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Abstract— This paper proposes a new concept to augment 
direct robot programming with sensor-based branching and 
looping. The objective is to derive a new robot programming 
paradigm in order to enable non-programmers to use robots for 
different tasks. Inspired by the ancient programming style 
based on the GOTO-statement, this approach requires the user 
to deal with only two basic concepts: Intuitive Control 
Expressions and Spatial Labels. This simplicity yields a very 
intuitive robot programming interface. We introduce these new 
concepts and derive some statements about the power and the 
limitations of this approach. 

I. INTRODUCTION 

ONTEMPORARY robot manipulators are typically  
employed in large scale industry, where they are 

programmed by dedicated robot experts now and then. To 
make reasonable use of robots in circumstances where there 
are no programmers available and reprogramming is needed 
often, it is necessary to develop really intuitive programming 
interfaces that do not require much more than common 
sense. From this demand, some design goals for such a 
language can be derived:  

• The programming paradigm should be 100% direct, 
i.e. all programming action is conducted directly on 
the robot (e.g. by moving it or by activating sensors 
or actuators) and not on any external programming 
system. The user should regard the robot as an 
intelligent tool. 

• There should be no textual programming and no 
visual programming involved, that could draw off 
the user's attention from his main businesses. By 
"visual programming" we understand systems where 
the flow of control is defined by graphical elements 
that are arranged and/or connected by the user. 
Famous examples comprise the visual programming 
language NXT-G for Lego Mindstorms and the 
LabVIEW programming language. 

• There should be as little extra hardware needed as 
possible since the process of robot programming 
should take place in between other activities. A 
carpenter, for example, who wants to use a robot in 
his production, might find it weird and tedious to 
put on a head-mounted display for programming his 
robot. 

• The language should be based on very few basic 
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principles since every basic concept a user has to 
know and remember tends to make the 
programming process less intuitive. 

Considering the last point, we introduce two basic 
principles: Spatial Program Labels (SPLs) and Intuitive 
Control Expressions (ICEs). The former are derived from 
the GOTO statement, the latter from conditional branching. 
The main thesis of this paper is that the idea of programming 
with "GOTO" is not just not harmful but even useful in the 
context of intuitive robot programming. 

A coarse overview of the targeted system is depicted in 
Fig. 1. It comprises a sensor-equipped robot, a simulated 
robot (in virtual reality) and the demonstration observer (a 
software running on a computer). The user moves the robot 
(in gravitation compensation mode) while activating sensors 
or buttons. This demonstration is recorded and analyzed 
online and a corresponding robot program is generated. The 
simulation of the robot is an important part of the user 
interface — it shows active and activatable components (e.g. 
spatial labels), the movement paths that were already 
programmed and other useful feedback. It also can visualize 
partial program executions before their execution on the real 
robot and thereby enhance safeness. 

If there is at least one branch for which the corresponding 
actions are not yet specified and a SPL is snatched, the 
unfinished program is partly executed in order to take the 
robot to a part of the program, where the programming 
process can be continued. 

The paper is organized as follows. Section 2 shows the 
most important related work with regard to simplifying robot 
programming. In Section 3, we explain our motivation to 
base our intuitive approach on the GOTO language. The 
resulting concepts are presented in Section 4, followed by a 
description of the program generation in Section 5. In 
Section 6, the power and limitations of the approach are 
examined. Finally, Section 7 summarizes the conclusions. 

II.  RELATED WORK 

Different approaches for the simplification of robot 
programming have been examined. Visual programming 
languages are applied in the context of robot programming 
(e.g. the Microsoft Visual Programming Language [5]), 
because they are expected to be superior to textual 
programming languages in terms of accessibility for non-
programmers. Though, this programming method contradicts 
the first two design objectives from Section 1. A discussion 
about the assumed superiority of visual programming 
languages over textual languages can be found in [6]. While 
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text is aligned in a one-dimensional manner, the two-
dimensionality of visual languages is considered to be more 
natural. The proposed concept goes one step further: the 
programming takes place directly in the three-dimensional 
working space of the robot.  

Another approach, which is absolutely in line with those 
design goals, is called Robot Programming by 
Demonstration (RPD). A survey about its different variations 
can be found in [2]. With RPD, the user demonstrates a task 
several times and the robot generalizes those (different) 
demonstrations. In [3], for example, the task of pouring a 
glass of water into a bowl is represented by a Gaussian 
Mixture Model, and Gaussian Mixture Regression is used to 
execute the task. The demonstrations vary in the glass's and 
the bowl's start position and with a good set of 
demonstrations, the system can generalize to situations with 
different start positions that have not been demonstrated 
before. 

In RPD, Policy Learning is used, i.e. the programming 
results in a mapping from observation states to actions [2]. 
Since the same state always causes the same action, this 
approach does not allow encoding the temporal ordering of 
the task. Usually, there is no "memory", and approaches to 
extend Policy Learning with states are task specific ([2], p. 
480). 

The foundation of the new robot programming paradigm is 
the well known playback method. While the user moves the 
robot by direct physical contact, the positions are recorded in 
small time steps. When the program is executed, the robot 
moves from one stored position to the next [9]. This method 
has already been used in early robot applications, especially 
for spray painting. Modern robots that are equipped with 
force/torque sensors alleviate the formerly physically 

demanding procedure. Although this method is easy to 
understand, it lacks mechanisms for loops and conditionals. 
It is not possible to make use of extern sensors without 
applying an additional programming interface, typically 
textual programming. In the next section, the basic approach 
of extending playback programming will be motivated and in 
Section 4 the derived mechanisms will be described. 

III.  DERIVATION OF A ROBOT PROGRAMMING LANGUAGE 

Basically there are two alternatives for designing an 
intuitive direct robot programming system: to design it from 
scratch or to derive it from an existing robot programming 
language. In this paper we choose the second alternative 
because the generated program should be easily transferable 
to a program that is executable on a real robot. 

Typical robot programming languages mainly consist of 
movement instructions, control structures, signal processing, 
digital and analogue signals and so forth [1]. The most 
obvious way to derive an intuitive robot programming 
language from a textual robot programming language is to 
find an intuitive match for every concept in the original 
language. This approach shows some disadvantages: First of 
all, this will yield a set of concepts that have to be learned by 
users of the system. Since many concepts in the original 
language are redundant, this set might result larger than 
needed. (Modern programming languages contain many 
structures that do not extend the power of the language but 
rather make it more convenient and more readable. This is 
called syntactic sugar.) Furthermore, programming such a 
system would presumably be even more complicated than 
textual programming since the only difference would be an 
abstraction layer that transforms movements and button 

Fig. 1. System Overview: Intuitive robot programming system 
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presses into a robot program written in the original language. 
In this section we present the derivation of an intuitive 

robot programming language from the theoretical "GOTO 
language". The latter is a simple programming language that 
is investigated in computability theory [8]. It was shown to 
have the same computability like Turing machines. However, 
since this notion of computability refers to functions and 
since the computation of functions is very far from the main 
focus of robot programming, there is little practical use of 
this Turing completeness (This holds particularly true, due to 
our approach's poor transfer of the concept of variables, as 
will be shown.). However this approach has the advantage 
that we can show that all kinds of nested conditional loops 
and branches can theoretically be programmed. The 
definition of the GOTO language is shown in Definition 1, 
which originates from [8]. 

 
Definition 1. A GOTO program is a sequence of pairs 
consisting of labels Li and statements Si: 

L1 : S1;L2 : S2; … ;Lk : Sk; 
The following statements are allowed with xi being variables 
and c being a constant: 
Unconditional branch:     GOTO Li 

Conditional branch:      IF xi = c THEN GOTO Lj 

Halt instruction :       HALT 
Value assignment:       xi := xj  ± c 

 
In the early times of computer programming, control 
structures like loops were implemented with the means of the 
GOTO statement. Later it fell into disrepute since using it 
imprudently results in code that is difficult to read and 
maintain (This insight was made popular by Edsger W. 
Dijkstra in his famous letter "Go To Statement Considered 
Harmful", see [4].). For this reason it was replaced by more 
sophisticated control structures, e.g. different types of loops. 
Our rationale to do this seemingly step backwards is the 
intuitiveness of the GOTO statement in the programming 
process. Its use resembles the linear way people think. To 
make this point clearer we have a look at another small 
theoretical language – the WHILE language from Definition 
2, also coming from [8]. 

 
Definition 2. The syntax of the WHILE programming 
language is inductively defined as follows (with xi being 
variables and c being a constant): 
Every value assignment in the form  

xi := xj + c or xi := xj - c 
is a WHILE-Program. If P1 and P2 are WHILE programs, so is 
the sequence 

P1; P2. 
If P is a WHILE program, so is 

WHILE xi := 0 DO P END. 
 
This language resembles much more a modern 

programming language than the GOTO language does, and it 
has the same computability. Its disadvantage from the 
perspective of intuitive robot programming is its recursive 

nature. In the context of direct robot programming this would 
mean that the programmer either has to be aware of the 
different levels of recursion (if he starts the process from the 
beginning) or he has to build up the program by combining 
smaller programs. 

Both variants have weaknesses regarding their 
intuitiveness: In the first case, it is important to make explicit 
when the body of a control structure ends. Experience from 
our own work on spatial counter-controlled loops suggests 
that forgetting to set a boundary while demonstrating is a 
frequently occurring mistake [10]. Whereas in textual 
programming this does not cause trouble, since inserting a 
bracket or a key word is done easily afterwards, the issue is 
completely different in direct robot programming. 

In the second case, composing a program from smaller 
programs means that the order of programming differs 
significantly from the natural order of the task. This yields 
not only a lack of intuitiveness, but also a very practical 
problem: programming a task e.g. where an object is 
machined might require the object to be in a certain 
processing condition for a subroutine of the program. The 
object could be processed manually before starting to 
program but the result might differ from the result of the part 
of the program that still has to be programmed. 

IV.  INTUITIVE MECHANISMS FOR CONTROL OF THE 

PROGRAM FLOW 

In this section, we assign an intuitive mechanism to each 
of the four statement types from Definition 1. Actually, an 
unconditional branch is not necessary for the GOTO 
language to be Turing-complete; the other three statements 
would be sufficient. We decided to include unconditional 
branching since the concept of variables is not transferred 
very well to the intuitive paradigm and we consider the 
"simulation" of an unconditional branch by a variable with 
value 'true' in a conditional branch not as intuitive. In our 
approach, from the view of the user the concept of GOTO is 
strictly separated from the concept of conditional branching. 

A. Spatial Program Labels 

In a textual program, labels mark those lines to which the 
program execution can jump. There are two variants of 
labels: ascending numbers in every line or the explicit 
definition of labels wherever necessary. We restrict ourselves 
to the former variant since explicit labels would require the 
user to prospectively identify positions that will be jumped to 
in the subsequent demonstration. Such a mechanism would 
be error-prone and annoying. The first time the user thinks 
about a Spatial Program Label (SPL) should be the moment, 
when he actually wants to do the "jump". Thereby locality is 
fostered, a desired characteristic of novice programming 
systems meaning that related program components are kept 
together [6], but here it is locality in matters of time. 

While the user moves the robot, the positions are recorded 
and corresponding SPLs are created. At the same time, the 
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current robot position (in Cartesian space) is compared to all 
previous SPLs. If the current position is very close to a SPL 
and some other predefined consistency conditions are 
satisfied, e.g. the gripper having the same opening or the 
robot's tool having the same velocity, the SPL is highlighted 
in the simulation and can be activated by pressing a button. 
In most cases this will result in the robot executing parts of 
the program until it encounters an ICE. 

The predefined consistency conditions narrow down the 
activatable SPLs so that the user is not confronted with too 
many possibilities. Another important effect of the 
consistency conditions is that ambiguities are resolved by 
them. Without them, inconsistent situations may occur, for 
example, if the gripper is open at the moment of the SPL's 
definition and closed at the moment, the SPL is activated, 
this might mean that the gripper is opened in an extremely 
fast movement or the opening of the gripper extends to parts 
of the program around the jump. By the premise of the same 
velocity sudden changes in the velocity of the resulting 
program are avoided. Consistency conditions force the user 
to specify how the last state of the robot previous to the jump 
can be transformed to the state at the moment, the label was 
created. 

B. Intuitive Control Expressions 

As we have seen in the previous section, Spatial Program 
Labels augment playback programming by looping. Intuitive 
Control Expressions (ICEs) add conditional branching. They 
are needed, if the program execution depends on 
environmental conditions that have to be determined by the 
use of sensors. As a simple example, we consider in the 
following the case of sensing the colour in the middle of a 
camera picture. The basic principle should be transferable to 
other types of sensors and to other image recognition 
methods.  

For ICEs we allow more than two cases. In the GOTO 
language this effect can be achieved by nesting conditional 
branches into each other. 

Basically, the user needs to specify the position in the 
program where the picture should be taken, the different 
cases of the control expression, and how the execution 
should be continued for each case. The user can specify the 
position by pressing the camera's button at the corresponding 
position (regarding time and place) in the demonstration. 
The picture is stored (and given a variable name for 
referencing it at execution time) and the subsequent actions 
are considered to form the actions for the first case. Later, 
further cases are specified in a similar way: the picture 
pertaining to the next case is taken and then the actions are 
demonstrated with the robot. In contrast to the first time a 
picture is taken, for all other pictures the robot moves to the 
corresponding position automatically after a SPL was 
activated. The user must notify the system of the last time the 
ICE will be demonstrated. All ICEs where at least one case 
has not yet been defined are considered unfinished. 

When the program is executed and reaches the position of 
the ICE, a picture will be taken and compared to all pictures 
of the ICE. The continuation of the program is that one, 
whose picture is closest to the currently taken picture, 
provided that the distance does not exceed a predefined 
value. 

C. Program exit 

Not all kinds of robot programs are supposed to run in an 
infinite loop. In some cases it is desired to stop the robot if 
the task has been accomplished or if certain conditions hold. 
For this purpose there is a special built-in SPL. Its position is 
the start position (with the gripper closed). 

To program the execution stop, the robot is moved to the 
start position and the special SPL is activated. When there 
are unfinished ICEs left (see Subsection B), the robot will 
start the execution again and move to the position of the next 
unfinished ICE. 

D. Variables and value assignments 

The last statement type from Definition 1 we need to 
transfer is also the most difficult: value assignment to a 
variable. A program's variables can be distinguished into two 
groups: implicit and explicit variables. Here, we consider 
those variables that are not directly changeable by the user as 
implicit variables. Implicit variables require dedicated 
mechanisms for their definition in the intuitive programming 
paradigm. We do not want to deal with implicit variables in 
this paper, but an approach for counting loops was examined 
in [10]. As explicit variables, on the other hand, we consider 
states of the environment that are sensed within the ICEs. We 
also want to avoid most explicit variables and value 
assignments in our concept. The only occasion where the 
user has contact with a kind of variable is when he uses 
ICEs. By defining a new ICE, a piece of code for a new 
variable is generated. 

Theoretically, variables could be simulated in the real 
environment by placing or manipulating objects and using 
ICEs to determine their states (e.g. by incrementing a 
manual, mechanical counter and observing its display for a 
certain number). Of course, this method is only practicable 
for very small examples. We do not consider the lack of a 
good transfer of variables to the intuitive programming 
paradigm as a severe restriction since in the context of robot 
programming the explicit computation has much less 
importance than in standard programming. 

V. PROGRAM GENERATION 

This section details how the system works. A coarse 
overview was already given in Figure 1. The finite-state 
automaton in Figure 2 shows how the different inputs of the 
demonstration (called "Tokens" in Figure 1) change the 
internal state of the system and how the program code is 
generated. 

Generally, when the robot is neither being programmed 
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nor executing a program, it is in its parking position (cf. 
Subsection 4.3). First of all, the user switches the robot in 
programming mode. Hereon the program body is created (if 
necessary) and variables for the program generation are 
initialized (a, cf. Figure 2). Now the user can grab the robot 
and move it (b and c). While doing so, the system generates 
code lines that consist of a label and a movement command. 
In addition, the current position of the robot is recorded, so 
that it can be approached when the program is executed, and 
a new SPL is introduced. When the user changes the tool 
value, e.g. the gripper's opening, this action is recorded in the 
program (d). A new ICE can be defined at the current  
position by pressing the camera's (or another sensor's) button  
(e). A picture is stored that will serve as reference sample in 
the execution and the program is supplemented with code for  
taking and comparing a picture (or other sensor data). Also, 
the ICE is put into the list of unfinished ICEs. 

When a SPL is activated, it depends on the list of 
unfinished ICEs, how the robot will react. If it is empty (f), 
the user is asked to move the robot to the parking position to 
finish programming. Although this motion will be recorded 
like all the other motions, this part of the program will never 
be executed. It can be regarded as dead code. If the list is not 

empty (g), the generated code is the same, but the program is 
executed onwards from the snatched label until it encounters 
an unfinished ICE. In contrast, if this is not the ICE where 
the user wants to continue programming, he can prod the 
robot to make him move on to another unfinished ICE (h). 
(Please note, that the order of the ICEs is not specified here.) 
When the desired ICE is reached, the next branch can be 
inserted by activating the camera (i). At this point the user 
has to decide whether this is the last picture (and case) of this 
ICE and if so, the ICE will be transferred from the list of 
unfinished ICEs to the list of finished ICEs. This transition's 
code generation deviates a bit from the code generation of all  
other transitions since the code is not attached to the end of 
the program but it is inserted after the position where the  
code was inserted when the ICE was newly defined (i.e. with 
transition e). After the picture is taken, the demonstration is 
continued. At this point, it is essential that the function 
equals() always returns true for at most one stored sensor  
value of the ICE. Otherwise, the programming order of the  
different cases would influence the execution of the program. 

When the robot is moved to the parking position (k) a 
special SPL becomes available. When this SPL is activated 
and there are still unfinished ICEs left, a HALT-command is 

Fig. 2 FSA for the generation of the program (Intuitive Language); the most important datastructures are listet on the 
left side. 
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generated. Then the robot executes the program, beginning at 
the first line until it reaches one of the unfinished ICEs (l). 
However, if the list of unfinished ICEs is empty, the 
programming procedure is finished (m). 

VI.  POWER AND LIMITATIONS OF THE INTUITIVE APPROACH 

In this section we compare our approach to intuitive robot 
programming with a fictitious textual robot programming 
language based on the GOTO language from Definition 1. A 
direct comparison with the GOTO language would neglect 
characteristics that are specific for robot programming, in 
particular movement. Definition 3 shows the modified 
version. The main difference lies in the specialization of the 
variables' types and the addition of movement commands. It 
purposely resembles the output of the finite state automaton 
in Figure 2 to simplify the comparison. The most obvious 
difference between general textual (robot) programming 
languages and the intuitive approach arises from the 
relinquishment of explicit variables: no explicit computation 
can be performed.   

  
Definition 3. A GOTO robot program is a sequence of pairs 
consisting of labels Li and statements Si: 

L1 : S1;L2 : S2; … ;Lk : Sk; 
The following statements are allowed with xi being variables 
for sensor measurements (i.e. they are initialized and evalu-
ated when the program is executed), ci being constant 
sensor measurement values (i.e. they are determined when 
the robot is programmed), si denoting the attached sensors, 
pi being constants for robot movements (e.g. joint angles) 

and oi being constants for the tool states (e.g. the gripper’s 
opening): 

Unconditional branch:    GOTO Li 

Conditional branch:     IF xi.equals(cj) 
THEN GOTO Lk 

Halt instruction:      HALT 
Sensor value assignment: xi :=use_sensor(si) 
Movement assignment:   actuate_robot(pi) 
                                       | actuate_tool(oi) 
 
We also demand the last statement of the program to be 

either the HALT command or an unconditional branch. 
The language that is defined through the FSA from Fig. 2 

(henceforth called Intuitive Language) is obviously a subset 
of the GOTO robot programming language from Definition 3 
(henceforth called Textual Language): every output of the 
FSA has a counterpart in Definition 3. On the other hand, 
there are programs that can be generated by the grammar in 
Definition 3, but not by the FSA. For the remainder of this 
section we investigate, which programs cannot be generated, 
and whether this is a disadvantage (since it restricts the 
power of the approach) or an advantage (since it restricts the 
generable programs to reasonable programs). 

A. Evaluation of ICEs 

The Textual Language permits the formulation of a 
program where the evaluation of an ICE does not follow 
directly after the corresponding use of the sensor: 

... 
//use sensor(s23) 
L100: x42 := use_sensor(s23) 
//do other things 
L110: x43 := use_sensor(s13) 
L120: actuate_robot(p120) 
//evaluate sensor variable 
L130: IF x42.equals(c10) THEN GOTO L220 
L140: IF x42.equals(c11) THEN GOTO L320 
... 
L220: HALT 
... 
L320: actuate_tool(o22) 
L330: HALT 
 

In contrast, the Intuitive Language only allows the 
evaluation of an ICE directly after the sensor is activated. 
This does not imply a restriction to the power of the 
language, but it is necessary to duplicate the part of the code 
between the use of the sensor and the evaluation. In the 
intuitive paradigm this means duplication of demonstrations. 
The upper code can be transformed to the following, 
executionally equivalent code: 
... 
L100: x42 := use_sensor(s23) 
L110: IF x42.equals(c10) THEN GOTO L220 
L120: IF x42.equals(c11) THEN GOTO L320 
... 
L220: x43 := use_sensor(s13) 
L230: actuate_robot(p120) 
L240: HALT 
... 
L320: x43 := use_sensor(s13) 
L330: actuate_robot(p120) 
L340: actuate_tool(o22) 
L350: HALT 
 

B. Forward and Backward Jumps 

In contrast to the Textual Language, only backward jumps 
can be programmed explicitly in the Intuitive Language (f 
and g in Fig. 2), since the Spatial Label has to be defined 
before it can be activated. Forward jumps are defined 
implicitly with every ICE (e and i). Thus, all unconditional 
branching produces backward jumps and all conditional 
branching produces forward jumps, whereas the Textual 
Language allows both kinds of jumps for both kinds of 
branches. This does not imply a limitation of the new 
approach's power: backward jumps can be added to 
conditional branching by simply adding an unconditional 
branch (and thereby a backward jump) at the very end of the 
program (via transitions e/i and f/g). When we express the 
desired behaviour with a backward jump as a textual 
program, this would look like the following: 
... 
L100: ... 
... 
L150: IF x42.equals(c23) THEN GOTO L100 
 

We can simulate this program with only conditional 
forward jumps and unconditional backward jumps: 
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… 
L100: ... 
... 
L150: IF x42.equals(c23) THEN GOTO L999 
... 
L999: GOTO L100 
 

Since we demand a valid program to end with HALT or an 
unconditional branch, the extensions at the program's end do 
not change the program's behaviour. For the other way 
round, a dummy ICE could be used, that always evaluates to 
the same value, but this probably would contradict 
intuitiveness. For this reason, we show with a constructive 
proof, that every unconditional forward jump can be avoided 
by a very natural permutation of the code fragments. The 
following remarks are not important for the implementation 
or the understanding of the approach, but they show that 
there is no limitation of the language's power because of the 
limitations that were discussed at the subsection's beginning. 

At first, we divide the code into jumpless sections that are 
rearranged in the following step. Considering the sequence 
of pairs of labels Li and statements Si from Definition 3, 

L1 : S1;L2 : S2; … ;Lk : Sk; 
we identify those indices where the cuts have to be made: 

Every GOTO statement (regardlessly of its conditionality) 
is the last statement of a section and every label that is 
referred to by a GOTO statement is the first label of a 
section. This step can be expressed in pseudo code: 

 
INPUT: list L of label-statement pairs representing the 
general program 
OUTPUT: list T of lists of label-statement pairs representing 
the jumpless sections 
// break L into jumpless sections 
FOR i = 1 TO k: 

IF (L_i is referred by any GOTO statement) { 
T.add(list of pairs in L before (L_i,S_i)) 
L.remove(list of pairs in L before (L_i,S_i)) 

} 
IF (S_i is a GOTO statement) { 

T.add(list of pairs in L up to (L_i,S_i)) 
L.remove(list of pairs in L up to (L_i,S_i)) 

} 
END 

 
Like the original program, the rearranged program starts 

with L1 : S1 and the related section. The next section to be 
taken from the temporary list T and added to the output 
program N is determined as follows: 

INPUT: list T of lists of label-statement pairs representing 
the jumpless sections 
OUTPUT: list N of label-statement pairs representing the 
transformed program 
// rearrange sections 
programEnd // collection of last program parts 
lastSection := T.pop(0) // start with first section 
WHILE (T.notEmpty()) { 

N.add(lastSection) 
lastStatemnt := lastSection.lastStatement() 
IF (lastStatemnt is not a branch) { 

oldFollower := lastSection.follower() 
IF (T.contains(oldFollower)) { 

lastSection := oldFollower 
} 
ELSE { // old Follower already in N 

jmpLbl := oldFollower.firstLabel 
N.add((newLabel, GOTO jmpLbl)) 
lastSection := T.pop(0) 

} 
} 
ELIF (lastStatemnt is a conditional branch) { 

oldFollower := lastSection.follower() 
jumpSection := lastStatemnt.gotoSection() 
// destination already used 
IF (N.contains(jumpSection)) { 

jmpLbl := jumpSection.firstLabel 
tmpLbl := createNewLabel() 
lastStatemnt.changeDestination(tmpLbl) 
programEnd.add((tmpLbl, GOTO jmpLbl)) 

} 
IF (T.contains(oldFollower)) { 

lastSection := oldFollower 
} 
ELSE { // old Follower already in N 

jmpLbl := oldFollower.firstLabel 
N.add((newLabel, GOTO jmpLbl)) 
lastSection := T.pop(0) 

} 
} 
ELSE { // lastStatemnt unconditional branching 

jumpSection := lastStatemnt.gotoSection() 
IF (N.contains(jumpSection)) { 
lastSection := T.pop(0) 
} 
ELSE { 

delete lastLabelStatementPair() 
lastSection := jumpSection 

} 
} 

} 
N.add(lastSection) 
N.add(programEnd) 
 

Basically, there are three possibilities for the last statement 
of the last section: it can be a conditional branch, an 
unconditional branch, or another statement. For all cases we 
now describe how the next section has to be chosen so that 
there are only unconditional backward and conditional 
forward jumps left and the order in which the statements are 
executed does not change.  

If the last statement of the current section is not a GOTO 
and the following section in the original program (delivered 
by the function follower() in 4) has not yet been inserted into 
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the new program, insert it. Otherwise (if the section is 
addressed from more than one GOTOs), attach an 
unconditional GOTO to the end of the program that directs 
the control flow to the corresponding section. Since the 
section is already part of the new program, this results in an 
unconditional backward jump. The next section to insert is 
the one from the left sections that has the smallest label 
number (the first in list T). 

The most complicated case is conditional branching. The 
reason for this is that there are two possible next sections and 
both can still be in T or already in N. We call the section that 
is executed, when the condition is fulfilled, the jumpSection. 
If this section is still left, there is no need to do anything 
about it, but otherwise, the procedure to resolve conditional 
backward jumps, that was introduced previously, has to be 
used. Regarding the oldFollower, the same actions have to be 
taken like when the lastStatemnt is not a branch. 

If the last statement of the current section is an 
unconditional GOTO and the jumpSection is already  
inserted into the new program, this is a backward jump, like 
it is required. Otherwise, the GOTO statement is deleted and 
the jumpSection is inserted directly behind the current 
section, thereby avoiding the GOTO completely. 

At the end, the labels have to be changed to make sure, 
that they are increasing over the program. 

One can see that the lack of conditional backward jumps 
and unconditional forward jumps in the intuitive paradigm 
does not imply any limitation in principle, since every 
GOTO robot program can be transformed to an equivalent 
one that obeys these restrictions. 

VII.  CONCLUSIONS 

In this paper, we tried to take the first steps toward the 
extension of playback robot programming by sensor-based 
branching and looping. The rationale for orienting ourselves 
towards the old-fashioned GOTO statement is its purity 
resulting in only two basic programming concepts, which the 
user has to be aware about: ICEs as the intuitive counterpart 
of conditional GOTOs and SPLs for unconditional GOTOs. 
We showed how the program can be generated depending on 
the programmer's actions. We also showed that the power of 
the approach is not limited in comparison with a fictitious 
textual robot programming language that was deduced from 
the GOTO language. The findings suggest that GOTO is 
indeed useful in the context of intuitive robot programming. 

There still are some issues that need to be cleared, before 
the concept can be implemented. For example, the 
mechanism to choose the next unfinished ICE that should be 
moved to, is not yet specified. Another interesting question is 
whether and how intuitive counting loops (cf. [10]) could be 
added to the concept in a natural way. 
 

REFERENCES 

[1] A. M. Al-Qasimi, M. Akyurt, and F. Dehlawi, “On robot 
programming and languages,” in Proc. 4th Saudi Engineering 
Conference, vol. 4, pp. 249-258, Nov. 1995. 

[2] B. D. Argall, S. Chernova, M.Veloso, and B. Browning, “A survey of 
robot learning from demonstration” in Robotics and Autonomous 
Systems, 57:469-483, 2009. 

[3] S. Calinon and A. Billard, “A probabilistic programming by 
demonstrationframework handling constraints in joint space and task 
space,” in 2008 IEEE/RSJ International Conference on Inelligent 
Robots and Systems, pp. 367-372. IEEE, 2008. 

[4] E. W. Dijkstra, “Go to statement considered harmful,” in 
Communications of the ACM, 11(3):147-148, 1968. 

[5] Microsoft. Visual programming language. 
http://msdn.microsoft.com/en-us/library/bb483088. 

[6] J. F. Pane and B. A. Myers. “Usability issues in the design of novice 
programming systems,” Technical Report CMU-CS-96-132, School 
of Computer Science, Carnegie Mellon University, 1996. 

[7] L. Ramshaw. Eliminating go to’s while preserving program structure. 
Journal of the Association for Computing Machinery, 35(4):893-920, 
1988. 

[8] U. Schöning. Theoretische Informatik – kurzgefasst (in german). 
Spektrum Akademischer Verlag, Berlin, 1997. 

[9] R. D. Schraft and C. Meyer. “The need for an intuitive teahing 
method for small and medium enterprises” in IRS 2006 – ROBOTIK 
2006: Proceedings of the Joint Conference on Robotics, 2006. 

[10] K. Soller and d. Henrich. „Intuitive robot programming of spatial 
control loops with linear movements, “ in T. Kröger and F. M. Wahl, 
editors, Advances in Robotics Research, pp. 147-158. Springer Berlin 
Heidelberg, 2009. 

 
 
 
 
 


