triangular surface model
using the Marching Cube algorithm. As a last step of
our pipeline, we simplify these surface models to a user-
specified amount of 1000 triangles using the Quadric Er-
ror Edge Collapse Simplification2 with an quality value
of 0.3. Placement area and object are modelled indepen-
dently from each other.

Results and Evaluation Figure 3(a) and 2 show sam-
ple grasps including the grasp with and without the opti-
mized gripper base position. Generally, the quality rating
of a grasp improves with our optimized gripper base po-
sition. However, in some cases the better base position
leads to a poorer finger position relative to the object,
which leads to a worse over all rating. But a worse qual-
ity rating based on the finger position does not lead to a
pose change of the object during the finger closing.

2VCG Library: www.vcg.isti.cnr.it



(a) Two grasps: Each with the optimized gripper base position (red) and
the initalal translated one (blue). The quality improves from 0.18 to 0.2
(left) and from 0.0 to 0.28 (right).

q q
(b) Stable pose of the green objects on the blue placement areas.

Figure 3: Results of the grasp planner (a) and the place-
ment planner (b).

Figure 3(b) and 4 outline selected results of our place-
ment planning. Our planner is able to deal with non-
planar and even box-like placement areas and complex
non-convex objects. Our quality rating and optimiza-
tion step are especially well suited to object placements,
where the object leans against some parts of the place-
ment area. The initial pose of the object strongly affects
the planned pose. Considering the watering can for ex-
ample, in case its initial orientation has been upright it
would just stand upright inside the box. The final pose
shown in Figure 3(b) has been reached with a rotated ini-
tial orientation in advance of the placement planning.

Figure 4: Result of the placement planning followed by
a grasp planning of the placed object.

We evaluate the computation time of our experiments
with respect to the mandatory parameter, the amount of
surface patches of our object model, since both algo-
rithms including our base algorithms strongly rely on this
parameter. For one initial position of the object at the

placement planning, 32 rotations may occur with a max-
imum amount of five rotations and for one initial grip-
per base position 19 rotations may occur for a three fin-
ger gripper with three joints for each finger. We have to
compute about 32000 rotations and collision point com-
putations for 1000 initial positions during the placement
planning. Figure 5 shows the maximum total computa-
tion time for all initial positions using the placement area
and object displayed in Figure 4. We vary the amount
of surface patches from 200 to 100. Please note, that af-
ter about a total computation time (including the GPU
computations) of 500 ms to 900 ms feasible results are
available that result in valid placements. Since the grasp
planning has less computation steps, we achieve compa-
rable computation times.

6 Discussion
Our solutions to compute transformation matrices for
pose changes differ from well-known static simulations
or physic simulations. Since we distinguish between pure
translations and rotations, we are not able to change poses
using a generic transformation matrix. However, our ap-
plication does not require a combined rotation and trans-
lation matrix. Both components approximate only the
real transformation to establish a contact, since we cur-
rently do not consider edge-edge contacts during a trans-
lation. However, our solution has a major advantage. The
most time-consuming computation step in the simulation
approaches is the collision check. In our application it
is worse, since the objects involved in this step are so
close that early-out tests have no effect. Furthermore, if
the objects are already in contact with each other and we
want to translate or rotate once again, our approach does
not require an analysis of the contact points to figure out
whether their amount or locations have changed.
Our experiments3 show that we need about 700 ms to per-
form all rotation and translation computations. All colli-
sion point computations last about 200 ms. To point out
the benefit of our approach, let us assume that we want to
rotate an object about 45◦ using a static simulation with a
step size of 1◦. This results in 45 collision computations
for this single rotation. Our approach needs one rotation
computation followed up by a single collision point com-
putation. Hence, the break even to our approach is after
about 4 to 6 collision point computations or static simula-
tion steps considering the computation time of our com-
ponents.

7 Conclusions
We introduced GPU-based grasp and placement planners
that share the base algorithms (Section 3) and the con-
tact point computation. Both algorithms are data parallel.
Hence, a GPU-based implementation is applicable. Ad-
ditionally, we managed to balance the workload on the
GPU. Especially during the placement planning the com-

3Computation times for objects with 1000 triangles and 1218 initial poses.



putational effort varies a lot. The placement planner is
able to successfully plan object poses in non-planar envi-
ronments using only geometrical information. Our grasp
planner uses our placement planner to position the grip-
per base before closing the fingers.

Figure 5: Plot of the maximum computation times of the
implemented GPU kernels over the number of surface tri-
angles with 1012 initial poses.

Our base algorithms reduce the amount of collision com-
putations, which are one of the most time consuming
components of typical applications. Additionally, the
parallel implementation of our base algorithms and the
collision point computation enables us to execute con-
currently many sample configurations. As a result, we
are able to plan exact grasps and placements for sensor-
modelled objects in approximately 0.5 sec until good
rated configurations are available.
Future work should combine both planners and imple-
ment them on a real robot for several pick-and-place oper-
ations including a quantitative analysis of both planners.
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