Rule based Intention Generalization through Human-Robot Interaction

Muhammad Awais, Lehrstuhl für Angewandte Informatik III, (Robotik und Eingebettete Systeme), Universität Bayreuth, D-95440 Bayreuth, Germany.
Dominik Henrich, Lehrstuhl für Angewandte Informatik III, (Robotik und Eingebettete Systeme), Universität Bayreuth, D-95440 Bayreuth, Germany.

Abstract

Humans have the capability of concept generalization. They can generalize an operation specific to an object on different objects present in the scene. In this paper we introduce a novel approach of rule based human intention generalization. The generalization is performed through Human-Robot Interaction (HRI) by inducing the rules online. The online rule induction corresponds to the performed human action on a known object with known characteristics. The novel generalization of an induced rule is performed based on the acceptance, rejection or correction by the human in response to the robot reaction while HRI. A novel method of conflict resolution is also proposed for the generalized rules. The experiments performed for the rule based intention generalization and online rule induction include teaching the robot of a specialized human intention. The robot tries to generalize the taught human intention by applying the actions on the related objects. The robot generalizes the human intention while HRI, based on acceptance, rejection or correction by the human. The intention generalization is performed by embedding the generalized rule into the probabilistic finite state machine. A finite state machine represents a human intention.

1 Introduction

Generalization of a concept corresponds to the reduction of the number of conditions present in the selection criterion of the concept. The lesser the conditions in the selection criterion of a concept the more general is the concept and vice versa.

There exist concepts related to generalization, e.g., applying the knowledge obtained from one case to another case and transferring the knowledge obtained from one scenario to another. This relates to Case Based Reasoning (CBR) [4] and Knowledge Transfer (KT) [9, 12] which are the examples of Lazy Learning algorithms. CBR may use different feature representations, e.g., Rough Sets [22]. The Lazy Learning algorithms use different kinds of distance functions to calculate the similarity between cases [23]. Association based rule learning in Data Mining [10, 21, 7] requires a huge amount of data to generate rules with certain probabilistic measures. Learning from Demonstration (LfD) [5, 17] use the term generalization for the robot to learn comprehensively from many times performed demonstration in different conditions for a certain task. The approach proposed in [11] describes that correction based HRI gives better results in LfD. HRI is used to correct the task performed by the robot [2], for behaviour adaption [15], and to learn the environment dynamics [19]. There exist generalization approaches for mobile robot, e.g., [3] describes navigational generalization based on evolutionary algorithms and [18] discusses Differential Equations based motor skill generalization. All the above described approaches do not consider generalization as concept generalization. The most related approach to concept generalization is [15]. It is also known as Version Space strategy. This approach can be successfully applied in classification. The HRI based concept generalization can not be performed using [15]. Since [15] does not suggest what to do in correction performed by the human while interaction. Similarly [15] also does not explicitly describes the rule conflict resolution. There exist also approaches for conflict resolution, e.g., [6] uses the classification frequencies of the rules (that cover the example to be classified) with respect to the classes to classify a conflicting example. The approach in [8] uses the product of prior probability of the class with the product of conditional probabilities of the rule with respect to that class. The class with higher value is selected. In [20] each conflicting rule votes for its predicted class with a weight and the weight of all the classes are summed up and the class with the highest weight is selected. The conflict resolution in [14] is the same as [8] if there is no training example in the intersection of the conflicting rules. If there are training examples in the intersection of conflicting rules then it [14] uses the conditional probabilities of the intersecting rules with respect to the class. The suggested approach in [13] introduces the idea of new induction from the examples that are covered by the rules in conflict. The above described approaches discuss the resolution of conflict using probability and the
frequency of the class and by inducing new rules. No approach tries to focus on the antecedents of the rule that influence classification. Along with concept based generalization, the conflict resolution of rules is also suggested based on the importance of individual antecedents of the rule. The presented approach is confined to the generalization relating to the reduction of the concept criterion as described earlier. The application of these generalized rules in the intuitive HRI improves the interaction capabilities of the robot as the robot can interact more intelligently by performing the actions that are not explicitly taught to the robot.

The remainder of this paper is organized as follows. In the Section 2 a brief introduction of the probabilistic state machines representing the human intentions is given. Section 3 describes the online rule induction and generalization approach. Section 4 discusses the rule conflict resolution. Section 5 describes the experiments, performed using the proposed approach. In the end, the Section 6 concludes the approach described in this paper.

2 Probabilistic State Machines

The probabilistic Finite State Machines (FSMs) [1] are used to recognize and react according to the human intentions. Each FSM consists of a tuple, i.e., $FSM = (Q, \sum, S_0, S_1, \delta)$. The set Q consists of the states S_i, $i = 1, ..., n$ of a FSM. The set \sum corresponds to the set of the human actions a_x, $x = 1, ..., m$ for a state $S_i \in Q$. Each action a_x has a probability value with respect to a state S_i, i.e., $P(a_x | S_i)$. There exists an action $a_x \in \sum$ for each state $S_i \in Q$ such that the probability of a_x for the state S_i is greater than the probability of all the other actions $a_j \in \sum$ at the state S_i, i.e.,

$$\forall S_i \in Q: \exists a_x \in \sum: \sum_{j \in \sum} a_j \text{ it holds that } P(a_x | S_i) > P(a_j | S_i)$$

For each state S_i the sum of the probabilities of all the actions adds up to 1, i.e.,

$$\forall S_i \in Q \wedge \exists a_x \in \sum \text{ it holds that } \sum_{a_x} P(a_x | S_i) = 1$$

The start and final states of the FSM are represented by S_1 and S_n. In a general probabilistic FSM (Figure 1), the action a_j represents the j^{th} action at the state S_i such that it leads to the same state S_i. The action a_x represents the k^{th} action at state S_i and it leads to next state S_{i+1}.

Figure 1 A General Finite State Machine

3 Rule Generalization

We introduce an approach for human intention generalization based on the rule generalization. The rule generalization corresponds to the generalization of the transition conditions of FSMs. The transition conditions correspond to the actions a_j for the FSMs, discussed in Section 2. Each transition condition corresponds to a rule that is generalized using HRI. After recognizing the human intention the robot also reacts according to the generalized rules that will be described in the Section 5. The rules are induced online while HRI. The rule generalization is performed by HRI based on the idea of concept generalization. The robot generalizes the induced rules by applying them on a group of related objects. The group of objects corresponds to those objects that are similar to the object in some respect on which the human has performed the operation. The process of rule generalization is performed according to the following steps

3.1 Grouping of the objects

The objects of similar characteristics are grouped together. The system is given the characteristics of the objects and it classifies the object based on the similar characteristics. For example, if we have a group of the following objects, i.e., jug, plate, bowl, book, note book, shirt and, trousers. Then the jug, plate and bowl will fall into one class, book, and note book will fall into second class and shirt, and trousers will fall into third class. The reason is that the jug, plate and bowl have the similar characteristic of being broken along with other characteristics. The book, note book, shirt, and, trousers do not have the characteristic of being broken. Similarly the shirt and trousers can be dirty and book and note book do not have the characteristic of dirtiness. There may be more than one different characteristics present in the different classes.

3.2 Online rule induction

The objects present in the scene are known to robot. They belong to classes which are already known too. The robot also understands the human actions and the changes in the scene occurred due to the human action. The characteristics of the objects present in the scene are also known to the system. If an action sensible by the robot is performed by the human on an object with known characteristics, then the robot induces a rule considering the characteristics of the object as the antecedents and the performed action as the consequent of the rule.

3.3 Rule application

For generalization based on HRI, the robot applies the induced rules on the suitable objects present in the scene.
A set S of hypotheses is created, i.e. $S = \{L, R, O\}_1, \ldots, (L, R, O)_n$. The set S consists of h hypotheses. Each hypothesis (L, R, O) consists of a list L_i, a rule R_i, and object O_i. The list L_i corresponds to a set of characteristics that are similar in the object O_i present in the scene and the antecedents of rule R_i in hypothesis i.

3.4 Rule generalization

In the process of generalization the robot applies the rule R_h on the object O_h of the h hypothesis of set $S = \{(L, R, O), \ldots, (L, R, O)\}$. The robot expects the feedback from the human for the application of rule R_h on the object O_h. Generalization is performed based on the human action in response to robot’s rule application.

The robot expects three kinds of responses from the human. The human can accept the robot’s action. The robot’s action can be rejected or can be corrected by the human along with rejection. In the generalization algorithm (Figure 2), the input of the algorithm includes set S of hypotheses that is generated in the rule application step. The robot can recognize the n objects present in the scene and the related characteristics of the n objects.

Input:
- Human feedback
- n known objects O in the scene
- Changes in scene due to human action are known
- Characteristic of the objects in the scene

Output:
- Possible Generalization of rules

Procedure:

1. FOR all h Hypotheses
2. Execute (Consequent (R_h, O_h))
3. IF Rule Accepted
4. RULE_UPDATE (L_h, R_h)
5. END IF
6. IF Rule Rejected
7. $L = R$ _DIFFERENCE (R, L_h)
8. RULE_UPDATE (L, R_h)
9. END IF
10. IF Rule Rejected + Corrected
11. $L = R$ _DIFFERENCE (R, O_h)
12. L _RULE_UP DATE $(L, R_h, A_{Correction}, O_h)$
13. END IF
14. END FOR

Figure 2 HRI based rule generalization

The human feedback and the changes occurred in the scene due to the human actions are also known to the robot. The output of the algorithm is the possible generalization of the rules in the hypotheses set S. The algorithm proceeds by applying the consequent part of rule R_h on the object O_h for each hypothesis (L, R, O) in the set S (line 1-2, Figure 2). If the human accepts the robot’s action then the rule R_h is updated (line 4, Figure 2) by replacing the antecedents of rule R_h with the list L_h (line 1-3, Figure 3).

1. R _UPDATE (L, R)
2. R. Antecedents $\{\}$
3. R. Antecedent $= L$

Figure 3 Update of the antecedents of rule R by list L

If the robot action is rejected by the human (line 6, Figure 2) then the difference between the rule R_h and the L_h is performed (line 7, Figure 2). The difference between R_h and L_h results in a list L that contains the elements that belong to R_h but do not belong to L_h (line 1-5, Figure 4).

1. R _DIFFERENCE (R, L)
2. $R = \{a_1, a_2, a_3, \ldots, a_n\}$
3. $O = \{c_1, c_2, c_3, \ldots, c_m\}$
4. $A : R \setminus L \neq a \in R \land a \notin L \land i \geq 1$
5. RETURN A

Figure 4 Relative complement of L with respect to R

The rule R_h is updated (line 8, Figure 2) by replacing the antecedents of rule R_h with the list L (line 1-3, Figure 3).

The list L is produced at line 7, Figure 2. If the human not only rejects the robot action but also corrects the robot action (line 10, Figure 2) then once again the difference between the rule R_h and the characteristics of the object O_h is performed (line 11, Figure 2). The O_h corresponds to the characteristics of the object O in the hypothesis of set S. The set T exists in the input of algorithm given in Figure 2. The difference results in a list L that contains the elements that belong to O_h but do not belong to R_h (line 1-5, Figure 5).

1. R _DIFFERENCE (R, O)
2. $R = \{a_1, a_2, a_3, \ldots, a_n\}$
3. $O = \{c_1, c_2, c_3, \ldots, c_m\}$
4. $A : R \setminus L \neq a \in R \land a \notin L \land i \geq 1$
5. RETURN A

Figure 5 Relative complement of R with respect to L

The rule R_h is updated (line 12, Figure 2) by replacing the antecedents of rule R_h with the list L (line 1-3, Figure 6).

The list L is produced at line 11, Figure 2. The consequent of rule R_h is replaced by the human correction (line 4, Figure 6). The Induced Rule (IR) for the newly constructed rule is also updated (line 5, Figure 6).

1. R _RULE_UP DATE (L, R, A, C)
2. R. Antecedent $= \{\}$
3. R. Antecedent $= L$
4. R. Consequent $= A$
5. R _R.Antecedent $= C$, R. Consequent $= A$

Figure 6 Update of rule R and related Induced rule (IR)

The rules that are generalized by the process of REJECT and REJECT plus CORRECT are tested before they are moved into the transition pool. The rule generalized by REJECT may lead to false generalized rule. There can be two cases of false generalizations. In Case 1, if the (Induced Rule) IR is applied on an object of another class then the intermediate generalized rule (IGR) will be false generalization. The intermediate generalized rules (IGRs) correspond to the rules that are produced by the result of ACCEPT, REJECT or REJECT plus CORRECT, per-
formed by the human while the process of generalization (Figure 2). For example, if IR and the characteristics of the object are as under

\[
\text{IR} \quad : \quad \text{IF } \{\text{Dirty, Plate, Intact}\} \text{ THEN } W.B \quad \text{(Wash Basin)}
\]

Object : \{\text{Shirt, Dirty, Good}\}

Then the IGR due to REJECT (line 6-9, Figure 2) will be

\[
\text{IGR} \quad : \quad \text{IF } \{\text{Plate, Intact}\} \text{ THEN } W.B
\]

In Case 2, if IR is applied on the object of the same class and if the IGR does not contain all the necessary antecedents then IGR will be a false generalization. For example, if IR and the characteristics of the object are as under

\[
\text{IR} \quad : \quad \text{IF } \{A, B, C, D\} \text{ THEN A}
\]

Object : \{A, B, D\}

Then the IGR due to REJECT (line 6-9, Figure 2) will be

\[
\text{IGR} \quad : \quad \text{IF } \{C\} \text{ THEN A}
\]

If \(B\) and \(C\) are the necessary antecedents with respect to the action \(A\) then IGR is a false generalization. Similarly in case of REJECT plus CORRECT, there exist two cases. In Case 1, if IR is applied on an object of another class then the IGR will be a false generalization. For example, if IR and the characteristics of the applied object are as under

\[
\text{IR} \quad : \quad \text{IF } \{\text{Dirty, Plate}\} \text{ THEN } W.B
\]

Object : \{\text{Shirt, Dirty, Good}\}

Then the IGR due to REJECT plus CORRECT (line 10-13, Figure 2) will be as under

\[
\text{IGR} \quad : \quad \text{IF } \{\text{Shirt, Good}\} \text{ THEN } W.M \quad \text{(Wash Machine)}
\]

\[
\text{IR} \quad : \quad \text{IF } \{\text{Shirt, Dirty, Good}\} \text{ THEN } W.M
\]

In Case 2, if the necessary antecedents are not considered then the IGR will be a false generalization. For example, if IR and the characteristics of the object are as under

\[
\text{IR} \quad : \quad \text{IF } \{A, B, C, D\} \text{ THEN A}
\]

Object : \{A, B, D, E\}

Then the IGR due to REJECT plus CORRECT (line 10-13, Figure 2) will be as under

\[
\text{IGR} \quad : \quad \text{IF } \{E\} \text{ THEN A}
\]

\[
\text{IR} \quad : \quad \text{IF } \{A, B, D, E\} \text{ THEN A}
\]

If \(B\) and \(E\) are the necessary antecedents with respect to the action \(A\) then IGR is a false generalization. Therefore the IGRs are first tested with the procedure (Figure 7) and then moved into the transition pool. The false generalization only occurs if the object belongs to a different class. The input to the procedure (Figure 7) is the set IGR. Each IGR, \(i=\ldots, M\), has its corresponding IR. The output of the procedure (Figure 7) is the set of IGRs with corrected generalization problems. All the IGRs are tested for all the related objects (line 1, 2 Figure 7) present in the scene. The related object with respect to an IGR corresponds to the object that has all the characteristics concerned to the IGR. After IGR is applied (line 3, Figure 7), the human responds by accepting, rejecting or rejecting and correcting the robot reaction.

If the human accepts the robot reaction then interaction is performed between the IR concerned to IGR and the characteristics of the object \(O_j\) and IGR, is updated (Figure 3) with the results of interaction (line 4-6, Figure 7). The intersection (line 5, Figure 7) is performed due to the fact that it results in all the necessary antecedents.

\[
\text{Input : Set IGR of Intermediate Generalized Rule (IGR)}
\]

and concerned Induced Rule (IR)

\[
\text{Output : IGRs}
\]

Procedure :
1. For all IGR,
2. For all applicable Objects \(O_j\) for IGR,
3. Apply IGR, on \(O_j\)
4. IF(REWARD == "ACCEPT")
5. \(L = \text{INTERSECT} \quad \text{(Characteristic}(O_j), \text{IGR}, \text{IR})
6. \text{RULE}_\text{UPDATE}(L, \text{IGR}, \text{IR})
7. ELSE IF(REWARD == "REJECT")
8. \(L = \text{R_DIFFERENCE} \quad \text{(IGR,IR,Characteristic}(O_j))
9. \text{RULE}_\text{UPDATE}(L \cup \text{Antecedents}, \text{IGR}, \text{IR})
10. IF(REWARD == "REJECT + CORRECT")
11. \(L = \text{RC_DIFFERENCE} \quad \text{(IGR,IR,Characteristic}(O_j))
12. \text{RC_RULE_UP_DATE}(L, \text{IGR,Correction, Characteristic}(O_j))
13. END IF
14. END FOR
15. END FOR

Figure 7 Evaluation of IGRs for false generalization

The intersection (line 5, Figure 7) considers the similar characteristics of the object \(O_j\) (on which the robot has performed the action) and the antecedents of the induced rule of the IGR. For example, if we consider the example of Case 2 in REJECT case described earlier, i.e.

\[
\text{IR}_i : \quad \text{IF } \{A, B, C, D\} \text{ THEN A},
\]

\[
\text{IGR}_i : \quad \text{IF } \{C\} \text{ THEN A}.
\]

and \(O_j\) : \{E, B, G, F, C\}.

The object \(O_j\) will contain all the necessary antecedents as the action is accepted for \(O_j\). After acceptance (line 4-6, Figure 7) the IGR, will be as under

\[
\text{IGR}: \quad \text{IF } \{B, C\} \text{ THEN A}.
\]

If the human rejects the robot reaction then the difference (see Figure 4) is performed (line 7-8, Figure 7). The difference specifies the unconsidered necessary antecedents that are added to IGR, (line 9, Figure 7). The updated IGR, is made available in the set IGR as it may require further necessary antecedents. If an IGR, generated due to REJECT plus CORRECT and results in a false generalization. Then that IGR, is corrected by adding the necessary antecedents. If the human rejects and corrects the reaction then the IGR, is updated (line 11-12, Figure 7). This rule IGR, is once again made available in the set IGR to be tested. The IGR,IR corresponds to the characteristics of \(O_j\) and \(\text{Correction}\) (line 12, Figure 7). The IGR, generated only due to accept (line 4-6, Figure 7) are added to the transition pool.

3.5 Transition pool

The IGRs are added to the transition pool. In the process of generalization of IGRs (see Figure 8), each IGR, present in the transition pool is matched against another rule IGR, If both the rules match, i.e., the consequent of both the rules IGR, and IGR, are similar and at least one antecedent in both the rules is similar.
Figure 8 Generalization of IGRs in transition pool

Then intersection of the antecedents of the both the rules is performed, i.e.

\[
IGR_i \cap IGR_j
\]

\[a \in IGR_i, \text{antecedent}\]

\[a \in IGR_j, \text{antecedent}\]

\[a \in \{\text{antecedents of } IGR_i\} \ z \geq 1\]

\[IGR_i \text{consequent} = IGR_j \text{consequent}\]

The rules IGRi and IGRj are dissolved into another rule IGRk with the similar consequent and possibly few numbers of antecedents as compared to IGRi and IGRj. If the rule is completely generalized then it is moved into pool of generalized rules otherwise it is sent back to the pool of intermediate generalized rules (Figure 8). The IGRs are kept in the transition pool until they are completely generalized. There are two cases in which the rules are considered completely generalized. The Case 1 corresponds to the rules that have only one antecedent left. The Case 2 corresponds to the rules that can not be further generalized after C cycles of generalization in the transition pool. A generalization cycle corresponds to the fact that an IGR, in the transition pool once again come into the transition pool (Figure 8).

4 Rule Conflict Resolution

The proposed approach for rule conflict resolution takes into account the significance of each antecedent of a rule to resolve the conflict. An antecedent of a rule corresponds to a known characteristics of a known object observed in the scene. The significance of an antecedent is termed as the importance factor. The importance factor of an antecedent can have the value in an interval of 1 and 0, i.e., \(\text{Importance Factor (A)} \in [1, 0] \). The importance factor of an antecedent is calculated as under

\[
\text{Importance Factor} = \frac{\sigma}{\Omega}
\]

\[\sigma : \text{Number of times a characteristics is selected}\]

\[\Omega : \text{Number of times a characteristics is considered}\]

Each characteristic known to the robot is assigned an importance factor. The importance factor of the characteristics are the antecedents are the antecedents correspond to the antecedents of a known characteristics of a known object observed in the scene. The significance of an antecedent is represented as the importance factor. The importance factor of the characteristics is assigned to the robot while reacting to the recognized human intention. The green bars represent the results with generalization and brown bars represent without generalization. The graph (Figure 10 Right) shows the rule conflict results.
6 Conclusion

In this paper we have introduced a generalization approach for the human intention generalization. The intention generalization corresponds to the understanding of the key concept of the human intention and to react according to that concept. The approach describes the rule generalization by HRI. This rule is then embedded into the probabilistic FSM [1]. That is used to recognize the general human intention and to react generally. The generalization capability of the robot increases the range of intuitive reactions. As future work the robot will be able to distinguish between the situations if he needs to react based on the generalization or specialization according to the human intention. If it is known that only one characteristic is significant for the concerning action and the objects belong to one class then the algorithm in Figure 2 is enough for generalization.

7 Literature

[8] Compumine - Rule Discovery System™