
A Geometrical Placement Planner For Unknown Sensor-Modelled
Objects And Placement Areas

Johannes Baumgartl, Per Kaminsky, and Dominik Henrich

Abstract— A Personal Robot should be able to handle
possible unknown objects in unknown environments. For a
manipulation task the question what to do with an object once
it had been grasped is one of the most essential ones beside the
grasping task itself.

We propose a placement planner for sensor-modelled objects
in complex environments. The planner computes a stable
position and orientation for the object in the environment. The
algorithm uses only geometric information, most notably no
force or torque sensor is required. In particular, we introduce
a novel approach regarding the configuration computation.

By means of experiments with various household objects
the robustness and performance are validated. Further on, we
compare our approach to a configuration computation using a
physics simulation framework.

I. INTRODUCTION

A flexible and skilled Personal Robot needs to perform
various pick-and-place tasks in different domains like i.g.
cleaning up worktops in households, laboratories, or work-
places in general. Therefore, a personal robot should be able
to elaborate how and where to place objects.

However, there is a wide range of situations, objects,
and environments that affect this challenging task. Hence,
the robot must be able to handle unknown objects and
environments whose surface models are reconstructed using
sensor data. The resulting models are potentially incomplete
and noisy.

When it comes for the robot to place an object in the
environment the robot has to be able to plan where to put
down the object. An algorithm calculating stable placement
configurations helps the robot to perform successfully.

The input to our algorithm is a placement area and an
object, both given as surface models with convex planar sur-
face patches. To reconstruct these surface models, the sensor
data from a depth camera is integrated over time. These
object models include holes of non considered regions. The
integration over time of the noisy sensor data dramatically
reduces the noise in the resulting object models.

The output of our algorithm is a configuration (position
and orientation) for the object and several intermediate
configurations that describe constructive steps to reach a
stable goal configuration. The main steps of object placement
planning are:
1.) Select a location on the placement area suitable for

the object.
2.) Orient the object (Fig. 1(a)) with respect to its geo-

metrical properties or semantical needs, e.g. an upright
orientation [1].

(a) Object configuration
after step 2.)

(b) Intermediate config-
uration during step 3.)

(c) Goal configuration
after step 4.)

Fig. 1: Illustration of the general steps 2-4 of our algorithm.

3.) Compute the placement configuration (Fig. 1(b)) by
tilting the object until it remains in a probably stable
configuration ensuring enough contact points with the
placement area.

4.) Compute the quality metric (Fig. 1(c)) of the reached
configuration, including an evaluation of the stability. In
case of instability we apply a local optimisation step
using step 3.

The contribution of this paper is to offer a solution
consideringall of the above steps for planning object
placement configurations in the environment while using
only the geometric information gained by a depth sensor.
With a special focus is put on the question of how to
compute candidate configurations and how to optimise them
locally in case of static instability.

The remainder of this paper is organized as follows: At
first we review related works (Section II). Then we present
in detail the steps of the proposed algorithm, starting with a
short nomenclature (Section III). Next, the strategies for the
selection of the suitable floor points in the placement area are
introduced (Section IV). Further on, the procedures to com-
pute appropriate candidate goal configurations is explained
(Section V). We continue presenting how stability and quality
are evaluated in order to select a feasible goal configuration
and we introduce our local optimisation step (Section VI).
Finally, we introduce our object modelling pipeline and the
experimental results (Section VII).

II. RELATED WORK

The field of object placement planning in the context
of pick-and-place applications [2] was not as such much
focused on as was the grasp planning [3]–[5] during the past
years. First, we mention approaches dealing with subprob-
lems and related approaches. Second, we review approaches
considering our own problem description.

978-1-4799-2744-9/13/$31.00 ©2013 IEEE

Proceeding of the IEEE
International Conference on Robotics and Biomimetics (ROBIO)

Shenzhen, China, December 2013

364

The focus of several works is on the two first steps of the
placement problem. Especially, Schuster et al. [6] offers an
approach to find free space on planar surfaces. Fu et al. [1]
regard finding the upright orientation of man-made objects
based on geometric features. And Glover [7] estimates poses
of objects based on incomplete point clouds using an object
database. Since these works do not consider finding a stable
configuration of the object on the placement area, they are
not regarded any further.

Arranging objects efficiently refers to the packing prob-
lem [8]–[10] considering optimal object arrangements in a
limited space even for irregular shaped objects [11], [12].
These approaches focus on generic packing problems with
known objects. That is why they are complementary to our
approach. These ideas could be used in future to develop
local optimisation criteria for the fourth step of the algorithm
overview.

In the field of robotic applications, placing is about
controlling the robot arm and placing the object gently
using e.g. force control and passive compliance [13], or
task-level planning [14]. However, the focus is here not on
finding feasible placing configurations. Those approaches are
subsequent operations after the placement planning.

Another related topic is push planning of objects on
planar placement areas [15]. But again, the focus is not
on computing placement configurations. However, the results
could be used in an subsequent improvement step.

An approach that targets placement planning in the sense
of packing is [16]. Since this approach uses only base areas
of the unknown objects and known planar placement areas, it
is not applicable for general placement areas, which we are
interested in. Another approach considering known objects
with an unknown placement area is introduced in [17]. Here,
object placement considers the footprint of the contact area.
The target location of the object is given as input by a human.
Consequently, they introduce an interactive approach and not
an autonomous one. Both approaches only consider planar
placement areas. Contrary to that, we generalise from planar
to complex placement areas.

One of the first overall solutions for placing novel objects
in complex placement areas is introduced by Jiang et al.
[18] and [19]. They outline a learning based framework that
requires an object database together with semantic labels.
Our work is different from that in so far as we use only
geometric information about the object and do not use any
kind of learning step.

III. NOMENCLATURE

We assume that the setting does not change during the
planning phase. Here and subsequently, we take that the
direction of the gravity dg 2 R

3 and an approach direction
dvis 2 R

3 as given. Surface models and their properties are
defined as follows:

Definition Let S :=

�

v1, ..., vk 2 R

3

be a planar convex
polygonal surface patch with vi as vertices ordered counter
clockwise, (vi, vi+1) an edge of this surface, and |S| > 2.

Definition Let M := {S1, ...,Sn} be a polygonal surface
mesh with convex polygonal surface patches Si.

Definition Let kM1 , kM2 , kM3 2 R

3 be the principal axis of a
surface mesh M, with the corresponding eigenvalues �M

1 >
�M
2 > �M

3 .

Henceforth, we represent the gripped object MO and the
placement area MP as polygonal surface meshes. Further on,
we compute the center of mass cMO of the object using the
vertices of the surface mesh.

IV. PRE-PLACEMENT CONFIGURATION

This section considers the orientation of the object in
advance to the placement planning and the selection of
feasible candidate locations on the placement area, called
floor points. The whole passage refers to step 1 and 2 of the
algorithm overview in Section I.

A. Object Orientation
Currently we apply a heuristic to achieve the desired object

orientation. We use the dedicated principal axis kMO
1 of the

most dominant eigenvalue. We rotate the object such that its
first dominant principal axis kMO

1 is parallel to the approach
direction dvis.

By this procedure we are able e.g. to reach the bottom
of a box filled with pens or to place a plate in a disk rack.
In case of planar placement areas, a configuration with kMO

1

parallel to this plane is still feasible.
If the upright orientation of the object can be estimated

with the help of the geometrical observations introduced by
Fu et al. [1], we are able to get an idea of the semantically
correct orientation and align the object accordingly.

B. Estimate Floor Points
Our algorithm requires a desired location for an object

on the placement area, called floor point. We select those
floor points according to two observations that we had made
in the context of household objects. The first observation is
that humans tend to place objects at visible locations. The
second one is that humans tend to place objects at the lowest
position possible, e.g. pens in pencil cups, flowers in vases
or dishes in a dish rack.

According to the first observation, we use a ray casting
approach featuring rays parallel to the approach direction
dvis. The intersection points between rays and placement area
are the visible points. In case of a box-like placement area,
we select the n lowest points (with respect to dg) from the
ones visible, in order to render it more likely that the object
reaches the ground of the placement area. The remaining set
of vertices is our floor point set.

V. STABLE CONFIGURATION

Based on the computed floor points, we calculate place-
ment configurations that are likely to be stable. This section
refers to step 3 of the algorithm overview.

First, we explain the procedure to establish a first contact
between the object and the placement area (Section V-A).

365

Second, we elaborate on the tilt computation run to establish
more contact points (Section V-B). Those computations
affect transformation matrices, which are applied to the
object’s center of mass and the principal axis. The resulting
position of the center of mass is the position part pC of the
goal configuration C for the object. The accumulated rota-
tions define the rotatory part oC . Every single transformation
matrix itself can be written as intermediate configuration,
too. Conveniently, those configurations can directly be used
for a motion planner to approach the goal configuration.

A. First Object Contact

Fig. 2(a) and Fig. 2(b) show the two steps necessary
to establish an initial contact between the object and the
placement area.

In the first step, the object is translated such that its center
of mass cMO and one of the previously computed floor points
define a line parallel to the direction dvis and in a distance
to the placement area so that no rotation of the object would
cause a collision with it.

In the second step, we compute the minimal translational
distance along dvis needed for the object to make contact
with the placement area using a ray cast technique.

?
dvis

r

(a) Location of the pre-orientated
object above the selected and visible
floor point (orange).

r

(b) Established first contact (red) be-
tween object and placement area.

�
�x

(c) First result of the tilt computation
(left-handed) based on the contact
points from (b) around the red axis.

�
�y

(d) Second result of the tilt com-
putation (right-handed) based on the
contact points from (b) around the
red axis.

Fig. 2: Examples for the four main steps of the configuration computation for the object
(green) relative to the placement area (blue). Colors: Contact points and rotation axis
(red), and current floor point (orange).

B. Object Tilt Computation

To establish possible stable contact configurations, we
tilt the object (Fig. 2(c) and 2(d)). Therefore, we need to
compute a rotation axis based on the current contact situation
(Section V-B.1). We also compute the tilt angle for this
axis producing new contact points (Section V). We continue
this tilting procedure until at least three independent contact
points between object and placement area are established, or
a maximum amount of tilts was performed in a row without
success. Since we compute two rotation angles (clockwise -
Fig. 2(d) and counter clockwise - Fig. 2(c)) for the object
during each tilt step, the recursive applying of tilt steps
results in a binary tree. The maximum depth of this tree
equals the maximum amount of tilts.

1) Tilt Axis: For the contact point computation we use
the PQP library [20]. It determines the two triangle patches
in contact. We choose one contact point on the intersection
between the two patches of a pair. Depending on the size
of the patches, the contact points can be located very close
to each other. Therefore, we cluster contact points based on
their Euclidean distance. Each cluster represents from now on
a contact point. Based on the contact situation, we compute
in the following the axis for the next rotation. The clustering
may affect a small penetration between object and placement
area. Its amount is bounded by the maximum diameter of a
collision point cluster.

If only one contact point between object and placement
area exists, we distinguish between three situations. If the
main principal axis of the object kMO

1 is not parallel to the
gravity direction dg, we take kMO

1 ⇥dg as axis. Otherwise, we
take the vector connecting the contact point and the center of
mass of the object instead of the main principal axis of the
object. If this solution is not suitable because the computed
vector is also parallel to dg, we chose an axis randomly. The
reason for this rotation axis computation is that we try to tilt
the object into its natural direction of dip, which is indicated
by its main principal axis or its center of mass.

In case of two or more contact points we distinguish
between two situations. If all contact points are located on a
common line, we take this line as rotation axis. Otherwise,
there is no further need for a rotation axis because the contact
points are independent from each other. We then move on
to the stability analysis and local optimisation (Step 4 of the
algorithm overview).

2) Tilt Angle: For the computation of the tilt angle
we merely need to consider vertex/surface contacts and
edge/edge contacts, since we have convex surface patches.

Further on, we select the relevant surface patches using an
octree in order to attain a more efficient computation. These
patches serve us to compute the rotation angle based on the
following calculations.

a) Vertex/Polygon Rotational Contact: Given are a ver-
tex v 2 MO, a surface patch S 2 MP, and a rotation axis
A := sA + �AdA. The point sA is a collision point and dA
is the axis computed in Section V-B.1. Now we seek the
rotation angle around A and between v and S .

366

D(v,A)

sA

dA
↵

v

p1

S

Fig. 3: Illustration of the angle computation between a vertex v and a surface patch S
around A := sA + �AdA including the auxiliary circle D(v,A), the intersection
point p1 = S \ D(v,A) and the computed rotation angle ↵.

Therefore, we introduce the plane P (S) defined by the
surface patch S . Further on, we define the auxiliary circle
D(v,A) by the vertex v and axis A (Fig. 3):

D(v,A) :=
n

p 2
�

t 2 R

3|(t� pA) · dA = 0

|

9pA 2 A : min d(pA, v),

d(p,A) = d(pA, v)
o

We intersect the plane and the circle: {p1, p2} = P (S) \
D(v,A). Subsequently we examine both intersection points
p1 and p2 to check whether they are located inside of the
surface patch S . Finally, we compute the angles between the
intersection points inside the surface patch and the vertex v
according to the rotation axis A. In case that there are two
intersection points we choose the smaller angle.

b) Edge/Edge Rotational Contact: Given are two given
skew line segments L1 := sL1+�1(eL1�sL1) 2 MO , L2 :=

sL2 + �2(eL2 � sL2) 2 MP and an axis A := sA + �AdA,
with start points sLi 2 R

3, end points eLi 2 R

3, direction
dA 2 R

3 and �i 2 [0; 1]. The angle ↵ rotates L1 around
the axis A. The task is to compute ↵ so that it brings L1 in
contact with L2.

The computation of this rotation includes basically three
steps: (1) First, we test if the claimed rotation angle does
exist. Second, we compute the angle with the use of a surface
of revolution constructed by the rotation of L1 around the
axis A. (2) For this task we transform the line segments and
the axis to a more suitable coordinate system, which allows
us to calculate the coefficients of the surface of revolution
in an easier way. (3) At last, we compute these coefficients,
and by the help of the intersection between the other line
segment L2 and the constructed surface we compute the
requested rotation angle. Fig. 4 illustrates the whole process
graphically. Here are the steps once more in detail:

(1) Pretest: Check if the distance of both end points of L1

and L2 alternates according to their distance to the rotation
axis: Without loss of generality, let L1 be closer to A than

L2. If the condition

min

p2{sL2 ,eL2}
d (p,A) > max

p2{sL1 ,eL1}
d (p,A)

holds, there will be no collision for the described rotation.
Further on, the projected endpoints of L1 and L2 on A have
to alternate along A such that there is no separating plane
(x� t) · dA = 0 with t 2 A as an arbitrary point that
separates both line segments.

(2) Transformation: For a more simple construction we
transform L1 and L2 with the result that A is identical to
the z-axis dz . Furthermore, if there exists a single distinct
point t0 := argmint2A{d(t, L1)} on the rotation axis A that
has the smallest distance to the rotating line, we use t0 to
define an affine transformation that transforms t0 into the
origin and aligns the direction dA with the z-axis dz . If the
point t0 is not distinct, i.e. L1||A, we can take any point on
A for t0 without limitation.

Henceforth let ˆL1 and ˆL2 be the transformed line seg-
ments.

(3) Geometric construction: We want to compute a surface
of revolution H describing the rotating segment which will
later be intersected with the second line segment. We use the
line segment ˆL1 as the generatrix of the surface.

If sL̂1
and eL̂1

are in a plane coplanar to the x-y-plane the
resulting primitive is an annulus and can therefore be written
as:

H : (x� sL̂1
) · dz = 0

Otherwise, the surface of revolution can either be a cylin-
der, cone or hyperboloid of one sheet. Those surfaces are

H
sA

dA

↵

ˆL1

p̂2
p̂1

ˆL2
pL̂1

Fig. 4: The steps for the tilt angle computation between two skew line segments are:
Construct a surface of revolution H using the line segment L̂1 as generatix and
A := sA + �AdA as axis. Compute the intersection points {p̂1, p̂2} = H \ L̂2.
Compute the intersection point pL̂1

of the line segment L̂1 with the plane defined by
p1 and dA used as normal. And compute the tilt angle ↵.

367

represented by a generalized quadric of the form:

H :

x2
+ y2

a2
� k · z

2

b2
= c.

Hence, with the points p1 := argminp2L̂1
{d(p, dz)} and

p2 2 ˆL1, p2 6= p1 and d(p2, dz) 6= 0 the quadric can be
parametrized as shown in Table I.

TABLE I: Parametrization of different surfaces of revolution using the general quadric
using p1 := argminp2L̂1

{d(p, dz)} and p2 2 L̂1, p2 6= p1.

x2+y2

a2 � k · z2

b2 = c k c a2 b2

cylinder 0 1 d(p2, dz)
2 -

cone 1 0 d(p2, dz)
2 p22,z

hyperboloid 1 1 d(p1, dz)
2

p22,z
d(p2, dz)

2

d(p1, dz)2
� 1

(4) Angle computation: Since the surface of revolution is
now well defined, we are able to compute the intersection
points {p̂1, p̂2} = H \ ˆL2 by inserting the line segment ˆL2

into H . We expect ˆL2 not to lie on H . Henceforth, we outline
the computation steps using p̂1. For each intersection point
p̂1 and p̂2 we define the plane P : (x� p̂1) ·dz . The resulting
rotation angle between the two line segments is now defined
by ^dz (p̂1, P \ ˆL1) (angle ↵ in Fig. 4).

Note that in case of two intersection points, the smallest
rotation angle represents the correct one. In addition, there
is no need for an inverse transformation of the constructed
surface of revolution H back into the original space because
we only applied an affine transformation, which does not
affect the value of the rotation angle.

VI. CONFIGURATION SELECTION

The previous steps computed a configuration for the
object, were a contact situation with a minimum of three
contact points is ensured. Now we apply different quality
measurements, and in some cases we adjust the computed
configuration (Step 4 of the algorithm overview).

The mandatory condition is that the configuration remains
in static equilibrium. Therefore, we introduce in the follow-
ing a quality metric and a local optimisation step based on
the planar case.

If all contact points are located on a common plane P ,
we can compute the stability based on the planar case. We
compute the 2D convex hull ⌦ of the contact points located
on P . Then we project the center of mass ĉO of the object
along the gravity direction dg onto P and check if it is inside
⌦. Additionally, if the angle between the normal of P and dg
is smaller than the angle defined by the friction coefficient µ,
then the object configuration remains in static equilibrium.

In case the plane defined by the collision points is not
perpendicular to the gravitation and does not meet the friction
condition, we compute the failure direction df parallel to P .
Let ĉ⌦ be the center of ⌦: df = ĉO� ĉ⌦. The new translation
direction dvis is df.

Using the new dvis, we reconduct the translation of Sec-
tion V-A as well as the contact computation of Section V.

In case the friction condition is not met and the plane
defined by the collision points is not perpendicular to the
gravitation, we just tilt the object again into the failure
direction with the rotation axis defined by dA = df ⇥ dg
and sA as the farthest contact point of ⌦ with respect to dA
in the direction of df.

Our local optimisation steps generate contact points in
such a way that they stabilise the object with respect to its
old failure direction. Those optimised contact situations can
usually no longer be handled with the planar case. Whether
those configurations are in static equilibrium, is currently
checked using the Newton-Euler equations also used by
physic simulation frameworks [21].

For stable configurations regarding the planar case, our
quality metric is:

Q = 1� d(ĉO, ĉ⌦)

ˆl⌦
� d(cO,⌦)

A(⌦)

with ˆl⌦ as distance between ĉ⌦ and the boundary of ⌦ along
the failure direction and the area of the convex hull A(⌦).
The best quality value is one. This is the case, if and only if
the two quotients are zero. The smaller a quality value, the
worse is the computed object configuration.

The first quotient is a measure for the tilt turn. The
closer the projected center of mass ĉO is to the boundary
of the convex hull ⌦ the greater is the distance d(ĉO, ĉ⌦).
A configuration is more stable if the distance d(ĉO, ĉ⌦)
decreases and the distance ˆl⌦ increases. The second quotient
is the ratio between footprint size and height of the object.
The smaller this ratio, the larger is the footprint area at a
constant height, or the smaller is the hight of the object at
a constant footprint area. Both possibilities imply that the
object configuration is more stable at a smaller quotient-value
d(cO,⌦)
A(⌦) .

VII. EXPERIMENTS

For the experimental evaluation we chose dvis = dg as
negative z-axis. All computations where performed on an
Intel i7 CPU. First, we describe our object modelling pipeline
(Section VII-A). Afterwards, we present planning results
of various object and placement areas and discuss them
(Section VII-B). At last we evaluate the computation time,
and compare our approach to a physics simulation framework
(Section VII-C).

A. Object Model
We now outline our object modelling pipeline used for the

experiments. As sensor we use a hand held depth camera.
The relative registration between two camera images is
carried through using the iterative closest point algorithm.
Since we know the initial position of the camera we are
able to register the reconstructed object model to a robot’s
coordinate system.

Each point cloud of a depth image is integrated into a
regular grid using a signed distance function. We convert this

368

(a) Q = 0.4545 C = 6 (b) Q = 0.4609 C = 10 (c) Q = 0.4120 C = 4

(d) Q = 0.3363 C = 7 (e) Q = 0.4319 C = 5 (f) Q = 0.3203 C = 6

Fig. 5: Selected experimental results for four different placement areas (blue) and seven objects (green). The value Q is the quality rating and C is the number of computed
contact points (red).

grid-based model into a triangulated surface model using the
marching cube algorithm. As a last step of our pipeline, we
simplify these surface models to a certain amount of triangles
(usually 1000).

Placement area and object are modelled independently
from each other.

B. Results and Evaluation

Fig. 5 shows results of our placement planning for various
objects and placement areas. All configurations are computed
with respect to the same floor point. For the placement area
in Fig. 5(c), the floor point is located almost at the center of
the bottom. For those in Fig. 5(a) and 5(d), the floor point
is located almost at the center of the slope (see Fig. 2(a)).

The planner computes generally stable configurations even
if the chosen floor point is located in a region where the
initial configuration computation had not calculate a stable
configuration. Together with the local optimisation, a stable
configurations is then reached. For planar and horizontal
placement areas, the initial configuration computation al-
ready results in stable configurations (Fig. 5(a) and Fig. 5(b)).

To get an idea of the quality value of a configuration,
we compare the configurations of Fig. 5(a) (Q = 0.4545)
and Fig. 5(f) (Q = 0.3203). Both configuration have a
comparable quotient between their area of the contact point
convex hull and the distance of the object’s center of mass
to this hull. However, the object in Fig. 5(f) is much more
tilted than the other one, which causes differences at the
quality measures. Our experiments have shown that object

configurations with a quality value under 0.3 should be
considered unstable.

If we compare Fig. 5(d) and Fig. 5(e), we can see that the
watering can (Fig. 5(e)) was first translated into the failure
direction and then tilted, whereas the first object (Fig. 5(d))
was first tilted into the failure direction and then translated.
This gives an explanation for the different intermediate
construction order: The latter object generated three or more
independent contact points after the first translation onto the
placement area. Thereby, the configuration is not tilted once
more Instead the local optimisation is applied, which leads
to a translation into the failure direction.

Fig. 6 shows two placement results that are stable but do
not meet the planar criteria (Section VI). Those configura-
tions arise especially if the placement area has a box-like
shape.

Especially Fig. 5(c) underlines that our approach computes
stable configurations for complex placement areas. However,
our planner is currently not able to hang objects onto the
placement area. Furthermore, we can not rate the quality
of non-planar contact point distributions. However, we can
decide whether the configuration is stable.

C. Runtime Analysis

Our approach has two major parameters with high impact
to the computation time: On the one hand the number of
surface patches used for the models of placement area and
object and on the other hand the number of tilt computations
for one floor point.

369

(a) C = 4 (b) C = 4

Fig. 6: Two samples for stable configurations witch do not meet the plane case criteria.
The placement area is colored blue, the object green and the collision points red.

We simplify the model of the placement area to 1000
triangles and vary the amount of triangles of the object model
from 200 to 1000. Additionally, we rotate every object by
ten times with equidistant angles around the second main
axis to make the time measurement independent from the
object orientation. We use the placement area displayed in
Fig. 5(d) and all objects displayed in Fig. 5 and Fig. 6. We
measure the computation time for the placement planning
with one, three and five maximal allowed tilt computations
in a row (respective 2

1, 2

3 and 2

5 maximum single tilt
computations - compare Section V-B). All tilts before and
after a possible improvement step are counted. Fig. 7 plots
the mean measured computation times over the number of
triangles of the object model.

For one and three tilts, the computation time is nearly
linear in the number of surface patches. The amount of
surface patches increases by a factor of five during our
time measurement, but the computation time increases only
by a factor less than two. The variation of the measured
computation time also increases with the amount of allowed
tilts. The first reason for this is that more translations become
possible which is caused by the local optimisation step
(compare Section VI). The second reason is, if a placement
configuration has a complex contact situation or is consid-
ered stable, the algorithm terminates even if the amount
of performed tilts is less than the maximum ones allowed.

Fig. 7: Plot of computation times over number of triangles of the object model for
three amounts of allowed object tilts (one, three, and five).

Both reasons are dependent on the object mesh, since the
mesh simplification algorithm outputs slightly varying shapes
dependent on the requested amount of triangles.

Compared to the computation time for a physics simula-
tion framework [21], our algorithm is slower. The runtime of
this simulation is about 200-700 ms until the object remains
in equilibrium, which is mostly caused by the number of
collision tests. The time needed to compute a new position
and orientation in each time step is negligible. But physics
simulation frameworks have one major drawback. Since the
position and orientation change is affected by applying im-
pulses or forces, it is difficult to encroach the computation as
we do during the local optimisation step in Section VI. And
since the placement will be performed by a robot, a physical
correct placement process is not required, only a stable goal
configuration is necessary. Fig. 8 shows for example the
resulting stable configurations using our approach (Fig. 8(b))
and the rigid body simulation (Fig. 8(c)) with the same
start configuration (Fig. 8(a)). Furthermore, the reconstructed
object models include holes and are especially not watertight.
This fact causes instable contact force results and, as a
consequence, the computations of the rigid body simulation
become unstable. During the experiments the penetration
between object and placement area became sometimes so
large that the object fell through the placement area.

VIII. CONCLUSION

We introduced an educated sample based placement plan-
ner for unknown sensor-modelled objects and placement ar-
eas. It uses only geometrical information in its computations.
Therewith, we introduced a novel placement configuration
calculation that offers the opportunity to influence the con-
figuration computation easily. We use this opportunity for a
local optimisation of unstable configurations, by recalculat-
ing the movement direction or tilt axis of the object. Not only
planar placement areas are considered, but also for complex
areas the planner performed well.

The experiments point out that the planner is able to cope
with small holes in the surface of object models. However, if
some parts of the object model are not reconstructed at all,
the planner will not be able to overcome this issue. However,
compared to a physics simulation framework our approach is
more robust considering rough and noisy surfaces and holes.
Further on, we indicate that different objects could be placed
stable onto complex and planar placement areas. Runtime
measurements show that the computation time only increases
slightly for object models with more surface patches.

Future work includes completing the missing failure direc-
tion computation for an arbitrary contact point distribution.
Additionally we carry out a user study to observe placements
for objects to extract semantical criteria for the planning
process. Moreover, one could target on the conservativeness
of the planner for objects with huge holes or even complete
unmodelled regions of the object. To improve the compu-
tation time of the algorithm, parts of the planner could be
executed by the GPU.

370

(a) Start configuration (b) Our approach (c) Rigid body simulation

Fig. 8: Beginning with a common starting configuration in (a), our placement planner outputs (b) and a rigid body simulation outputs (c).

REFERENCES

[1] H. Fu, D. Cohen-Or, G. Dror, and A. Sheffer, “Upright orientation of
man-made objects,” ACM Transactions on Graphics (TOG), vol. 27,
no. 3, p. 42, 2008.

[2] T. Lozano-Pérez, J. L. Jones, E. Mazer, and P. A. O’Donnell, “Task-
level planning of pick-and-place robot motions,” Computer, vol. 22,
no. 3, pp. 21–29, 1989.

[3] C. Papazov, S. Haddadin, S. Parusel, K. Krieger, and D. Burschka,
“Rigid 3D geometry matching for grasping of known objects in
cluttered scenes,” The International Journal of Robotics Research,
vol. 31, no. 4, pp. 538–553, Mar. 2012.

[4] A. Sahbani, S. El-Khoury, and P. Bidaud, “An overview of 3D
object grasp synthesis algorithms,” Robotics and Autonomous Systems,
vol. 60, no. 3, pp. 326–336, Mar. 2012.

[5] M. a. Roa, M. J. Argus, D. Leidner, C. Borst, and G. Hirzinger,
“Power grasp planning for anthropomorphic robot hands,” in 2012
IEEE International Conference on Robotics and Automation. IEEE,
May 2012, pp. 563–569.

[6] M. J. Schuster, J. Okerman, H. Nguyen, J. M. Rehg, and C. C.
Kemp, “Perceiving clutter and surfaces for object placement in indoor
environments,” 2010 10th IEEE-RAS International Conference on
Humanoid Robots, pp. 152–159, Dec. 2010.

[7] J. Glover, G. Bradski, and R. B. Rusu, “Monte Carlo Pose Estimation
with Quaternion Kernels and the Bingham Distribution,” Robotics:
Science and Systems VII, p. 97, 2012.

[8] S. Martello, D. Pisinger, and D. Vigo, “The three-dimensional bin
packing problem,” Operations Research, vol. 48, no. 2, pp. 256–267,
2000.

[9] F. Parreño, R. Alvarez-Valdes, J. F. Oliveira, and J. M. Tamarit, “A
hybrid GRASP/VND algorithm for two- and three-dimensional bin
packing,” Annals of Operations Research, vol. 179, no. 1, pp. 203–
220, Oct. 2008.

[10] E. E. Bischoff and M. S. W. Ratcliff, “Issues in the development of
approaches to container loading,” Omega, vol. 23, no. 4, pp. 377–390,
1995.

[11] W. Han, J. A. Bennell, X. Zhao, and X. Song, “Construction heuristics
for two-dimensional irregular shape bin packing with guillotine con-
straints,” European Journal of Operational Research, pp. 1–18, Apr.
2013.

[12] A. Pasha, “Geometric Bin Packing Alogrithm for Arbitrary Shapes,”
Ph.D. dissertation, University of Florida, 2003.

[13] A. Edsinger and C. Kemp, “Manipulation in Human Environments,” in
2006 6th IEEE-RAS International Conference on Humanoid Robots.
IEEE, Dec. 2006, pp. 102–109.

[14] T. Lozano-Pérez, J. L. Jones, E. Mazer, and P. A. O’Donnell, “Task-
Level Planning of Pick-and-Place Robot Motions,” Computer, vol. 22,
no. 3, pp. 21—-29, 1989.

[15] a. Cosgun, T. Hermans, V. Emeli, and M. Stilman, “Push planning
for object placement on cluttered table surfaces,” in 2011 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE,
Sep. 2011, pp. 4627–4632.

[16] J. Baumgartl and D. Henrich, “Fast Vision-based Grasp and Deliv-
ery Planning for unknown Objects,” in 7th German Conference on
Robotics (ROBOTIK 2012), 2012.

[17] K. Harada, T. Tsuji, K. Nagata, N. Yamanobe, H. Onda, T. Yoshimi,
and Y. Kawai, “Object placement planner for robotic pick and place
tasks,” in 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, Oct. 2012, pp. 980–985.

[18] Y. Jiang, M. Lim, C. Zheng, and A. Saxena, “Learning to Place New
Objects in a Scene,” IJRR, vol. 31, no. 9, Feb. 2012.

[19] Y. Jiang and A. Saxena, “Hallucinating humans for learning robotic
placement of objects,” in ISER, 2012.

[20] E. Larsen, S. Gottschalk, M. Lin, and D. Manocha, “Fast proximity
queries with swept sphere volumes,” Technical Report TR99-018,
Department of Computer Science, University of North Carolina, Tech.
Rep., 1999.

[21] Bullet Physics Library, “http://bulletphysics.org/,” 2013.

371

