Preprint submitted to 2012 IEEE Int. Conf. Intedlig Robots and Systems

A GOTO-based Concept for Intuitive Robot Programming

Katharina Barth and Dominik Henrich

Abstract— This paper proposes a new concept to augment

direct robot programming with sensor-based branchig and
looping. The objective is to derive a new robot prgramming

paradigm in order to enable non-programmers to useobots for
different tasks. Inspired by the ancient programmirg style
based on the GOTO-statement, this approach requirethe user
to deal with only two basic concepts: Intuitive Cotrol

Expressions and Spatial Labels. This simplicity yids a very
intuitive robot programming interface. We introduce these new
concepts and derive some statements about the powand the
limitations of this approach.

|l. INTRODUCTION

principles since every basic concept a user has to
know and remember tends to make the
programming process less intuitive.

Considering the last point, we introduce two basic
principles: Spatial Program LabelSKLs) and Intuitive
Control ExpressionsICEs). The former are derived from
the GOTO statement, the latter from conditionalnbhéng.
The main thesis of this paper is that the idearo§mmming
with "GOTQ" is not just not harmful but even usefiulthe
context of intuitive robot programming.

A coarse overview of the targeted system is degiate
Fig. 1. It comprises a sensor-equipped robot, aulsited

ONTEMPORARY  robot manipulators are typically robot (in virtual reality) and the demonstrationsekver (a
employed in large scale industry, where they argoftware running on a computer). The user movesdhet
programmed by dedicated robot experts now and ffien. (in gravitation compensation mode) while activatsensors

make reasonable use of robots in circumstancesewhere
are no programmers available and reprogrammingésied
often, it is necessary to develop really intuitbregramming

or buttons. This demonstration is recorded and yasdl
online and a corresponding robot program is geadrathe
simulation of the robot is an important part of thser

interfaces that do not require much more than comMenterface — it shows active and activatable comptsiée.g.
sense. From this demand, somesign goalsfor such a spatial labels), the movement paths that were dyrea

language can be derived:

programmed and other useful feedback. It also ¢sualize

* The programming paradigm should be 100% direcpartial program executions before their executiorite real
i.e. all programming action is conducted directly 0 robot and thereby enhance safeness.

the robot (e.g. by moving it or by activating sesso

If there is at least one branch for which the cspoanding

or actuators) and not on any external programmingctions are not yet specified and a SPL is snafctie
system. The user should regard the robot as amfinished program is partly executed in order dket the

intelligent tool.

robot to a part of the program, where the programgmi

* There should be no textual programming and nprocess can be continued.
visual programming involved, that could draw off The paper is organized as follows. Section 2 shthes
the user's attention from his main businesses. Byost important related work with regard to simpify robot
"visual programming” we understand systems whefgrogramming. In Section 3, we explain our motivatim
the flow of control is defined by graphical elen®nt base our intuitive approach on the GOTO languade T
that are arranged and/or connected by the useesulting concepts are presented in Section 4vieltl by a
Famous examples comprise the visual programmingescription of the program generation in SectionIr5.
language NXT-G for Lego Mindstorms and theSection 6, the power and limitations of the apphoace

LabVIEW programming language.

examined. Finally, Section 7 summarizes the cormhss

* There should be as little extra hardware needed as
possible since the process of robot programming Il. RELATED WORK

should take place in between other activities. A pifferent approaches for the simplification of robo
carpenter, for example, who wants to use a robot gyogramming have been examined. Visual programming
his production, might flnq it weird and tedlo_us 0languages are applied in the context of robot @nogning

put on a head-mounted display for programming hig, g the Microsoft Visual Programming Language),[5]

robot.

because they are expected to be superior to textual

* The language should be based on very few basitogramming languages in terms of accessibility fion-

K. Barth is with University of Bayreuth (e-mail: tkearina.barth@ uni-
bayreuth.de).

D. Henrich is with  University of Bayreuth (e-mail:

dominik.henrich@uni-bayreuth.de).

programmers. Though, this programming method cditis
the first two design objectives from Section 1. iscdission
about the assumed superiority of visual programming
languages over textual languages can be found].ir\Gile



Preprint submitted to 2012 IEEE Int. Conf. Intedlig Robots and Systems

Spatial Labels, ICEs with information Generated Program:
L1: actuate_robot(pos_1)
Demonstration observer L223: actuate_robot(pos_223)

L224: actuate_tool(t_1,0_1)
L225: actuate_robot(pos_225)

- "TO k ens n L343 actuate_robot(pos_343)

» L344: lastpicture = use_sensor(s_1)
L345a: IF (last_picture.equals(c_3_1))

lﬁ ' R movemen
ﬁ : obot movement GOTO L346
N Gripper movement/ L345b: IF (last_picture.equals(c_3_2))
Too! activati GOTO L377
ool actvation L346; actuate_robot(pos_346)
Snatch of spatial label L410: actuate_robot(pos_410)

L411: actuate_tool(t_1,0_2)
Sensor activation L412: actuate_robot(pos_412)

y

L690: actuate_robot(pos_690)
L691: GOTO L343

Partial program execution
Fig. 1. System Overview: Intuitive robot programming system

text is aligned in a one-dimensional manner, the-twdemanding procedure. Although this method is easy t
dimensionality of visual languages is consideretb¢éomore understand, it lacks mechanisms for loops and tiondis.
natural. The proposed concept goes one step further It is not possible to make use of extern sensotbowt
programming takes place directly in the three-disemal applying an additional programming interface, tgtle
working space of the robot. textual programming. In the next section, the bagiproach
Another approach, which is absolutely in line witlose of extending playback programming will be motivatedl in
design goals, is called Robot Programming bgection 4 the derived mechanisms will be described.
Demonstration (RPD). A survey about its differeatiations
can be found in [2]. With RPD, the user demonssratéask  Ill. DERIVATION OF AROBOT PROGRAMMING LANGUAGE

several times and the robot generalizes thosee(diit) Basically there are two alternatives for designiag

demonstrations. In [3], for example, the task oty a jntyitive direct robot programming system: to desigfrom
glass of water into a bowl is represented by a €a0s gcratch or to derive it from an existing robot preogming
Mixture Model, and Gaussian Mixture Regressionsedito |anguage. In this paper we choose the second afteen
execute the task. The demonstrations vary in thes§l and pecause the generated program should be easibfarable
the bowl's start position and with a good set ofp 5 program that is executable on a real robot.

different start positions that have not been dematesl moyement instructions, control structures, sigmakpssing,
before. digital and analogue signals and so forth [1]. Trhest

In RPD, Policy Learning is used, i.e. the programmi opyious way to derive an intuitive robot programgnin
results in a mapping from observation states tmast[2]. language from a textual robot programming languisg®
Since the same state always causes the same aittion, fing an intuitive match for every concept in theigoral
approach does not allow encoding the temporal orgesf  |3nguage. This approach shows some disadvantagssof
the task. Usually, there is no "memory”, and appnea to g this will yield a set of concepts that haveblearned by
extend Policy Learning with states are task spe€[R], p. ysers of the system. Since many concepts in thginati
480). language are redundant, this set might result tatban

The foundation of the new robot programming pamadi§y needed. (Modern programming languages contain many
the well known playback method. While the user nsot®  giryctures that do not extend the power of theuagg but
robot by direct physical contact, the positionsraeorded in  gther make it more convenient and more readalies i€
small time steps. When the program is executedrdhet cgjled syntactic sugar.) Furthermore, programmioghsa
moves from one stored position to the next [9].sTiniethod system would presumably be even more complicated th
has already been used in early robot applicatiesgecially  iexiyal programming since the only difference wobisl an

for spray painting. Modern robots that are equippéth  gpstraction layer that transforms movements andoiut
force/torque sensors alleviate the formerly physica



Preprint submitted to 2012 IEEE Int. Conf. Intedlig Robots and Systems

presses into a robot program written in the origliaaguage.
In this section we present the derivation of amitive
robot programming language from the theoretical T&O
language". The latter is a simple programming lagguthat
is investigated in computability theory [8]. It wahown to
have the same computability like Turing machineswever,
since this notion of computability refers to fumets and
since the computation of functions is very far frdm main
focus of robot programming, there is little praaticise of
this Turing completeness (This holds particulanet due to
our approach's poor transfer of the concept ofatées, as
will be shown.). However this approach has the athge
that we can show that all kinds of nested conditidaops

nature. In the context of direct robot programntimg would
mean that the programmer either has to be awartheof
different levels of recursion (if he starts the ggss from the
beginning) or he has to build up the program by lgioing
smaller programs.

Both variants have weaknesses regarding their
intuitiveness: In the first case, it is importamtnake explicit
when the body of a control structure ends. Expedeinom
our own work on spatial counter-controlled loopggests
that forgetting to set a boundary while demonsitatis a
frequently occurring mistake [10]. Whereas in tektu
programming this does not cause trouble, sincertingea
bracket or a key word is done easily afterwards,itlsue is

and branches can theoretically be programmed. Tleempletely different in direct robot programming.

definition of the GOTO language is shown in Defaonit 1,
which originates from [8].

Definition 1. A GOTO program is a sequence of pairs
consisting of labels Liand statements Si:

Li:S1;L2: S2; ... ;Lk: Sk;
The following statements are allowed with xi being variables
and c being a constant:

Unconditional branch: GOTO Li

Conditional branch: IF xi=c THEN GOTO L;
Halt instruction : HALT

Value assignment Xi:=X +C

In the early times of computer programming, control

structures like loops were implemented with the mseaf the
GOTO statement. Later it fell into disrepute singgng it
imprudently results in code that is difficult toark and

In the second case, composing a program from smalle
programs means that the order of programming differ
significantly from the natural order of the taskig yields
not only a lack of intuitiveness, but also a vemagical
problem: programming a task e.g. where an object is
machined might require the object to be in a certai
processing condition for a subroutine of the progrdhe
object could be processed manually before startimg
program but the result might differ from the resflthe part
of the program that still has to be programmed.

IV. INTUITIVE MECHANISMS FORCONTROL OF THE
PROGRAM FLOW

In this section, we assign an intuitive mechanisnedch
of the four statement types from Definition 1. Aaity, an
unconditional branch is not necessary for the GOTO

maintain (This insight was made popular by Edsger Wanguage to be Turing-complete; the other thretestants

Dijkstra in his famous letter "Go To Statement Gdesed
Harmful", see [4].). For this reason it was repthty more
sophisticated control structures, e.g. differepetyof loops.
Our rationale to do this seemingly step backwasdshe
intuitiveness of the GOTO statement in the programgm
process. Its use resembles the linear way peopik. tiio
make this point clearer we have a look at anotimealls
theoretical language — the WHILE language from Digéin
2, also coming from [8].

Definition 2. The syntax of the WHILE programming
language is inductively defined as follows (with xi being
variables and c being a constant):
Every value assignment in the form

Xi = Xj+ C Or Xi:= Xj- C
is a WHILE-Program. If P1and P2 are WHILE programs, so is
the sequence

P1; P2.

If P is a WHILE program, so is

WHILE xi:= 0 DO P END.

This language resembles

would be sufficient. We decided to include uncoiodial
branching since the concept of variables is natstierred
very well to the intuitive paradigm and we considbae
"simulation" of an unconditional branch by a vat@akwith
value 'true’ in a conditional branch not as intaitiln our
approach, from the view of the user the conce@OfT O is
strictly separated from the concept of conditidmanching.

A. Spatial Program Labels

In a textual program, labels mark those lines ticiwithe
program execution can jump. There are two variafts
labels: ascending numbers in every line or the iexpl
definition of labels wherever necessary. We reistrizselves
to the former variant since explicit labels woustjuire the
user to prospectively identify positions that vaé jumped to
in the subsequent demonstration. Such a mechanisudw
be error-prone and annoying. The first time ther ulkimks
about a Spatial Program Label (SPL) should be tbenemt,
when he actually wants to do the "jump". Thereloality is
fostered, a desired characteristic of novice pnognang

much more a modelystems meaning that related program component&este

programming language than the GOTO language doesfa together [6], but here it is locality in matterstiofie.

has the same computability. Its disadvantage frdm t

perspective of intuitive robot programming is iecursive

While the user moves the robot, the positions acended
and corresponding SPLs are created. At the sane thme



Preprint submitted to 2012 IEEE Int. Conf. Intedlig Robots and Systems

current robot position (in Cartesian space) is camag to all When the program is executed and reaches the qrositi
previous SPLs. If the current position is very eldg a SPL the ICE, a picture will be taken and compared tpiatures
and some other predefined consistency conditiors aof the ICE. The continuation of the program is toat,
satisfied, e.g. the gripper having the same openinghe whose picture is closest to the currently takentups
robot's tool having the same velocity, the SPLighlighted provided that the distance does not exceed a predef

in the simulation and can be activated by presaitogitton.
In most cases this will result in the robot examyitparts of
the program until it encounters an ICE.

The predefined consistency conditions narrow dola t
activatable SPLs so that the user is not confrontigdl too
many possibilities. Another important effect
consistency conditions is that ambiguities are luesb by
them. Without them, inconsistent situations mayuocéor
example, if the gripper is open at the moment ef $PL's
definition and closed at the moment, the SPL i$vated,
this might mean that the gripper is opened in aneeely
fast movement or the opening of the gripper exteadsarts
of the program around the jump. By the premisehefdgame
velocity sudden changes in the velocity of the ltewy
program are avoided. Consistency conditions foheeuser
to specify how the last state of the robot previmuthe jump
can be transformed to the state at the momentatied was
created.

B. Intuitive Control Expressions

As we have seen in the previous section, Spati@j@am
Labels augment playback programming by loopinguitive
Control Expressions (ICEs) add conditional branghifhey
are needed, if the program execution depends
environmental conditions that have to be determimgdhe
use of sensors. As a simple example, we consideghdn
following the case of sensing the colour in the dtedof a
camera picture. The basic principle should be fesiable to
other types of sensors and to other image recogniti
methods.

value.

C. Program exit

Not all kinds of robot programs are supposed toinuan
infinite loop. In some cases it is desired to stop robot if

of thethe task has been accomplished or if certain ciomdithold.

For this purpose there is a special built-in SR& pbsition is
the start position (with the gripper closed).

To program the execution stop, the robot is mowethé
start position and the special SPL is activated elVthere
are unfinished ICEs left (see Subsection B), tHsotowill
start the execution again and move to the posdfdhe next
unfinished ICE.

D. Variables and value assignments

The last statement type from Definition 1 we need
transfer is also the most difficult: value assigniméo a
variable. A program's variables can be distingudsihéo two
groups: implicit and explicit variables. Here, wensider
those variables that are not directly changeablihndyser as
implicit variables. Implicit variables require dedied
mechanisms for their definition in the intuitiveogramming
paradigm. We do not want to deal with implicit \adofies in
{is paper, but an approach for counting loops exasnined
in [10]. As explicit variables, on the other hamg; consider
states of the environment that are sensed witleinGs. We
also want to avoid most explicit variables and wealu
assignments in our concept. The only occasion wiieeze
user has contact with a kind of variable is whenukes
ICEs. By defining a new ICE, a piece of code fonew

For ICEs we allow more than two cases. In the GOT&arable is generated.

language this effect can be achieved by nestinglitonal
branches into each other.

Basically, the user needs to specify the positiorthie
program where the picture should be taken, thecmifft
cases of the control expression, and how the eix&cut
should be continued for each case. The user canifglee
position by pressing the camera's button at theesponding
position (regarding time and place) in the dematisn.
The picture is stored (and given a variable name f
referencing it at execution time) and the subsegaetions
are considered to form the actions for the firgecd ater,
further cases are specified in a similar way: thetupe
pertaining to the next case is taken and then thieres are
demonstrated with the robot. In contrast to thst firme a
picture is taken, for all other pictures the robwives to the

Theoretically, variables could be simulated in tieal
environment by placing or manipulating objects arsihg
ICEs to determine their states (e.g. by incremgntin
manual, mechanical counter and observing its disfila a
certain number). Of course, this method is onlycpcable
for very small examples. We do not consider thé lata
good transfer of variables to the intuitive prognaimg
paradigm as a severe restriction since in the gboferobot

programming the explicit computation has much less

importance than in standard programming.

V. PROGRAM GENERATION

This section details how the system works. A coarse

overview was already given in Figure 1. The firstate
automaton in Figure 2 shows how the different ispftthe

corresponding position automatically after a SPLswademonstration (called "Tokens" in Figure 1) charnbe

activated. The user must notify the system of dsé time the
ICE will be demonstrated. All ICEs where at lease @ase
has not yet been defined are considered unfinished.

internal state of the system and how the prograde ds
generated.
Generally, when the robot is neither being prograchm



Preprint submitted to 2012 IEEE Int. Conf. Intedlig Robots and Systems

Variables and data structures:

Parser:

List unfinished_ICEs
List finished_ICEs
INT label_counter
INT ice_counter

User activates SPL at parking position
and unfinished_ICEs not empty |

L<label_counter++>: HALT;

execute program from <Mi.label_id> up to an ICE

®©

ICE:

Type of ICE
List recordings
Position pos

SPL:

Position pos
P L<label_counter++>:

User activates sensor at position of the ICE A jl
save_value_in_ICE(j)
insert into program code:
L<Aj.label_id+A;.subcounter>:

@ IF(lastvalue.equals(value(j, Aj.subcounter)))

arrived at

User maves robot to parking position |
actuate_robot(pos<label_counter>)
pos<label_counter>:=<current_position>;

ICE Aj

e

THEN GOTO L<label_counter+1>
User activates SPL L; and
unfinished_ICEs is not empty |

L<label_counter++>: GOTO <L,.label_id>
execute program from <L,.label_id> up to an ICE

®

User prods robot /
execute program to the position of another ICE

switch on (programming) |
(create program body)
initialize variables

parking

positiy

User activates SPL at parking position
and unfinished ICEs empty/

L<label_counter++>: HALT;

User moves robot /

L<Iabel_counter++>: actuate_robot(pos<label_counter>)
pos<label_counter>:=<current_position>;
make_new_SPL(<label_counter>);

User moves robot /

L<label_counter++>: actuate_robot(pos<label_counter>)
@ pos<label_counter>:=<current_postion>;

make_new_SPL(<label_counter>)
User changes a tool value (e.g. opens gripper) |
L<label_counter++>: actuate_tool(t; o;)

User activates SPL L; and unfinished_ICEs is empty |

@ L<label_counter++>: GOTO <L,.label_id>

inform user about end of programming;

User activates sensor (e.g. a camera) |

Legend:
Input of the parser |

Output (robot program)

actions on the intern structure of the parser

L<label_counter++>:

L<label_counter++>:

lastvalue := use_sensor(s;)

make_new_ICE(ice_counter++); save_value_in_ICE(ice_counter);
IF(lastvalue.equals(picture(<ice_counter>, A<ice_counter>.subcounter)))
THEN GOTO L<label_counter+1>

Fig. 2 FSA for the generation of the program (Intufive Language); the most important datastructures &e listet on the

left side.

nor executing a program, it is in its parking piosit (cf.

Subsection 4.3). First of all, the user switches thbot in
programming mode. Hereon the program body is cde@te
necessary) and variables for the program generadi@en
initialized (a, cf. Figure 2). Now the user canlgthe robot
and move it (b and c). While doing so, the systemegates
code lines that consist of a label and a movemamintand.
In addition, the current position of the robot écorded, so
that it can be approached when the program is ¢xeécand
a new SPL is introduced. When the user changedotile
value, e.g. the gripper's opening, this actioreeorded in the

empty (g), the generated code is the same, bydrtigram is
executed onwards from the snatched label untihébanters
an unfinished ICE. In contrast, if this is not #@E where
the user wants to continue programming, he can phed
robot to make him move on to another unfinished (GE

(Please note, that the order of the ICEs is natiipd here.)
When the desired ICE is reached, the next branchbea
inserted by activating the camera (i). At this pdime user
has to decide whether this is the last picture @@as) of this
ICE and if so, the ICE will be transferred from thst of

unfinished ICEs to the list of finished ICEs. Thiansition's

program (d). A new ICE can be defined at the currerode generation deviates a bit from the code géoaraf all

position by pressing the camera's (or another sshdmtton
(e). A picture is stored that will serve as refeesample in
the execution and the program is supplementedasitte for
taking and comparing a picture (or other sensoa)d&tiso,
the ICE is put into the list of unfinished ICEs.

When a SPL is activated, it depends on the list
unfinished ICEs, how the robot will react. If it ésnpty (),
the user is asked to move the robot to the pankosition to
finish programming. Although this motion will becaded
like all the other motions, this part of the pragraill never
be executed. It can be regarded as dead code lisths not

other transitions since the code is not attachetti¢cend of
the program but it is inserted after the positionere the
code was inserted when the ICE was newly defined \{ith
transition e). After the picture is taken, the desteation is
continued. At this point, it is essential that thenction
afquals() always returns true for at most one steeasor
value of the ICE. Otherwise, the programming ordithe
different cases would influence the execution efghogram.
When the robot is moved to the parking position &k)
special SPL becomes available. When this SPL isaet
and there are still unfinished ICEs left, a HALTromand is



Preprint submitted to 2012 IEEE Int. Conf. Intedlig Robots and Systems

generated. Then the robot executes the prograrmrbeg at
the first line until it reaches one of the unfireshICEs (l).
However, if the list of unfinished ICEs is emptyhet
programming procedure is finished (m).

VI.

In this section we compare our approach to inteitiobot
programming with a fictitious textual robot prognamng
language based on the GOTO language from Definitiof

POWER AND LIMITATIONS OF THE INTUITIVE APPROACH

/luse sensor(sz3)

L100: x42 := use_sensor(s23)

/ldo other things

L110: x43:= use_sensor(s13)

L120: actuate_robot(pi20)

/levaluate sensor variable

L130: IF x4a2.equals(cio) THEN GOTO L220
L140: IF x42.equals(ci1) THEN GOTO L320

L220: HALT

direct comparison with the GOTO language would eegl -

characteristics that are specific for robot prograng, in

particular movement. Definition 3 shows the modifie

version. The main difference lies in the specigiaraof the
variables' types and the addition of movement conatwalt
purposely resembles the output of the finite statlomaton
in Figure 2 to simplify the comparison. The mosviobs

L320: actuate_tool(022)
L330: HALT

In contrast, the Intuitive Language only allows the
evaluation of an ICE directly after the sensor é¢tivated.
This does not imply a restriction to the power okt
language, but it is necessary to duplicate the gfatie code

difference between general textual (robotf) progr&lgm petween the use of the sensor and the evaluationhe
languages and the intuitive approach arises from thhyitive paradigm this means duplication of dentcat®ons.

relinquishment of explicit variables: no explicttraputation
can be performed.

Definition 3. A GOTO robot program is a sequence of pairs
consisting of labels Liand statements Si:
Li:Si;L2: S2; ... ;Lk: Sk;

The following statements are allowed with xi being variables
for sensor measurements (i.e. they are initialized and evalu-
ated when the program is executed), ci being constant
sensor measurement values (i.e. they are determined when
the robot is programmed), si denoting the attached sensors,
pi being constants for robot movements (e.g. joint angles)
and oi being constants for the tool states (e.g. the gripper’'s
opening):

Unconditional branch:

Conditional branch:

GOTO Li

IF xi.equals(cj)
THEN GOTO Lk
HALT

Xi :=USe_Ssensor(si)
actuate_robot(pi)

| actuate_tool(oi)

Halt instruction:
Sensor value assignment:
Movement assignment:

The upper code can be transformed to the following,
executionally equivalent code:

L100: x42 := use_sensor(s23)

L110: IF x4a2.equals(cio) THEN GOTO L220
L120: IF x42.equals(c11) THEN GOTO L320
L220:
L230:
L240:

X43 1= US€_Sensor(sis)
actuate_robot(pi20)
HALT

L320: x43 := use_sensor(s13)
L330: actuate_robot(pi20)
L340: actuate_tool(022)
L350: HALT

B. Forward and Backward Jumps

In contrast to the Textual Language, only backvyandps
can be programmed explicitly in the Intuitive Laage (f
and g in Fig. 2), since the Spatial Label has tadégned
before it can be activated. Forward jumps are ddfin

We also demand the last statement of the prograbeto implicitly with every ICE (e and i). Thus, all uneditional

either the HALT command or an unconditional branch.
The language that is defined through the FSA froagn E
(henceforth called Intuitive Language) is obvioualgubset
of the GOTO robot programming language from Deifimit3
(henceforth called Textual Language): every outpiuthe
FSA has a counterpart in Definition 3. On the othand,
there are programs that can be generated by tihentaain
Definition 3, but not by the FSA. For the remaindérthis
section we investigate, which programs cannot beigeed,
and whether this is a disadvantage (since it wmstrihe
power of the approach) or an advantage (sincesiticés the
generable programs to reasonable programs).

A. Evaluation of ICEs

The Textual Language permits the formulation of
program where the evaluation of an ICE does ndbvol
directly after the corresponding use of the sensor:

branching produces backward jumps and all condition
branching produces forward jumps, whereas the B&éxtu
Language allows both kinds of jumps for both kinofs
branches. This does not imply a limitation of thewn
approach's power: backward jumps can be added to
conditional branching by simply adding an uncorail
branch (and thereby a backward jump) at the vedyadrthe
program (via transitions e/i and f/g). When we esgsrthe
desired behaviour with a backward jump as a textual
program, this would look like the following:

L100: ...

L150: IF x42.equals(c2z) THEN GOTO L100

a
We can simulate this program with only conditional

forward jumps and unconditional backward jumps:



Preprint submitted to 2012 IEEE Int. Conf. Intedlig Robots and Systems

L100: ...
L150: IF xa2.equals(czs) THEN GOTO L999

L999: GOTO L100

INPUT: list T of lists of label-statement pairs regpenting
the jumpless sections

OUTPUT: list N of label-statement pairs representing the
transformed program

/l rearrange sections

programEnd // collection of last program parts

lastSection := T.pop(0) // start with first section

Since we demand a valid program to end with HALBior WHILE (T.notEmpty()) {

unconditional branch, the extensions at the programd do

not change the program's behaviour. For the othay w

round, a dummy ICE could be used, that always etesuto
the same value,
intuitiveness. For this reason, we show with a troosve
proof, that every unconditional forward jump canaweided
by a very natural permutation of the code fragmemtse
following remarks are not important for the implertaion
or the understanding of the approach, but they stiaw
there is no limitation of the language's power lbseaof the
limitations that were discussed at the subsectheysnning.
At first, we divide the code into jumpless sectidinat are
rearranged in the following step. Considering tbgquence
of pairs of labels Li and statements Si from Deimi 3,
L1:S1;L2:8S2; ... ;Lk: Sk;
we identify those indices where the cuts have tmbde:
Every GOTO statement (regardlessly of its condility)
is the last statement of a section and every |ah& is
referred to by a GOTO statement is the first labEla
section. This step can be expressed in pseudo code:

INPUT: list L of label-statement pairs representing the
general program

OUTPUT: list T of lists of label-statement pairs representing
the jumpless sections

// break L into jumpless sections

FORi=1TOk:

IF (L_iis referred by any GOTO statement) {
T.add(list of pairs in L before (L_i,S_i))
L.remove(list of pairs in L before (L_i,S_i))

}

IF (S_iis a GOTO statement) {

T.add(list of pairs in L up to (L_i,S_i))
L.remove(list of pairs in L up to (L_i,S_i))
}
END

Like the original program, the rearranged progrdams
with L1 : S1 and the related section. The nextisadb be
taken from the temporary list T and added to th&uatu
program N is determined as follows:

but this probably would contradict

N.add(lastSection)
lastStatemnt := lastSection.lastStatement()
IF (lastStatemnt is not a branch) {
oldFollower := lastSection.follower()
IF (T.contains(oldFollower)) {
lastSection := oldFollower

}

ELSE {// old Follower already in N
jmpLbl := oldFollower.firstLabel
N.add((newLabel, GOTO jmpLbl))
lastSection := T.pop(0)

}

}

ELIF (lastStatemnt is a conditional branch) {
oldFollower := lastSection.follower()
jumpsSection := lastStatemnt.gotoSection()
/I destination already used
IF (N.contains(jumpSection)) {

jmpLbl := jumpSection.firstLabel

tmpLbl := createNewLabel()
lastStatemnt.changeDestination(tmpLbl)
programEnd.add((tmpLbl, GOTO jmpLbl))

IF (T.contains(oldFollower)) {
lastSection := oldFollower

}

ELSE {// old Follower already in N
jmpLbl := oldFollower.firstLabel
N.add((newLabel, GOTO jmpLbl))
lastSection := T.pop(0)

}

ELSE {// lastStatemnt unconditional branching
jumpsSection := lastStatemnt.gotoSection()
IF (N.contains(jumpSection)) {
lastSection := T.pop(0)

}

ELSE {
delete lastLabelStatementPair()
lastSection := jumpSection

}

}
}
N.add(lastSection)
N.add(programEnd)

Basically, there are three possibilities for th& ktatement
of the last section: it can be a conditional branah
unconditional branch, or another statement. Focadkes we
now describe how the next section has to be chesehat
there are only unconditional backward and condéion
forward jumps left and the order in which the stagats are
executed does not change.

If the last statement of the current sectionasa GOTO
and the following section in the original progradelfvered
by the function follower() in 4) has not yet beeserted into



Preprint submitted to 2012 IEEE Int. Conf. Intedlig Robots and Systems

the new program, insert it. Otherwise (if the smttiis
addressed from more than one GOTOs), attach
unconditional GOTO to the end of the program thedads
the control flow to the corresponding section. Sirtbe
section is already part of the new program, théilts in an
unconditional backward jump. The next section teem is
the one from the left sections that has the sntalkdsel
number (the first in list T).

The most complicated casecisnditional branching. The
reason for this is that there are two possible segtions and
both can still be in T or already in N. We call gection that
is executed, when the condition is fulfilled, thenpSection.
If this section is still left, there is no need do anything
about it, but otherwise, the procedure to resotwadional
backward jumps, that was introduced previously, taabe
used. Regarding the oldFollower, the same actiams ko be
taken like when the lastStatemnt is not a branch.

an

(2]

(3]

(4]

(5]
(6]

[7]

. . [rE]B]
If the last statement of the current section is a
unconditional GOTO and the jumpSection is already[9]

inserted into the new program, this is a backwardp, like
it is required. Otherwise, the GOTO statement Istdd and
the jumpSection is inserted directly behind the reunir
section, thereby avoiding the GOTO completely.

At the end, the labels have to be changed to make s
that they are increasing over the program.

One can see that the lack of conditional backwandps
and unconditional forward jumps in the intuitivergdigm
does not imply any limitation in principle, sinceveey
GOTO robot program can be transformed to an eqgiikal
one that obeys these restrictions.

VII.

In this paper, we tried to take the first stepsamivthe
extension of playback robot programming by sensmeld
branching and looping. The rationale for orientmgselves
towards the old-fashioned GOTO statement is itsityur
resulting in only two basic programming conceptgicl the
user has to be aware about: ICEs as the intuitumterpart
of conditional GOTOs and SPLs for unconditional GI¥T
We showed how the program can be generated depgeodin
the programmer's actions. We also showed that alneipof
the approach is not limited in comparison with ctitious
textual robot programming language that was deddiced
the GOTO language. The findings suggest that GO3O
indeed useful in the context of intuitive robot gramming.

There still are some issues that need to be clebsddre
the concept can be implemented. For example,
mechanism to choose the next unfinished ICE thatilshbe
moved to, is not yet specified. Another interestijogstion is
whether and how intuitive counting loops (cf. [18fuld be
added to the concept in a natural way.

CONCLUSIONS

[10]

the

REFERENCES

A. M. Al-Qasimi, M. Akyurt, and F. Dehlawi, “On raib
programming and languages,”foc. 4" Saudi Engineering
Conferencevol. 4, pp. 249-258, Nov. 1995.

B. D. Argall, S. Chernova, M.Veloso, and B. BrowgifiA survey of
robot learning from demonstration” Robotics and Autonomous
Systems57:469-483, 2009.

S. Calinon and A. Billard, “A probabilistic prograning by
demonstrationframework handling constraints intjgjmace and task
space,” in2008 IEEE/RSJ International Conference on Inelligen
Robots and Systenp. 367-372. IEEE, 2008.

E. W. Dijkstra, “Go to statement considered hargfinl
Communications of the ACM1(3):147-148, 1968.

Microsoft. Visual programming language.
http://msdn.microsoft.com/en-us/library/bb483088.

J. F. Pane and B. A. Myers. “Usability issues i design of novice
programming systemsTechnical Report CMU-CS-96-132, School
of Computer Scieng€arnegie Mellon University, 1996.

L. Ramshaw. Eliminating go to’s while preservinggrnam structure.
Journal of the Association for Computing Machin&§(4):893-920,
1988.

U. Schoning. Theoretische Informatik — kurzgefdgsgerman).
Spektrum Akademischer Verlag, Berlin, 1997.

R. D. Schraft and C. Meyer. “The need for an ineiteahing
method for small and medium enterprisesiR® 2006 — ROBOTIK
2006: Proceedings of the Joint Conference on RogdD06.

K. Soller and d. Henrich. ,Intuitive robot prograrmg of spatial
control loops with linear movements, “in T. Krogerd F. M. Wahl,
editors, Advances in Robotics Research, pp. 147-3p8nger Berlin
Heidelberg, 2009.



