
Preprint submitted to 2012 IEEE Int. Conf. Intelligent Robots and Systems

Abstract— This paper proposes a new concept to augment
direct robot programming with sensor-based branching and
looping. The objective is to derive a new robot programming
paradigm in order to enable non-programmers to use robots for
different tasks. Inspired by the ancient programming style
based on the GOTO-statement, this approach requires the user
to deal with only two basic concepts: Intuitive Control
Expressions and Spatial Labels. This simplicity yields a very
intuitive robot programming interface. We introduce these new
concepts and derive some statements about the power and the
limitations of this approach.

I. INTRODUCTION

ONTEMPORARY robot manipulators are typically
employed in large scale industry, where they are

programmed by dedicated robot experts now and then. To
make reasonable use of robots in circumstances where there
are no programmers available and reprogramming is needed
often, it is necessary to develop really intuitive programming
interfaces that do not require much more than common
sense. From this demand, some design goals for such a
language can be derived:

• The programming paradigm should be 100% direct,
i.e. all programming action is conducted directly on
the robot (e.g. by moving it or by activating sensors
or actuators) and not on any external programming
system. The user should regard the robot as an
intelligent tool.

• There should be no textual programming and no
visual programming involved, that could draw off
the user's attention from his main businesses. By
"visual programming" we understand systems where
the flow of control is defined by graphical elements
that are arranged and/or connected by the user.
Famous examples comprise the visual programming
language NXT-G for Lego Mindstorms and the
LabVIEW programming language.

• There should be as little extra hardware needed as
possible since the process of robot programming
should take place in between other activities. A
carpenter, for example, who wants to use a robot in
his production, might find it weird and tedious to
put on a head-mounted display for programming his
robot.

• The language should be based on very few basic

K. Barth is with University of Bayreuth (e-mail: katharina.barth@ uni-

bayreuth.de).
D. Henrich is with University of Bayreuth (e-mail:

dominik.henrich@uni-bayreuth.de).

principles since every basic concept a user has to
know and remember tends to make the
programming process less intuitive.

Considering the last point, we introduce two basic
principles: Spatial Program Labels (SPLs) and Intuitive
Control Expressions (ICEs). The former are derived from
the GOTO statement, the latter from conditional branching.
The main thesis of this paper is that the idea of programming
with "GOTO" is not just not harmful but even useful in the
context of intuitive robot programming.

A coarse overview of the targeted system is depicted in
Fig. 1. It comprises a sensor-equipped robot, a simulated
robot (in virtual reality) and the demonstration observer (a
software running on a computer). The user moves the robot
(in gravitation compensation mode) while activating sensors
or buttons. This demonstration is recorded and analyzed
online and a corresponding robot program is generated. The
simulation of the robot is an important part of the user
interface — it shows active and activatable components (e.g.
spatial labels), the movement paths that were already
programmed and other useful feedback. It also can visualize
partial program executions before their execution on the real
robot and thereby enhance safeness.

If there is at least one branch for which the corresponding
actions are not yet specified and a SPL is snatched, the
unfinished program is partly executed in order to take the
robot to a part of the program, where the programming
process can be continued.

The paper is organized as follows. Section 2 shows the
most important related work with regard to simplifying robot
programming. In Section 3, we explain our motivation to
base our intuitive approach on the GOTO language. The
resulting concepts are presented in Section 4, followed by a
description of the program generation in Section 5. In
Section 6, the power and limitations of the approach are
examined. Finally, Section 7 summarizes the conclusions.

II. RELATED WORK

Different approaches for the simplification of robot
programming have been examined. Visual programming
languages are applied in the context of robot programming
(e.g. the Microsoft Visual Programming Language [5]),
because they are expected to be superior to textual
programming languages in terms of accessibility for non-
programmers. Though, this programming method contradicts
the first two design objectives from Section 1. A discussion
about the assumed superiority of visual programming
languages over textual languages can be found in [6]. While

A GOTO-based Concept for Intuitive Robot Programming

Katharina Barth and Dominik Henrich

C

Preprint submitted to 2012 IEEE Int. Conf. Intelligent Robots and Systems

text is aligned in a one-dimensional manner, the two-
dimensionality of visual languages is considered to be more
natural. The proposed concept goes one step further: the
programming takes place directly in the three-dimensional
working space of the robot.

Another approach, which is absolutely in line with those
design goals, is called Robot Programming by
Demonstration (RPD). A survey about its different variations
can be found in [2]. With RPD, the user demonstrates a task
several times and the robot generalizes those (different)
demonstrations. In [3], for example, the task of pouring a
glass of water into a bowl is represented by a Gaussian
Mixture Model, and Gaussian Mixture Regression is used to
execute the task. The demonstrations vary in the glass's and
the bowl's start position and with a good set of
demonstrations, the system can generalize to situations with
different start positions that have not been demonstrated
before.

In RPD, Policy Learning is used, i.e. the programming
results in a mapping from observation states to actions [2].
Since the same state always causes the same action, this
approach does not allow encoding the temporal ordering of
the task. Usually, there is no "memory", and approaches to
extend Policy Learning with states are task specific ([2], p.
480).

The foundation of the new robot programming paradigm is
the well known playback method. While the user moves the
robot by direct physical contact, the positions are recorded in
small time steps. When the program is executed, the robot
moves from one stored position to the next [9]. This method
has already been used in early robot applications, especially
for spray painting. Modern robots that are equipped with
force/torque sensors alleviate the formerly physically

demanding procedure. Although this method is easy to
understand, it lacks mechanisms for loops and conditionals.
It is not possible to make use of extern sensors without
applying an additional programming interface, typically
textual programming. In the next section, the basic approach
of extending playback programming will be motivated and in
Section 4 the derived mechanisms will be described.

III. DERIVATION OF A ROBOT PROGRAMMING LANGUAGE

Basically there are two alternatives for designing an
intuitive direct robot programming system: to design it from
scratch or to derive it from an existing robot programming
language. In this paper we choose the second alternative
because the generated program should be easily transferable
to a program that is executable on a real robot.

Typical robot programming languages mainly consist of
movement instructions, control structures, signal processing,
digital and analogue signals and so forth [1]. The most
obvious way to derive an intuitive robot programming
language from a textual robot programming language is to
find an intuitive match for every concept in the original
language. This approach shows some disadvantages: First of
all, this will yield a set of concepts that have to be learned by
users of the system. Since many concepts in the original
language are redundant, this set might result larger than
needed. (Modern programming languages contain many
structures that do not extend the power of the language but
rather make it more convenient and more readable. This is
called syntactic sugar.) Furthermore, programming such a
system would presumably be even more complicated than
textual programming since the only difference would be an
abstraction layer that transforms movements and button

Fig. 1. System Overview: Intuitive robot programming system

Preprint submitted to 2012 IEEE Int. Conf. Intelligent Robots and Systems

presses into a robot program written in the original language.
In this section we present the derivation of an intuitive

robot programming language from the theoretical "GOTO
language". The latter is a simple programming language that
is investigated in computability theory [8]. It was shown to
have the same computability like Turing machines. However,
since this notion of computability refers to functions and
since the computation of functions is very far from the main
focus of robot programming, there is little practical use of
this Turing completeness (This holds particularly true, due to
our approach's poor transfer of the concept of variables, as
will be shown.). However this approach has the advantage
that we can show that all kinds of nested conditional loops
and branches can theoretically be programmed. The
definition of the GOTO language is shown in Definition 1,
which originates from [8].

Definition 1. A GOTO program is a sequence of pairs
consisting of labels Li and statements Si:

L1 : S1;L2 : S2; … ;Lk : Sk;
The following statements are allowed with xi being variables
and c being a constant:
Unconditional branch: GOTO Li

Conditional branch: IF xi = c THEN GOTO Lj

Halt instruction : HALT
Value assignment: xi := xj ± c

In the early times of computer programming, control
structures like loops were implemented with the means of the
GOTO statement. Later it fell into disrepute since using it
imprudently results in code that is difficult to read and
maintain (This insight was made popular by Edsger W.
Dijkstra in his famous letter "Go To Statement Considered
Harmful", see [4].). For this reason it was replaced by more
sophisticated control structures, e.g. different types of loops.
Our rationale to do this seemingly step backwards is the
intuitiveness of the GOTO statement in the programming
process. Its use resembles the linear way people think. To
make this point clearer we have a look at another small
theoretical language – the WHILE language from Definition
2, also coming from [8].

Definition 2. The syntax of the WHILE programming
language is inductively defined as follows (with xi being
variables and c being a constant):
Every value assignment in the form

xi := xj + c or xi := xj - c
is a WHILE-Program. If P1 and P2 are WHILE programs, so is
the sequence

P1; P2.
If P is a WHILE program, so is

WHILE xi := 0 DO P END.

This language resembles much more a modern

programming language than the GOTO language does, and it
has the same computability. Its disadvantage from the
perspective of intuitive robot programming is its recursive

nature. In the context of direct robot programming this would
mean that the programmer either has to be aware of the
different levels of recursion (if he starts the process from the
beginning) or he has to build up the program by combining
smaller programs.

Both variants have weaknesses regarding their
intuitiveness: In the first case, it is important to make explicit
when the body of a control structure ends. Experience from
our own work on spatial counter-controlled loops suggests
that forgetting to set a boundary while demonstrating is a
frequently occurring mistake [10]. Whereas in textual
programming this does not cause trouble, since inserting a
bracket or a key word is done easily afterwards, the issue is
completely different in direct robot programming.

In the second case, composing a program from smaller
programs means that the order of programming differs
significantly from the natural order of the task. This yields
not only a lack of intuitiveness, but also a very practical
problem: programming a task e.g. where an object is
machined might require the object to be in a certain
processing condition for a subroutine of the program. The
object could be processed manually before starting to
program but the result might differ from the result of the part
of the program that still has to be programmed.

IV. INTUITIVE MECHANISMS FOR CONTROL OF THE

PROGRAM FLOW

In this section, we assign an intuitive mechanism to each
of the four statement types from Definition 1. Actually, an
unconditional branch is not necessary for the GOTO
language to be Turing-complete; the other three statements
would be sufficient. We decided to include unconditional
branching since the concept of variables is not transferred
very well to the intuitive paradigm and we consider the
"simulation" of an unconditional branch by a variable with
value 'true' in a conditional branch not as intuitive. In our
approach, from the view of the user the concept of GOTO is
strictly separated from the concept of conditional branching.

A. Spatial Program Labels

In a textual program, labels mark those lines to which the
program execution can jump. There are two variants of
labels: ascending numbers in every line or the explicit
definition of labels wherever necessary. We restrict ourselves
to the former variant since explicit labels would require the
user to prospectively identify positions that will be jumped to
in the subsequent demonstration. Such a mechanism would
be error-prone and annoying. The first time the user thinks
about a Spatial Program Label (SPL) should be the moment,
when he actually wants to do the "jump". Thereby locality is
fostered, a desired characteristic of novice programming
systems meaning that related program components are kept
together [6], but here it is locality in matters of time.

While the user moves the robot, the positions are recorded
and corresponding SPLs are created. At the same time, the

Preprint submitted to 2012 IEEE Int. Conf. Intelligent Robots and Systems

current robot position (in Cartesian space) is compared to all
previous SPLs. If the current position is very close to a SPL
and some other predefined consistency conditions are
satisfied, e.g. the gripper having the same opening or the
robot's tool having the same velocity, the SPL is highlighted
in the simulation and can be activated by pressing a button.
In most cases this will result in the robot executing parts of
the program until it encounters an ICE.

The predefined consistency conditions narrow down the
activatable SPLs so that the user is not confronted with too
many possibilities. Another important effect of the
consistency conditions is that ambiguities are resolved by
them. Without them, inconsistent situations may occur, for
example, if the gripper is open at the moment of the SPL's
definition and closed at the moment, the SPL is activated,
this might mean that the gripper is opened in an extremely
fast movement or the opening of the gripper extends to parts
of the program around the jump. By the premise of the same
velocity sudden changes in the velocity of the resulting
program are avoided. Consistency conditions force the user
to specify how the last state of the robot previous to the jump
can be transformed to the state at the moment, the label was
created.

B. Intuitive Control Expressions

As we have seen in the previous section, Spatial Program
Labels augment playback programming by looping. Intuitive
Control Expressions (ICEs) add conditional branching. They
are needed, if the program execution depends on
environmental conditions that have to be determined by the
use of sensors. As a simple example, we consider in the
following the case of sensing the colour in the middle of a
camera picture. The basic principle should be transferable to
other types of sensors and to other image recognition
methods.

For ICEs we allow more than two cases. In the GOTO
language this effect can be achieved by nesting conditional
branches into each other.

Basically, the user needs to specify the position in the
program where the picture should be taken, the different
cases of the control expression, and how the execution
should be continued for each case. The user can specify the
position by pressing the camera's button at the corresponding
position (regarding time and place) in the demonstration.
The picture is stored (and given a variable name for
referencing it at execution time) and the subsequent actions
are considered to form the actions for the first case. Later,
further cases are specified in a similar way: the picture
pertaining to the next case is taken and then the actions are
demonstrated with the robot. In contrast to the first time a
picture is taken, for all other pictures the robot moves to the
corresponding position automatically after a SPL was
activated. The user must notify the system of the last time the
ICE will be demonstrated. All ICEs where at least one case
has not yet been defined are considered unfinished.

When the program is executed and reaches the position of
the ICE, a picture will be taken and compared to all pictures
of the ICE. The continuation of the program is that one,
whose picture is closest to the currently taken picture,
provided that the distance does not exceed a predefined
value.

C. Program exit

Not all kinds of robot programs are supposed to run in an
infinite loop. In some cases it is desired to stop the robot if
the task has been accomplished or if certain conditions hold.
For this purpose there is a special built-in SPL. Its position is
the start position (with the gripper closed).

To program the execution stop, the robot is moved to the
start position and the special SPL is activated. When there
are unfinished ICEs left (see Subsection B), the robot will
start the execution again and move to the position of the next
unfinished ICE.

D. Variables and value assignments

The last statement type from Definition 1 we need to
transfer is also the most difficult: value assignment to a
variable. A program's variables can be distinguished into two
groups: implicit and explicit variables. Here, we consider
those variables that are not directly changeable by the user as
implicit variables. Implicit variables require dedicated
mechanisms for their definition in the intuitive programming
paradigm. We do not want to deal with implicit variables in
this paper, but an approach for counting loops was examined
in [10]. As explicit variables, on the other hand, we consider
states of the environment that are sensed within the ICEs. We
also want to avoid most explicit variables and value
assignments in our concept. The only occasion where the
user has contact with a kind of variable is when he uses
ICEs. By defining a new ICE, a piece of code for a new
variable is generated.

Theoretically, variables could be simulated in the real
environment by placing or manipulating objects and using
ICEs to determine their states (e.g. by incrementing a
manual, mechanical counter and observing its display for a
certain number). Of course, this method is only practicable
for very small examples. We do not consider the lack of a
good transfer of variables to the intuitive programming
paradigm as a severe restriction since in the context of robot
programming the explicit computation has much less
importance than in standard programming.

V. PROGRAM GENERATION

This section details how the system works. A coarse
overview was already given in Figure 1. The finite-state
automaton in Figure 2 shows how the different inputs of the
demonstration (called "Tokens" in Figure 1) change the
internal state of the system and how the program code is
generated.

Generally, when the robot is neither being programmed

Preprint submitted to 2012 IEEE Int. Conf. Intelligent Robots and Systems

nor executing a program, it is in its parking position (cf.
Subsection 4.3). First of all, the user switches the robot in
programming mode. Hereon the program body is created (if
necessary) and variables for the program generation are
initialized (a, cf. Figure 2). Now the user can grab the robot
and move it (b and c). While doing so, the system generates
code lines that consist of a label and a movement command.
In addition, the current position of the robot is recorded, so
that it can be approached when the program is executed, and
a new SPL is introduced. When the user changes the tool
value, e.g. the gripper's opening, this action is recorded in the
program (d). A new ICE can be defined at the current
position by pressing the camera's (or another sensor's) button
(e). A picture is stored that will serve as reference sample in
the execution and the program is supplemented with code for
taking and comparing a picture (or other sensor data). Also,
the ICE is put into the list of unfinished ICEs.

When a SPL is activated, it depends on the list of
unfinished ICEs, how the robot will react. If it is empty (f),
the user is asked to move the robot to the parking position to
finish programming. Although this motion will be recorded
like all the other motions, this part of the program will never
be executed. It can be regarded as dead code. If the list is not

empty (g), the generated code is the same, but the program is
executed onwards from the snatched label until it encounters
an unfinished ICE. In contrast, if this is not the ICE where
the user wants to continue programming, he can prod the
robot to make him move on to another unfinished ICE (h).
(Please note, that the order of the ICEs is not specified here.)
When the desired ICE is reached, the next branch can be
inserted by activating the camera (i). At this point the user
has to decide whether this is the last picture (and case) of this
ICE and if so, the ICE will be transferred from the list of
unfinished ICEs to the list of finished ICEs. This transition's
code generation deviates a bit from the code generation of all
other transitions since the code is not attached to the end of
the program but it is inserted after the position where the
code was inserted when the ICE was newly defined (i.e. with
transition e). After the picture is taken, the demonstration is
continued. At this point, it is essential that the function
equals() always returns true for at most one stored sensor
value of the ICE. Otherwise, the programming order of the
different cases would influence the execution of the program.

When the robot is moved to the parking position (k) a
special SPL becomes available. When this SPL is activated
and there are still unfinished ICEs left, a HALT-command is

Fig. 2 FSA for the generation of the program (Intuitive Language); the most important datastructures are listet on the
left side.

Preprint submitted to 2012 IEEE Int. Conf. Intelligent Robots and Systems

generated. Then the robot executes the program, beginning at
the first line until it reaches one of the unfinished ICEs (l).
However, if the list of unfinished ICEs is empty, the
programming procedure is finished (m).

VI. POWER AND LIMITATIONS OF THE INTUITIVE APPROACH

In this section we compare our approach to intuitive robot
programming with a fictitious textual robot programming
language based on the GOTO language from Definition 1. A
direct comparison with the GOTO language would neglect
characteristics that are specific for robot programming, in
particular movement. Definition 3 shows the modified
version. The main difference lies in the specialization of the
variables' types and the addition of movement commands. It
purposely resembles the output of the finite state automaton
in Figure 2 to simplify the comparison. The most obvious
difference between general textual (robot) programming
languages and the intuitive approach arises from the
relinquishment of explicit variables: no explicit computation
can be performed.

Definition 3. A GOTO robot program is a sequence of pairs
consisting of labels Li and statements Si:

L1 : S1;L2 : S2; … ;Lk : Sk;
The following statements are allowed with xi being variables
for sensor measurements (i.e. they are initialized and evalu-
ated when the program is executed), ci being constant
sensor measurement values (i.e. they are determined when
the robot is programmed), si denoting the attached sensors,
pi being constants for robot movements (e.g. joint angles)

and oi being constants for the tool states (e.g. the gripper’s
opening):

Unconditional branch: GOTO Li

Conditional branch: IF xi.equals(cj)
THEN GOTO Lk

Halt instruction: HALT
Sensor value assignment: xi :=use_sensor(si)
Movement assignment: actuate_robot(pi)
 | actuate_tool(oi)

We also demand the last statement of the program to be

either the HALT command or an unconditional branch.
The language that is defined through the FSA from Fig. 2

(henceforth called Intuitive Language) is obviously a subset
of the GOTO robot programming language from Definition 3
(henceforth called Textual Language): every output of the
FSA has a counterpart in Definition 3. On the other hand,
there are programs that can be generated by the grammar in
Definition 3, but not by the FSA. For the remainder of this
section we investigate, which programs cannot be generated,
and whether this is a disadvantage (since it restricts the
power of the approach) or an advantage (since it restricts the
generable programs to reasonable programs).

A. Evaluation of ICEs

The Textual Language permits the formulation of a
program where the evaluation of an ICE does not follow
directly after the corresponding use of the sensor:

...
//use sensor(s23)
L100: x42 := use_sensor(s23)
//do other things
L110: x43 := use_sensor(s13)
L120: actuate_robot(p120)
//evaluate sensor variable
L130: IF x42.equals(c10) THEN GOTO L220
L140: IF x42.equals(c11) THEN GOTO L320
...
L220: HALT
...
L320: actuate_tool(o22)
L330: HALT

In contrast, the Intuitive Language only allows the
evaluation of an ICE directly after the sensor is activated.
This does not imply a restriction to the power of the
language, but it is necessary to duplicate the part of the code
between the use of the sensor and the evaluation. In the
intuitive paradigm this means duplication of demonstrations.
The upper code can be transformed to the following,
executionally equivalent code:
...
L100: x42 := use_sensor(s23)
L110: IF x42.equals(c10) THEN GOTO L220
L120: IF x42.equals(c11) THEN GOTO L320
...
L220: x43 := use_sensor(s13)
L230: actuate_robot(p120)
L240: HALT
...
L320: x43 := use_sensor(s13)
L330: actuate_robot(p120)
L340: actuate_tool(o22)
L350: HALT

B. Forward and Backward Jumps

In contrast to the Textual Language, only backward jumps
can be programmed explicitly in the Intuitive Language (f
and g in Fig. 2), since the Spatial Label has to be defined
before it can be activated. Forward jumps are defined
implicitly with every ICE (e and i). Thus, all unconditional
branching produces backward jumps and all conditional
branching produces forward jumps, whereas the Textual
Language allows both kinds of jumps for both kinds of
branches. This does not imply a limitation of the new
approach's power: backward jumps can be added to
conditional branching by simply adding an unconditional
branch (and thereby a backward jump) at the very end of the
program (via transitions e/i and f/g). When we express the
desired behaviour with a backward jump as a textual
program, this would look like the following:
...
L100: ...
...
L150: IF x42.equals(c23) THEN GOTO L100

We can simulate this program with only conditional
forward jumps and unconditional backward jumps:

Preprint submitted to 2012 IEEE Int. Conf. Intelligent Robots and Systems

…
L100: ...
...
L150: IF x42.equals(c23) THEN GOTO L999
...
L999: GOTO L100

Since we demand a valid program to end with HALT or an
unconditional branch, the extensions at the program's end do
not change the program's behaviour. For the other way
round, a dummy ICE could be used, that always evaluates to
the same value, but this probably would contradict
intuitiveness. For this reason, we show with a constructive
proof, that every unconditional forward jump can be avoided
by a very natural permutation of the code fragments. The
following remarks are not important for the implementation
or the understanding of the approach, but they show that
there is no limitation of the language's power because of the
limitations that were discussed at the subsection's beginning.

At first, we divide the code into jumpless sections that are
rearranged in the following step. Considering the sequence
of pairs of labels Li and statements Si from Definition 3,

L1 : S1;L2 : S2; … ;Lk : Sk;
we identify those indices where the cuts have to be made:

Every GOTO statement (regardlessly of its conditionality)
is the last statement of a section and every label that is
referred to by a GOTO statement is the first label of a
section. This step can be expressed in pseudo code:

INPUT: list L of label-statement pairs representing the
general program
OUTPUT: list T of lists of label-statement pairs representing
the jumpless sections
// break L into jumpless sections
FOR i = 1 TO k:

IF (L_i is referred by any GOTO statement) {
T.add(list of pairs in L before (L_i,S_i))
L.remove(list of pairs in L before (L_i,S_i))

}
IF (S_i is a GOTO statement) {

T.add(list of pairs in L up to (L_i,S_i))
L.remove(list of pairs in L up to (L_i,S_i))

}
END

Like the original program, the rearranged program starts

with L1 : S1 and the related section. The next section to be
taken from the temporary list T and added to the output
program N is determined as follows:

INPUT: list T of lists of label-statement pairs representing
the jumpless sections
OUTPUT: list N of label-statement pairs representing the
transformed program
// rearrange sections
programEnd // collection of last program parts
lastSection := T.pop(0) // start with first section
WHILE (T.notEmpty()) {

N.add(lastSection)
lastStatemnt := lastSection.lastStatement()
IF (lastStatemnt is not a branch) {

oldFollower := lastSection.follower()
IF (T.contains(oldFollower)) {

lastSection := oldFollower
}
ELSE { // old Follower already in N

jmpLbl := oldFollower.firstLabel
N.add((newLabel, GOTO jmpLbl))
lastSection := T.pop(0)

}
}
ELIF (lastStatemnt is a conditional branch) {

oldFollower := lastSection.follower()
jumpSection := lastStatemnt.gotoSection()
// destination already used
IF (N.contains(jumpSection)) {

jmpLbl := jumpSection.firstLabel
tmpLbl := createNewLabel()
lastStatemnt.changeDestination(tmpLbl)
programEnd.add((tmpLbl, GOTO jmpLbl))

}
IF (T.contains(oldFollower)) {

lastSection := oldFollower
}
ELSE { // old Follower already in N

jmpLbl := oldFollower.firstLabel
N.add((newLabel, GOTO jmpLbl))
lastSection := T.pop(0)

}
}
ELSE { // lastStatemnt unconditional branching

jumpSection := lastStatemnt.gotoSection()
IF (N.contains(jumpSection)) {
lastSection := T.pop(0)
}
ELSE {

delete lastLabelStatementPair()
lastSection := jumpSection

}
}

}
N.add(lastSection)
N.add(programEnd)

Basically, there are three possibilities for the last statement
of the last section: it can be a conditional branch, an
unconditional branch, or another statement. For all cases we
now describe how the next section has to be chosen so that
there are only unconditional backward and conditional
forward jumps left and the order in which the statements are
executed does not change.

If the last statement of the current section is not a GOTO
and the following section in the original program (delivered
by the function follower() in 4) has not yet been inserted into

Preprint submitted to 2012 IEEE Int. Conf. Intelligent Robots and Systems

the new program, insert it. Otherwise (if the section is
addressed from more than one GOTOs), attach an
unconditional GOTO to the end of the program that directs
the control flow to the corresponding section. Since the
section is already part of the new program, this results in an
unconditional backward jump. The next section to insert is
the one from the left sections that has the smallest label
number (the first in list T).

The most complicated case is conditional branching. The
reason for this is that there are two possible next sections and
both can still be in T or already in N. We call the section that
is executed, when the condition is fulfilled, the jumpSection.
If this section is still left, there is no need to do anything
about it, but otherwise, the procedure to resolve conditional
backward jumps, that was introduced previously, has to be
used. Regarding the oldFollower, the same actions have to be
taken like when the lastStatemnt is not a branch.

If the last statement of the current section is an
unconditional GOTO and the jumpSection is already
inserted into the new program, this is a backward jump, like
it is required. Otherwise, the GOTO statement is deleted and
the jumpSection is inserted directly behind the current
section, thereby avoiding the GOTO completely.

At the end, the labels have to be changed to make sure,
that they are increasing over the program.

One can see that the lack of conditional backward jumps
and unconditional forward jumps in the intuitive paradigm
does not imply any limitation in principle, since every
GOTO robot program can be transformed to an equivalent
one that obeys these restrictions.

VII. CONCLUSIONS

In this paper, we tried to take the first steps toward the
extension of playback robot programming by sensor-based
branching and looping. The rationale for orienting ourselves
towards the old-fashioned GOTO statement is its purity
resulting in only two basic programming concepts, which the
user has to be aware about: ICEs as the intuitive counterpart
of conditional GOTOs and SPLs for unconditional GOTOs.
We showed how the program can be generated depending on
the programmer's actions. We also showed that the power of
the approach is not limited in comparison with a fictitious
textual robot programming language that was deduced from
the GOTO language. The findings suggest that GOTO is
indeed useful in the context of intuitive robot programming.

There still are some issues that need to be cleared, before
the concept can be implemented. For example, the
mechanism to choose the next unfinished ICE that should be
moved to, is not yet specified. Another interesting question is
whether and how intuitive counting loops (cf. [10]) could be
added to the concept in a natural way.

REFERENCES

[1] A. M. Al-Qasimi, M. Akyurt, and F. Dehlawi, “On robot
programming and languages,” in Proc. 4th Saudi Engineering
Conference, vol. 4, pp. 249-258, Nov. 1995.

[2] B. D. Argall, S. Chernova, M.Veloso, and B. Browning, “A survey of
robot learning from demonstration” in Robotics and Autonomous
Systems, 57:469-483, 2009.

[3] S. Calinon and A. Billard, “A probabilistic programming by
demonstrationframework handling constraints in joint space and task
space,” in 2008 IEEE/RSJ International Conference on Inelligent
Robots and Systems, pp. 367-372. IEEE, 2008.

[4] E. W. Dijkstra, “Go to statement considered harmful,” in
Communications of the ACM, 11(3):147-148, 1968.

[5] Microsoft. Visual programming language.
http://msdn.microsoft.com/en-us/library/bb483088.

[6] J. F. Pane and B. A. Myers. “Usability issues in the design of novice
programming systems,” Technical Report CMU-CS-96-132, School
of Computer Science, Carnegie Mellon University, 1996.

[7] L. Ramshaw. Eliminating go to’s while preserving program structure.
Journal of the Association for Computing Machinery, 35(4):893-920,
1988.

[8] U. Schöning. Theoretische Informatik – kurzgefasst (in german).
Spektrum Akademischer Verlag, Berlin, 1997.

[9] R. D. Schraft and C. Meyer. “The need for an intuitive teahing
method for small and medium enterprises” in IRS 2006 – ROBOTIK
2006: Proceedings of the Joint Conference on Robotics, 2006.

[10] K. Soller and d. Henrich. „Intuitive robot programming of spatial
control loops with linear movements, “ in T. Kröger and F. M. Wahl,
editors, Advances in Robotics Research, pp. 147-158. Springer Berlin
Heidelberg, 2009.

